

 $I(J^{P}) = \frac{1}{2}(\frac{1}{2}^{+})$ Status: ****

The parity has not actually been measured, but + is of course expected.

We have omitted some results that have been superseded by later experiments. See our earlier editions.

Ξ^- MASS

The fit uses the Ξ^- , $\overline{\Xi}^+$, and $\overline{\Xi}^0$ masses and the $\overline{\Xi}-\overline{\Xi}^+$ mass difference. It assumes that the $\overline{\Xi}^-$ and $\overline{\Xi}^+$ masses are the same.

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
1321.71±0.07 OUR FI	Т				
$1321.70 \pm 0.08 \pm 0.05$	2478 ± 68	ABDALLAH	06E	DLPH	from Z decays
• • • We do not use the	ne following dat	a for averages, fits,	, limit	ts, etc.	• • •
1321.46 ± 0.34	632	DIBIANCA	75	DBC	4.9 GeV/ <i>c K⁻ d</i>
1321.12 ± 0.41	268	WILQUET	72	HLBC	
$1321.87 \!\pm\! 0.51$	195	¹ GOLDWASSER	70	HBC	5.5 GeV/ <i>c K⁻ p</i>
$1321.67 \!\pm\! 0.52$	6	CHIEN	66	HBC	6.9 GeV/ <i>c pp</i>
1321.4 ± 1.1	299	LONDON	66	HBC	
1321.3 ± 0.4	149	PJERROU	65 B	HBC	
1321.1 ± 0.3	241	² BADIER	64	HBC	
1321.4 ± 0.4	517	² JAUNEAU	63 D	FBC	
$1321.1\ \pm 0.65$	62	² SCHNEIDER	63	HBC	
¹ GOLDWASSER 70	uses $m_{\Lambda} = 111$	5.58 MeV.			

² GOLDWASSER 70 uses $m_{\Lambda} = 1115.58$ MeV. ² These masses have been increased 0.09 MeV because the Λ mass increased.

$\overline{\Xi}^+$ MASS

The fit uses the Ξ^- , $\overline{\Xi}^+$, and $\overline{\Xi}^0$ masses and the $\overline{\Xi}^- - \overline{\Xi}^+$ mass difference. It assumes that the $\overline{\Xi}^-$ and $\overline{\Xi}^+$ masses are the same.

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT				
1321.71±0.07 OUR FIT	-								
$1321.73 {\pm} 0.08 {\pm} 0.05$	2256 ± 63	ABDALLAH	06E	DLPH	from Z decays				
$\bullet \bullet \bullet$ We do not use the	• • • We do not use the following data for averages, fits, limits, etc. • • •								
1321.6 ± 0.8	35	VOTRUBA	72	HBC	10 GeV/ <i>c K</i> + <i>p</i>				
1321.2 ± 0.4	34	STONE	70	HBC					
$1320.69 \!\pm\! 0.93$	5	CHIEN	66	HBC	6.9 GeV/c pp				

$$(m_{\Xi^-} - m_{\overline{\Xi}^+}) / m_{\Xi^-}$$

A test of CPT invariance.

$(-2.5\pm8.7)\times10^{-5}$ ABDALLAH 06E DLPH from Z decays	VALUE	DOCUMENT ID	TECN	COMMENT
	$(-2.5\pm8.7) \times 10^{-5}$	ABDALLAH 06	5e DLPH	from Z decays

Ξ^- MEAN LIFE

Measurements with an error $>~0.2\times10^{-10}$ s or with systematic errors not included have been omitted.

VALUE (10^{-10} s)	EVTS	DOCUMENT ID		TECN	COMMENT
1.639 ± 0.015 OUR AV	ERAGE				
$1.65\ \pm 0.07\ \pm 0.12$	2478 ± 68	ABDALLAH	06E	DLPH	from Z decays
$1.652\!\pm\!0.051$	32k	BOURQUIN	84	SPEC	Hyperon beam
$1.665 \!\pm\! 0.065$	41k	BOURQUIN	79	SPEC	Hyperon beam
$1.609\!\pm\!0.028$	4286	HEMINGWAY	78	HBC	4.2 GeV∕ <i>c K</i> [−] <i>p</i>
1.67 ± 0.08		DIBIANCA	75	DBC	4.9 GeV/ $c K^{-} d$
1.63 ± 0.03	4303	BALTAY	74	HBC	1.75 GeV/ $c \ K^{-} p$
$1.73 \ +0.08 \ -0.07$	680	MAYEUR	72	HLBC	2.1 GeV/ $c \ K^-$
1.61 ± 0.04	2610	DAUBER	69	HBC	
1.80 ± 0.16	299	LONDON	66	HBC	
1.70 ± 0.12	246	PJERROU	65 B	HBC	
$1.69 \ \pm 0.07$	794	HUBBARD	64	HBC	
$1.86 \begin{array}{c} +0.15 \\ -0.14 \end{array}$	517	JAUNEAU	63 D	FBC	

$\overline{\Xi}^+$ MEAN LIFE

<u>VALUE (10^{-10} s)</u>	EVTS	DOCUMENT ID	DOCUMENT ID		COMMENT
1.70±0.08±0.12	2256 ± 63	ABDALLAH	06e	DLPH	from Z decays
$\bullet \bullet \bullet$ We do not use the	e following dat	a for averages, fit	s, limi [.]	ts, etc.	• • •
$1.55 \substack{+0.35 \\ -0.20}$	35	¹ VOTRUBA	72	HBC	10 GeV/ <i>c K</i> ⁺ <i>p</i>
$1.6 \ \pm 0.3$	34	STONE	70	HBC	
$1.9 \ {}^{+0.7}_{-0.5}$	12	¹ SHEN	67	HBC	
$1.51\!\pm\!0.55$	5	¹ CHIEN	66	HBC	6.9 GeV/c <u>p</u> p
¹ The error is statistic	al only.				

$(\tau_{\Xi^{-}} - \tau_{\overline{\Xi}^{+}}) / \tau_{\Xi^{-}}$

A test of CPT invariance.

VALUE	DOCUMENT ID	DOCUMENT ID		COMMENT
-0.01 ± 0.07	ABDALLAH	06e	DLPH	from Z decays

Ξ^- MAGNETIC MOMENT

See the "Quark Model" review.

VALUE (μ_N)	EVTS	DOCUMENT IL	DOCUMENT ID		COMMENT
-0.6507 ± 0.0025 OUR AVE	RAGE				
-0.6505 ± 0.0025	4.36M	DURYEA	92	SPEC	800 GeV <i>p</i> Be
$-0.661 \pm 0.036 \pm 0.036$	44k	TROST	89	SPEC	$\Xi^-~\sim$ 250 GeV
-0.69 ± 0.04	218k	RAMEIKA	84	SPEC	400 GeV <i>p</i> Be
https://pdg.lbl.gov	Pag	ge 2	Crea	ated: 5/	/30/2025 07:49

 \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet

-0.674	$\pm 0.021 \ \pm 0.020$	122k	НО	90	SPEC	See DURVEA 92
-2.1	± 0.8	2436	COOL	74	OSPK	1.8 GeV/c $K^- p$
-0.1	± 2.1	2724	BINGHAM	70 B	OSPK	1.8 GeV/ $c \ K^- p$

$\overline{\Xi}^+$ MAGNETIC MOMENT

See the "Quark Model" review.

VALUE (μ_N)	EVTS	DOCUMENT ID		DOCUMENT ID		TECN	COMMENT
$+0.657\pm0.028\pm0.020$	70k	НО	90	SPEC	800 GeV <i>p</i> Be		

$$(\mu_{\underline{=}^{-}} + \mu_{\underline{=}^{+}}) / |\mu_{\underline{=}^{-}}|$$

A test of *CPT* invariance. We calculate this from the Ξ^- and $\overline{\Xi}^+$ magnetic moments above.

DOCUMENT ID

VALUE

 $+0.01\pm0.05$ OUR EVALUATION

Ξ^- DECAY MODES

	Mode	Fraction	(Γ _i /Γ) Confi	dence level
Γ ₁ Γ ₂ Γ ₃ Γ ₄ Γ ₅ Γ ₆ Γ ₇		(99.887 (1.27 (5.63 (3.5 (8.7 < 8 < 2.59	$7 \pm 0.035)$ % ± 0.23) × 10 ⁻⁴ ± 0.31) × 10 ⁻⁴ +3.5) × 10 ⁻⁴ ± 1.7) × 10 ⁻⁵ × 10 ⁻⁴ × 10 ⁻⁴	90% 90%
		$\Delta S = 2$ forbidden (<i>S2</i>) mod	es	
$ \begin{bmatrix} F_8 \\ F_9 \\ F_{10} \\ F_{11} \\ F_{12} \\ F_{13} \\ F_{14} $	$n\pi^{-}$ $ne^{-}\overline{\nu}_{e}$ $n\mu^{-}\overline{\nu}_{\mu}$ $p\pi^{-}\pi^{-}$ $p\pi^{-}e^{-}\overline{\nu}_{e}$ $p\pi^{-}\mu^{-}\overline{\nu}_{\mu}$ $p\mu^{-}\mu^{-}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$ \times 10^{-5} \times 10^{-3} $ $ \% $ $ \times 10^{-4} \times 10^{-4} \times 10^{-4} \times 10^{-8} $	90% 90% 90% 90% 90% 90%

CONSTRAINED FIT INFORMATION

An overall fit to 4 branching ratios uses 5 measurements and one constraint to determine 5 parameters. The overall fit has a $\chi^2 = 1.0$ for 1 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\langle \delta x_i \delta x_j \rangle / (\delta x_i \cdot \delta x_j)$, in percent, from the fit to the branching fractions, $x_i \equiv \Gamma_i / \Gamma_{\text{total}}$. The fit constrains the x_i whose labels appear in this array to sum to one.

<i>x</i> 2	-6			
<i>x</i> 3	-8	0		
<i>x</i> 4	-99	0	-1	
×5	-5	0	0	0
	x_1	<i>x</i> ₂	<i>x</i> 3	<i>x</i> 4

Ξ^- BRANCHING RATIOS

A number of early results have been omitted.

$\Gamma(\Sigma^-\gamma)/\Gamma(\Lambda\pi^-)$	-)				Γ_2/Γ_1
VALUE (units 10^{-4})	EVTS	DOCUMENT ID		TECN	COMMENT
1.27±0.24 OUR F	IT				
1.27 ± 0.23 OUR A	VERAGE				
$1.22\!\pm\!0.23\!\pm\!0.06$	211	¹ DUBBS	94	E761	Ξ 375 GeV
2.27 ± 1.02	9	BIAGI	87 B	SPEC	SPS hyperon beam
1 DUBBS 94 also = 1.0 \pm 1.3).	o finds weak evi	dence that the a	symm	etry para	ameter $lpha_{\gamma}$ is positive ($lpha_{\gamma}$
$\Gamma\left(\Lambda e^{-}\overline{\nu}_{e}\right)/\Gamma\left(\Lambda\right)$	π-)				Γ_3/Γ_1
VALUE (units 10^{-3})	EVTS	DOCUMENT ID		TECN	COMMENT
$0.564 \pm 0.031 \text{ OUR}$	FIT				
0.564 ± 0.031	2857	BOURQUIN	83	SPEC	SPS hyperon beam
\bullet \bullet \bullet We do not u	ise the following	data for average	s, fits	, limits,	etc. ● ● ●
0.30 ± 0.13	11	THOMPSON	80	ASPK	Hyperon beam
$\Gamma(\Lambda\mu^-\overline{ u}_\mu)/\Gamma(\Lambda)$	$\pi^{-})$				Γ_4/Γ_1
VALUE (units 10^{-3})	CL% EVTS	DOCUMENT ID		TECN	COMMENT
$0.35^{+0.35}_{-0.22}$ OU	R FIT				
0.35 ± 0.35	1	YEH	74	HBC	Effective denom.=2859
• • • We do not u	ise the following	data for average	s, fits	, limits,	etc. ● ● ●
< 2.3	90 0	THOMPSON	80	ASPK	Effective denom.=1017
< 1.3	-	DAUBER	69	HBC	
<12		BERGE	66	HBC	

$\Gamma(\Sigma^0 e^- \overline{\nu}_e) / \Gamma(e^- $	Λπ-)					Γ_5/Γ_1
VALUE (units 10^{-3})		EVTS	DOCUMENT ID		TECN	COMMENT
0.087±0.017 OUR 0.087±0.017	FIT	154	BOURQUIN	83	SPEC	SPS hyperon beam
$\left[\Gamma\left(\Lambda e^{-}\overline{ u}_{e} ight)+\Gamma ight.$	(Σ ⁰ e	$\overline{\nu}_{e})]/l$	-(Λπ-)			(Г ₃ +Г ₅)/Г ₁
VALUE (units 10^{-3})		<i>EVTS</i>	DOCUMENT ID		TECN	COMMENT
• • • We do not u	se the	following	data for average	s, fits,	limits,	etc. • • •
0.651 ± 0.031		3011	¹ BOURQUIN	83	SPEC	SPS hyperon beam
0.68 ± 0.22		17	² DUCLOS	71	OSPK	51
¹ See the separa $\Gamma(\Lambda\pi^{-})$ above ² DUCLOS 71 ca is about a factor	te BO nnot d or 6 sm	URQUIN istinguish naller than	83 values for Γ Σ^0 's from Λ 's. The Λ rate.	(Λe^{-1}) The Ca	$\overline{\nu}_{e})/\Gamma(\lambda)$ abibbo ti	(π^-) and $\Gamma(\Sigma^0 e^- \overline{ u}_e)/\epsilon$
$\Gamma(\Sigma^0 \mu^- \overline{ u}_\mu) / \Gamma($	[Λπ ⁻])				Γ_6/Γ_1
VALUE (units 10^{-3})	CL%	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT
<0.76	90	0	YEH	74	HBC	Effective denom.=3026
• • • We do not u	se the	following	data for average	s, fits,	limits,	etc. ● ● ●
<5			BERGE	66	HBC	
$\Gamma(\Xi^0 e^- \overline{\nu}_e) / \Gamma_{\rm to}$	otal					Г7/Г
<u>VALUE</u>		<u>CL%</u>	DOCUMENT ID		<u>TECN</u>	
<2.59 × 10		90	ABLIKIM	21AF	I BES3	$J/\psi \rightarrow = =$
$\Gamma(\Xi^0 e^- \overline{\nu}_e) / \Gamma(z)$	Λπ-)					Γ7/Γ1
VALUE		CL%	DOCUMENT ID		TECN	<u>COMMENT</u>
• • • We do not u	se the	following	data for average	s, fits,	limits,	etc. • • •
$<\!\!2.3 imes10^{-3}$		90	YEH	74	HBC	Effective denom.=1000
$\Gamma(n\pi^{-})/\Gamma(\Lambda\pi^{-})$) Iddan i	n first ard	or work interacti	ion		Г ₈ /Г ₁
VALUE (units 10^{-3})	CL%	EVTS	DOCUMENT ID	ion.	TECN	COMMENT
<0.019	90		BIAGI	82B	SPEC	SPS hyperon beam
• • • We do not u	se the	following	data for average	s, fits,	limits,	etc. • • •
<3.0	90	0	YEH	74	нвс	Effective denom.=760
<1.1		C C	DAUBER	69	HBC	
<5.0			FERRO-LUZZ	l 63	HBC	
$\Gamma(ne^-\overline{\nu}_e)/\Gamma(\Lambda)$	π ⁻)					Г9/Г1
$\Delta S = 2$. Forbi	dden i	n first-ord	er weak interacti	ion.		
VALUE (units 10^{-3})	<u>CL%</u>	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT
< 3.2	90	0	YEH	74	HBC	Effective denom.=715
• • • vve do not u	se the	tollowing	data for average	s, fits,	limits,	ετς. ● ● ●
<10	90		BINGHAM	65	RVUE	

$\Gamma(n\mu^{-}\overline{\nu}_{\mu})/\Gamma(\mu^{-})$	1 π ⁻)	in first a		•:		Γ ₁₀ /Γ ₁
$\Delta 3=2$. For $VALUE$ (units 10^{-3})	CL%	EVTS	DOCUMENT ID	tion.	TECN	COMMENT
<15.3	90	0	YEH	74	HBC	Effective denom.=150
$\Gamma(p\pi^{-}\pi^{-})/\Gamma(n)$	$\Lambda\pi^{-})$	in first o	rder week interac	tion		Γ ₁₁ /Γ ₁
VALUE (units 10^{-4})	CL%	EVTS	DOCUMENT ID	tion.	TECN	COMMENT
<3.7	90	0	YEH	74	HBC	Effective denom.=6200
$\Gamma(p\pi^{-}e^{-}\overline{\nu}_{e})/\Gamma(\Lambda\pi^{-})$ $\Delta S=2. \text{ Forbidden in first-order weak interaction.}$ Γ_{12}/Γ_{12}						
VALUE (units 10^{-4})	CL%	EVTS	DOCUMENT ID		TECN	COMMENT
<3.7	90	0	YEH	74	HBC	Effective denom.=6200
$\Gamma(p\pi^{-}\mu^{-}\overline{\nu}_{\mu})/\Gamma(\Lambda\pi^{-})$ Γ_{13}/Γ_{13}						Γ_{13}/Γ_1
VALUE (units 10^{-4})	CL%	EVTS	DOCUMENT ID		TECN	COMMENT
<3.7	90	0	YEH	74	HBC	Effective denom.=6200
$\Gamma(p\mu^{-}\mu^{-})/\Gamma(p\mu$	$\Gamma(p\mu^{-}\mu^{-})/\Gamma(\Lambda\pi^{-}) \qquad \Gamma_{14}/\Gamma_{1}$					
VALUE (units 10^{-8})	, , , , , , , , , , , , , , , , , , ,	CL%	DOCUMENT ID		TECN	COMMENT
<4.0		90	RAJARAM	05	HYCP	p Cu, 800 GeV
\bullet \bullet \bullet We do not	use th	e followin	g data for averag	es, fits	, limits, e	etc. • • •
${<}3.7 imes10^4$		90	¹ LITTENBER	G 92B	HBC	Uses YEH 74 data
¹ This LITTEN modes all resu well apply the	BERG Ilt fror limit t	92B limit n nonobs to the <i>sur</i>	and the identicater arvance of any 3- m of the four mod	al YEH prong les.	74 limit decays o	is for the preceding three of the Ξ^- . One could as

Ξ DECAY PARAMETERS

See the "Note on Baryon Decay Parameters" in the neutron Listings.

$\alpha(\Xi^-)\alpha_-(\Lambda)$

0	UR FIT va	alue is obta	ined froi	m m	easurements of	$\pi \alpha(\Xi^{-}$), α_(Λ), and $lpha(\Xi^-)lpha(A)$
VALUE			EVTS		DOCUMENT ID		TECN	COMMENT
-0.288	± 0.005	OUR FIT	Error	inclu	ides scale facto	or of 2.	2.	
-0.2 9 4	± 0.005	OUR AVE	RAGE	Err	or includes sca	le facto	or of 1.7.	See the ideogram
below.								
-0.2963	3 ± 0.0042		189k		LUK	00	E756	<i>p</i> Be, 800 GeV
-0.2894	± 0.0073		63k	1	LUK	00	E756	<i>p</i> Be, 800 GeV
-0.303	± 0.004	± 0.004	192k		RAMEIKA	86	SPEC	400 GeV <i>p</i> Be
-0.257	± 0.020		11k		ASTON	85 B	LASS	11 GeV/ <i>c K⁻ p</i>
-0.260	± 0.017		21k		BENSINGER	85	MPS	5 GeV/c K^-p
-0.299	± 0.007		150k		BIAGI	82	SPEC	SPS hyperon beam
-0.315	± 0.026		9046		CLELAND	80C	ASPK	BNL hyperon beam
-0.239	± 0.021		6599		HEMINGWAY	′78	HBC	4.2 GeV/ <i>c K</i> ⁻ <i>p</i>
-0.243	± 0.025		4303		BALTAY	74	HBC	1.75 GeV/ $c \ K^{-} p$
-0.252	± 0.032		2436		COOL	74	OSPK	1.8 GeV/c K^- p
-0.253	± 0.028		2781		DAUBER	69	HBC	

¹ This LUK 00 value is for $\alpha(\overline{\Xi}^+) \alpha_+(\overline{A})$. We assume *CP* conservation here by including it in the average for $\alpha(\Xi^-) \alpha_-(A)$. But see the second data block below for the *CP* test.

 $(\alpha + \overline{\alpha}) / (\alpha - \overline{\alpha})$ for $\overline{\Xi}^- \rightarrow \Lambda \pi^-$. $\overline{\Xi}^+ \rightarrow \overline{\Lambda} \pi^+$ VALUE (units 10^{-3}) **EVTS** DOCUMENT ID TECN COMMENT $9\pm 8^+_{-2}$ $J/\psi \rightarrow \Xi \overline{\Xi} \rightarrow \Lambda \overline{\Lambda} \pi \pi$ 267k ABLIKIM 24AR BES3 \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet $J/\psi \rightarrow \Xi \overline{\Xi} \rightarrow \Lambda \overline{\Lambda} \pi \pi$ $6\pm13\pm~6$ 73k ABLIKIM 22AD BES3 $\psi(3686) \rightarrow \Xi \overline{\Xi} \rightarrow \Lambda \overline{\Lambda} \pi \pi$ $-15\pm51\pm10$ 5.4k ABLIKIM 22BE BES3 $[\alpha(\Xi^{-})\alpha_{-}(\Lambda)-\overline{\alpha}\Xi^{+}\alpha_{+}(\Lambda)]$ $\overline{-}\alpha_{-}(\Lambda) + \overline{\alpha}\overline{\Xi} + \alpha_{+}(\overline{\Lambda})$ This is zero if *CP* is conserved. The α 's are the decay-asymmetry parameters for $\Xi^- \to \Lambda \pi^-$ and $\Lambda \to p \pi^-$ and for $\overline{\Xi^+} \to \overline{\Lambda} \pi^+$ and $\overline{\Lambda} \to \overline{p} \pi^+$. VALUE (units 10^{-4}) EVTS DOCUMENT ID TECN COMMENT $0.0 \pm 5.1 \pm 4.4$ 158M HOLMSTROM 04 HYCP p Cu, 800 GeV We do not use the following data for averages, fits, limits, etc. $+120 \pm 140$ 252k LUK 00 E756 p Be, 800 GeV ϕ_{-} ANGLE FOR $\Xi^{-} \rightarrow \Lambda \pi^{-}$ $(\tan\phi = \beta/\gamma)$ VALUE (°) EVTS DOCUMENT ID TECN COMMENT -1.5 ± 0.6 **OUR AVERAGE** $0.92 \pm \ 0.69 {+0.23 \atop -0.46}$ $J/\psi \rightarrow \Xi \overline{\Xi} \rightarrow \Lambda \overline{\Lambda} \pi \pi$ 24AR BES3 ¹ ABLIKIM 144k ² HUANG - 2.39 \pm 0.64 \pm 0.64 144M 04 HYCP p Cu, 800 GeV ³ CHAKRAVO... - 1.61 \pm 2.66 \pm 0.37 1.35M 03 E756 p Be, 800 GeV ASTON 85B LASS 5 ± 10 11k $K^- p$ ⁴ BENSINGER 14.7 ± 16.0 85 MPS 5 GeV/c $K^- p$ 21k 11 \pm 9 4303 BALTAY 74 HBC $1.75 \text{ GeV}/c K^{-}p$ 5 2436 COOL 74 OSPK 1.8 GeV/ $c K^- p$ ± 16 -14 ± 11 2781 DAUBER 69 HBC Uses $\alpha_{\Lambda} = 0.647 \pm$ 0.020 ⁵ BERGE ± 12 1004 66 HBC 0 • • We do not use the following data for averages, fits, limits, etc. • • • ⁶ ABLIKIM $J/\psi \rightarrow \Xi \overline{\Xi} \rightarrow \Lambda \overline{\Lambda} \pi \pi$ 22AD BES3 $0.63 \pm 1.09 \pm 0.52$ 73k ⁷ ABLIKIM $\psi(3686) \rightarrow \Xi \overline{\Xi} \rightarrow$ $1.32\pm~4.24\pm0.17$ 5.4k 22BE BES3 $\Lambda \overline{\Lambda} \pi \pi$ -262724 BINGHAM **OSPK** ± 30 **70**B ⁵ LONDON 0 ± 20.4 364 66 HBC Using $\alpha_{\Lambda} = 0.62$ ⁵ CARMONY 356 64B HBC 54 ± 30 1 Converted from radians to degrees. ABLIKIM 22BE reports a value of $(-1.6\pm1.2^{+0.4}_{-0.8})\times$ 2 ^{10⁻²} radians. From this result and $\alpha \underline{=}$, HUANG 04 gets $\beta \underline{=} = -0.037 \pm 0.011 \pm 0.010$ and $\gamma \underline{=} =$ 0.888 \pm 0.0004 \pm 0.006. And the strong p–s phase difference for $\Lambda\pi^-$ scattering is $(4.6 \pm 1.4 \pm 1.2)^{\circ}$. ³ From this result and α_{\pm} , CHAKRAVORTY 03 obtains $\beta_{\pm} = -0.025 \pm 0.042 \pm 0.006$ and $\gamma = 0.889 \pm 0.001 \pm 0.007$. And the strong p–s phase difference for $\Lambda \pi^-$ scattering is $(3.17 \pm 5.28 \pm 0.73)^{\circ}$. ⁴ BENSINGER 85 used $\alpha_{\Lambda} = 0.642 \pm 0.013$. ⁵ The errors have been multiplied by 1.2 due to approximations used for the Ξ polarization; $_6$ see DAUBER 69 for a discussion. $_6$ Converted from radians to degrees. ABLIKIM 22AD reports a value of $(1.1\pm1.9\pm0.9)\times$ 7 To 10 radians. ^ Converted from radians to degrees. ABLIKIM 22BE reports a value of (2.3 \pm 7.4 \pm 0.3) \times

' Converted from radians to degrees. ABLIKIM 22BE reports a value of ($2.3 \pm 7.4 \pm 0.10^{-2}$ radians.

https://pdg.lbl.gov

Created: 5/30/2025 07:49

ϕ_+ ANGLE FOR		(tan $\phi=eta/\gamma$)				
VALUE (°)	EVTS	DOCUMENT	ID TECN	<u>сомі</u>	MENT	
$0.57 {\pm} 0.69 {+} 0.17 {-} 0.75$	123k	¹ ABLIKIM	24AR BES	J/ψ	$\rightarrow \Xi \overline{\Xi} \rightarrow \Lambda \overline{\Lambda} \pi \pi$	
$\bullet \bullet \bullet$ We do not use	e the follow	ing data for ave	erages, fits, l	imits, et	C. ● ● ●	
$-1.20\pm1.09\pm0.40$ -7.05+4.18+0.23	73k 5 4k	² ABLIKIM ³ ABLIKIM	22AD BES	J/ψ	$\rightarrow \Xi \overline{\Xi} \rightarrow \Lambda \overline{\Lambda} \pi \pi$ 86) $\rightarrow \Xi \overline{\Xi} \rightarrow \Lambda \overline{\Lambda} \pi \pi$	
1 c				υ φ(υυ	$(10 + 10^{+0.3})$	
⁺ Converted from r	adians to d	egrees. ABLIKI	M 22BE repo	orts a val	ue of $(1.0 \pm 1.2 + 0.3) \times -1.3$	
¹⁰ ² radians. ² Converted from 0.7) \times 10 ⁻² radi ³ Converted from 0.4) \times 10 ⁻² radi	radians to ans. radians to o ans.	degrees. ABLIK degrees. ABLIK	(IM 22AD re IM 22BE rep	ports a v	value of $(-2.1\pm1.9\pm$	
$\Delta\phi_{CP} = (\phi_{-} + \phi_{-})$	ø +)/2	DOCUMENT ID	TECA	COM		
<u>VALUE (°)</u>	EVIS	DOCUMENT ID	<u>TECN</u>		MEN I	
$-0.17\pm0.46^{+0.17}_{-0.40}$	267k	¹ ABLIKIM	24AR BES	3 J/ψ	$\rightarrow \Xi\overline{\Xi} \rightarrow \Lambda\overline{\Lambda}\pi\pi$	
• • • We do not use	e the follow	ing data for ave	erages, fits, l	imits, et	C. ● ● ●	
$-0.28 \pm 0.78 \pm 0.17$	73k	² ABLIKIM	22AD BES	J/ψ	$\rightarrow \Xi \overline{\Xi} \rightarrow \Lambda \overline{\Lambda} \pi \pi$	
$-2.86\!\pm\!2.98\!\pm\!0.17$	5.4k	³ ABLIKIM	22BE BES	3 ψ (36	$86) \rightarrow \overline{\Xi} \overline{\Xi} \rightarrow \Lambda \overline{\Lambda} \pi \pi$	
¹ Converted from radians to degrees. ABLIKIM 22BE reports a value of $(-0.3\pm0.8^{+0.3}_{-0.7}) \times 10^{-2}$ radians. ² Converted from radians to degrees. ABLIKIM 22AD reports a value of $(-0.5\pm1.4\pm0.3) \times 10^{-2}$ radians. ³ Converted from radians to degrees. ABLIKIM 22BE reports a value of $(-5.0\pm5.2\pm0.3) \times 10^{-2}$ radians.						
g_A / g_V FOR <i>Ξ</i> ⁻	$ \rightarrow \Lambda e^{-}_{EVTS} $	- V e DOCUMEN	T ID	TECN	COMMENT	
-0.25 ± 0.05	1992	¹ BOURQU	IN 83	SPEC 3	SPS hyperon beam	

¹ BOURQUIN 83 assumes that $g_2 = 0$. Also, the sign has been changed to agree with our conventions, given in the "Note on Baryon Decay Parameters" in the neutron Listings.

I⁻ REFERENCES

We have omitted some papers that have been superseded by later experiments. See our earlier editions.

ABLIKIM	24AR	PRL 132 101801	M. Ablikim <i>et al.</i>	(BESIII Collab.)
ABLIKIM	22AD	NAT 606 64	M. Ablikim <i>et al.</i>	(BESIII Collab.)
ABLIKIM	22BE	PR D106 L091101	M. Ablikim <i>et al.</i>	(BESIII Collab.)
ABLIKIM	21AH	PR D104 072007	M. Ablikim <i>et al.</i>	(BESIII Collab.)
ABDALLAH	06E	PL B639 179	J. Abdallah <i>et al.</i>	(DELPHI Collab.)
RAJARAM	05	PRL 94 181801	D. Rajaram <i>et al.</i>	(FNAL HyperCP Collab.)
HOLMSTROM	04	PRL 93 262001	T. Holmstrom et al.	(FNAL HyperCP Collab.)
HUANG	04	PRL 93 011802	M. Huang <i>et al.</i>	(FNAL HyperCP Collab.)
CHAKRAVO	03	PRL 91 031601	A. Chakravorty et al.	(FNAL E756 Collab.)
LUK	00	PRL 85 4860	K.B. Luk <i>et al.</i>	(FNAL E756 Collab.)
DUBBS	94	PRL 72 808	T. Dubbs <i>et al.</i>	(FNAL E761 Collab.)
DURYEA	92	PRL 68 768	J. Duryea <i>et al.</i>	(MINN, FNAL, MICH, RUTG)
LITTENBERG	92B	PR D46 892	L.S. Littenberg, R.E. Shrock	(BNL, STON)
HO	90	PRL 65 1713	P.M. Ho et al.	(MICH, FNAL, MINN, RUTG)
Also		PR D44 3402	P.M. Ho <i>et al.</i>	(MICH, FNAL, MINN, RUTG)

Citation: S. Navas et al.	(Particle Data Group), I	Phys. Rev. D 110 , 030001	(2024) and 2025 update
	(I di ticic Duta Gioup), i	11,55. ILEV. D 110 , 000001	(2021) una 2020 apaute

TROST	89	PR D40 1703	L.H. Trost <i>et al.</i>	(FNAL-715 Collab.)
BIAGI	87B	ZPHY C35 143	S.F. Biagi <i>et al.</i>	(BRIS, CERN, GEVA+)
RAMEIKA	86	PR D33 3172	R. Rameika <i>et al.</i>	(RUTG, MICH, WISC+)
ASTON	85B	PR D32 2270	D. Aston <i>et al.</i>	(SLAC, CARL, CNRC, CINC)
BENSINGER	85	NP B252 561	J.R. Bensinger <i>et al.</i>	(CHIC, ELMT, FNAL+)
BOURQUIN	84	NP B241 1	M.H. Bourquin <i>et al.</i>	(BRIS, GEVA, HEIDP+)
RAMEIKA	84	PRL 52 581	R. Rameika <i>et al.</i>	(RUTG, MICH, WISC+)
BOURQUIN	83	ZPHY C21 1	M.H. Bourquin <i>et al.</i>	(BRIS, GEVA, HEIDP+)
BIAGI	82	PL 112B 265	S.F. Biagi <i>et al.</i>	(BRIS, CAVE, GEVA+)
BIAGI	82B	PL 112B 277	S.F. Biagi <i>et al.</i>	(LOQM, GEVA, RL+)
CLELAND	80C	PR D21 12	W.E. Cleland et al.	(PITT, BNL)
THOMPSON	80	PR D21 25	J.A. Thompson <i>et al.</i>	(PITT, BNL)
BOURQUIN	79	PL 87B 297	M.H. Bourquin et al.	(BRIS, GEVA, HEIDP+)
HEMINGWAY	78	NP B142 205	R.J. Hemingway et al.	(CERN, ZEEM, NIJM+)
DIBIANCA	75	NP B98 137	F.A. Dibianca, R.J. Endorf	(CMU)
BALTAY	74	PR D9 49	C. Baltay <i>et al.</i>	(COLU, BING) J
COOL	74	PR D10 792	R.L. Cool et al.	(BNL)
Also		PRL 29 1630	R.L. Cool <i>et al.</i>	(BNL)
YEH	74	PR D10 3545	N. Yeh <i>et al.</i>	(BING, COLU)
MAYEUR	72	NP B47 333	C. Mayeur et al. (E	BRUX, CERN, TUFTS, LOUC)
VOTRUBA	72	NP B45 77	M.F. Votruba, A. Safder, T.N	1. Ratcliffe (BIRM+)
WILQUET	72	PL 42B 372	G. Wilguet <i>et al.</i>	(BRUX, CERN, TUFTS+)
DUCLOS	71	NP B32 493	J. Duclos <i>et al.</i>	(CERN)
BINGHAM	70B	PR D1 3010	G.M. Bingham <i>et al.</i>	(UCSD, WASH)
GOLDWASSER	70	PR D1 1960	E.L. Goldwasser, P.F. Schultz	i (ILL)
STONE	70	PL 32B 515	S.L. Stone et al.	(RÔCH)
DAUBER	69	PR 179 1262	P.M. Dauber <i>et al.</i>	`(LRL)́ J
SHEN	67	PL 25B 443	B.C. Shen, A. Firestone, G. G.	oldhaber (UCB+)
BERGE	66	PR 147 945	J.P. Berge <i>et al.</i>	(LRL)
CHIEN	66	PR 152 1171	C.Y. Chien et al.	(YALE, BNL)
LONDON	66	PR 143 1034	G.W. London <i>et al.</i>	(BNL, SYRA)
BINGHAM	65	PRSL 285 202	H.H. Bingham	(CERN)
PJERROU	65B	PRL 14 275	G.M. Pjerrou <i>et al.</i>	(UCLA)
Also		Thesis	G.M. Pjerrou	(UCLA)
BADIER	64	Dubna Conf. 1 593	J. Badier <i>et al.</i>	(EPOL, SACL, ZEEM)
CARMONY	64B	PRL 12 482	D.D. Carmony <i>et al.</i>	ÚUCLA) J
HUBBARD	64	PR 135 B183	J.R. Hubbard <i>et al.</i>	`(LRL)
FERRO-LUZZI	63	PR 130 1568	M. Ferro-Luzzi <i>et al.</i>	(LRL)
JAUNEAU	63D	Siena Conf. 4	L. Jauneau <i>et al.</i>	(EPOL, CERN, LOÙC+Ĵ
Also		PL 5 261	L. Jauneau <i>et al.</i>	(EPOL, CERN, LOUC+)
SCHNEIDER	63	PL 4 360	J. Schneider	(CERN)