$\Upsilon(11020)$

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Υ(11020) MASS

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT	
11000 ± 4 OUR AVI	ERAGE				
$11000.0 {+}_{-} {\begin{array}{*{20}c} 4.0 {+}_{-} 1.0 \\ 4.5 {-}_{-} 1.3 \end{array}}$	1 MIZUK	19	BELL	$e^+e^- ightarrow$	$\Upsilon(1S,2S,3S)\pi^+\pi^-$
$10999.0 {+}_{-} {\begin{array}{*{20}c} 7.3 {+} 16.9 \\ 7.8 {-} 1.0 \end{array}}$	² MIZUK	16	BELL	$e^+e^- ightarrow$	$h_b(1P, 2P)\pi^+\pi^-$
$\bullet \bullet \bullet$ We do not use the	e following data for	avera	ges, fits,	limits, etc.	• • •
11001 \pm 1	³ DONG	20A		$e^+e^- \rightarrow$	b b
$11003.0\pm \ 1.1 {+} {0.9 \atop -} {1.0}$	^{4,5} SANTEL	16	BELL	$e^+e^- \rightarrow$	hadrons
10987.5^+ $\begin{array}{r} 6.4+\\ 2.5-\\ 2.3\end{array}$	6,7 SANTEL	16	BELL	$e^+e^- \rightarrow$	Υ (1S, 2S, 3S) $\pi^+\pi^-$
$10996~\pm~2$	⁸ AUBERT	09E	BABR	$e^+e^- \rightarrow$	hadrons
11019 \pm 5 \pm 7	BESSON	85	CLEO	$e^+e^- \rightarrow$	hadrons
11020 ± 30	LOVELOCK	85	CUSB	$e^+e^- ightarrow$	hadrons

¹ From a simultaneous fit to the $\Upsilon(nS)\pi^+\pi^-$, n = 1, 2, 3, cross sections at 28 energy points within $\sqrt{s} = 10.6-11.05$ GeV, including the initial-state radiation at $\Upsilon(10860)$.

² From a simultaneous fit to the $h_b(nP)\pi^+\pi^-$, n = 1, 2 cross sections at 22 energy points within $\sqrt{s} = 10.77-11.02$ GeV to a pair of interfering Breit-Wigner amplitudes modified by phase space factors, with eight resonance parameters (a mass and width for each of $\Upsilon(10860)$ and $\Upsilon(11020)$, a single relative phase, a single relative amplitude, and two overall normalization factors, one for each n). The systematic error estimate is dominated by possible interference with a small nonresonant continuum amplitude.

³ From a fit to the dressed cross sections of AUBERT 09E by BaBar and SANTEL 16 by Belle above 10.68 GeV with a coherent sum of a continuum amplitude and three Breit-Wigner functions with constant widths.

⁴ From a fit to the total hadronic cross sections measured at 60 energy points within \sqrt{s} = 10.82–11.05 GeV to a pair of interfering Breit-Wigner amplitudes and two floating continuum amplitudes with $1/\sqrt{s}$ dependence, one coherent with the resonances and one incoherent, with six resonance parameters (a mass, width, and an amplitude for each of $\Upsilon(10860)$ and $\Upsilon(11020)$, one relative phase, and one decoherence coefficient).

⁵ Not including uncertain and potentially large systematic errors due to assumed continuum amplitude $1/\sqrt{s}$ dependence and related interference contributions.

⁶ From a simultaneous fit to the $\Upsilon(nS)\pi^+\pi^-$, n = 1, 2, 3, cross sections at 25energy points within $\sqrt{s} = 10.6-11.05$ GeV to a pair of interfering Breit-Wigner amplitudesmodified by phase space factors, with fourteen resonance parameters (a mass, width, and threeamplitudes for each of $\Upsilon(10860)$ and $\Upsilon(11020)$, a single universal relativephase, and three decoherence coefficients, one for each n). Continuum contributions were measured (and therefore fixed) to be zero.

⁷Superseded by MIZUK 19.

⁸ In a model where a flat non-resonant $b\overline{b}$ -continuum is incoherently added to a second flat component interfering with two Breit-Wigner resonances. Systematic uncertainties not estimated.

Υ (11020) WIDTH

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT	
$24 \begin{array}{c} + 8 \\ - 6 \end{array} OUR AVERA$	AGE				
$23.8^+_{-} \begin{array}{c} 8.0+ & 0.7\\ 6.8- & 1.8 \end{array}$	1 MIZUK	19	BELL	$e^+e^- \rightarrow$	$\Upsilon(nS)\pi^+\pi^-$
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	² MIZUK	16	BELL	$e^+e^- \rightarrow$	$h_b(1P, 2P)\pi^+\pi^-$
$\bullet \bullet \bullet$ We do not use the	e following data for	avera	ges, fits,	limits, etc.	• • •
35.1± 1.2	³ DONG	20A		$e^+e^- \rightarrow$	b b
$39.3^+_{-}\ 1.7^+_{1.6}\ 1.4$	^{4,5} SANTEL	16	BELL	$e^+e^- ightarrow$	hadrons
$\begin{array}{rrrr} 61 & + & 9 & + & 2 \\ & - & 19 & - & 20 \end{array}$	^{6,7} SANTEL	16	BELL	$e^+e^- \rightarrow$	Υ (1S, 2S, 3S) $\pi^+\pi^-$
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	⁸ AUBERT BESSON LOVELOCK	09e 85 85	BABR CLEO CUSB	$e^+e^- \rightarrow e^+e^- \rightarrow e^+e^- \rightarrow$	hadrons hadrons hadrons

¹ From a simultaneous fit to the $\Upsilon(nS)\pi^+\pi^-$, n = 1, 2, 3, cross sections at 28 energy points within $\sqrt{s} = 10.6-11.05$ GeV, including the initial-state radiation at $\Upsilon(10860)$.

² From a simultaneous fit to the $h_b(nP)\pi^+\pi^-$, n = 1, 2 cross sections at 22 energy points within $\sqrt{s} = 10.77-11.02$ GeV to a pair of interfering Breit-Wigner amplitudes modified by phase space factors, with eight resonance parameters (a mass and width for each of $\Upsilon(10860)$ and $\Upsilon(11020)$, a single relative phase, a single relative amplitude, and two overall normalization factors, one for each n). The systematic error estimate is dominated by possible interference with a small nonresonant continuum amplitude.

³ From a fit to the dressed cross sections of AUBERT 09E by BaBar and SANTEL 16 by Belle above 10.68 GeV with a coherent sum of a continuum amplitude and three Breit-Wigner functions with constant widths.

- ⁴ From a fit to the total hadronic cross sections measured at 60 energy points within \sqrt{s} = 10.82–11.05 GeV to a pair of interfering Breit-Wigner amplitudes and two floating continuum amplitudes with $1/\sqrt{s}$ dependence, one coherent with the resonances and one incoherent, with six resonance parameters (a mass, width, and an amplitude for each of $\Upsilon(10860)$ and $\Upsilon(11020)$, one relative phase, and one decoherence coefficient).
- ⁵ Not including uncertain and potentially large systematic errors due to assumed continuum amplitude $1/\sqrt{s}$ dependence and related interference contributions.
- ⁶ From a simultaneous fit to the $\Upsilon(nS)\pi^+\pi^-$, n=1, 2, 3, cross sections at 25energy points within $\sqrt{s} = 10.6-11.05$ GeV to a pair of interfering Breit-Wigner amplitudesmodified by phase space factors, with fourteen resonance parameters (a mass, width, and threeamplitudes for each of $\Upsilon(10860)$ and $\Upsilon(11020)$, a single universal relativephase, and three decoherence coefficients, one for each n). Continuum contributions were measured (and therefore fixed) to be zero.

⁷Superseded by MIZUK 19.

⁸ In a model where a flat non-resonant $b\overline{b}$ -continuum is incoherently added to a second flat component interfering with two Breit-Wigner resonances. Systematic uncertainties not estimated.

	Mode	Fraction (Γ_i/Γ)
Γ ₁	e ⁺ e ⁻	$(5.4^{+1.9}_{-2.1}) imes 10^{-6}$
Γ ₂	$\Upsilon(1S) \pi^+ \pi^-$	
Γ ₃	$\Upsilon(2S)\pi^+\pi^-$	
Γ ₄	$\Upsilon(3S) \pi^+ \pi^-$	
Γ ₅	$\chi_{bJ}(1P)\pi^+\pi^-\pi^0$	$(9 \begin{array}{c} +9 \\ -8 \end{array}) imes 10^{-3}$
Г ₆	$\chi_{b1}(1P)\pi^{+}\pi^{-}\pi^{0}$	seen
Г ₇	$\chi_{b2}(1P)\pi^{+}\pi^{-}\pi^{0}$	seen

Υ (11020) DECAY MODES

Υ (11020) PARTIAL WIDTHS

Γ(e ⁺ e ⁻)					Γ1
VALUE (keV)	DOCUMENT ID		TECN	COMMENT	
0.130 ± 0.030 OUR AVERAGE					
$0.095 \!\pm\! 0.03 \ \pm 0.035$	BESSON	85	CLEO	$e^+e^- \rightarrow$	hadrons
0.156 ± 0.040	LOVELOCK	85	CUSB	$e^+e^- \rightarrow$	hadrons
$\frac{\Gamma(e^+e^-) \times \Gamma(\Upsilon(1S)\pi^+\pi^-)}{\frac{VALUE(eV)}{2}}$) /Γ_{total} <u>DOCUMENT ID</u>		TECN	COMMENT	$\Gamma_1\Gamma_2/\Gamma$
• • • We do not use the following	g data for average	s, fits	, limits,	etc. • • •	
0.46±0.08 ¹ ,	² MIZUK	19	BELL	$e^+e^- \rightarrow$	$\Upsilon(nS)\pi^+\pi^-$
1 From a simultaneous fit to the	e $\Upsilon({\sf nS})\pi^+\pi^-$, ,	n = 1	, 2, 3, c	ross sections	at 28 energy

points within $\sqrt{s} = 10.6-11.05$ GeV, including the initial-state radiation at $\Upsilon(10860)$.

 2 Reported as the range 0.38–0.54 eV obtained from multiple solutions of an amplitude fit within a model composed as a sum of Breit-Wigner functions.

$$\Gamma(e^+e^-) \times \Gamma(\Upsilon(2S)\pi^+\pi^-)/\Gamma_{\text{total}} \qquad \Gamma_1\Gamma_3/\Gamma$$

$$VALUE (e^{V}) \qquad DOCUMENT ID \qquad TECN \quad COMMENT$$

• • • We do not use the following data for averages, fits, limits, etc. • • •

$$1.2 \text{ MIZUK}$$
 19 BELL $e^+e^- \rightarrow \Upsilon(nS)\pi^+\pi^-$

¹ From a simultaneous fit to the $\Upsilon(nS)\pi^+\pi^-$, n = 1, 2, 3, cross sections at 28 energy points within $\sqrt{s} = 10.6-11.05$ GeV, including the initial-state radiation at $\Upsilon(10860)$.

 2 Reported as the range 0.13–1.16 eV obtained from multiple solutions of an amplitude fit within a model composed as a sum of Breit-Wigner functions.

$$\frac{\Gamma(e^+e^-) \times \Gamma(\Upsilon(3S)\pi^+\pi^-)/\Gamma_{\text{total}}}{\frac{DOCUMENT \ ID}{100} \frac{TECN}{100} COMMENT}$$

• • • We do not use the following data for averages, fits, limits, etc. • • • ^{1,2} MIZUK

 $0.33 \!\pm\! 0.16$

¹ From a simultaneous fit to the $\Upsilon(nS)\pi^+\pi^-$, n = 1, 2, 3, cross sections at 28 energy points within $\sqrt{s} = 10.6-11.05$ GeV, including the initial-state radiation at $\Upsilon(10860)$.

 2 Reported as the range 0.17–0.49 eV obtained from multiple solutions of an amplitude fit within a model composed as a sum of Breit-Wigner functions.

https://pdg.lbl.gov

19 BELL $e^+e^- \rightarrow \Upsilon(nS)\pi^+\pi^-$

 $\Gamma_1\Gamma_4/\Gamma$

$\Gamma(\chi_{bJ}(1P)\pi^+\pi^-\pi^0)/\Gamma_{\text{total}}$					Г ₅ /Г
VALUE (units 10^{-3})	DOCUMENT ID		TECN	COMMENT	
8.7±4.3 ^{+7.6} -6.6	YIN	18	BELL	$e^+e^- ightarrow$	hadrons
$\Gamma(\chi_{b1}(1P)\pi^+\pi^-\pi^0)/\Gamma_{total}$					Г _б /Г
VALUE	DOCUMENT ID		TECN	<u>COMMENT</u>	
seen	YIN	18	BELL	$e^+e^- \rightarrow$	hadrons
$\Gamma(\chi_{b2}(1P)\pi^+\pi^-\pi^0)/\Gamma_{ ext{total}}$					Г ₇ /Г
VALUE	DOCUMENT ID		TECN	<u>COMMENT</u>	
seen	YIN	18	BELL	$e^+e^- \rightarrow$	hadrons
$\Gamma(\chi_{b2}(1P)\pi^{+}\pi^{-}\pi^{0})/\Gamma(\chi_{b1}(1))$	$(P)\pi^{+}\pi^{-}\pi^{0})$				Γ ₇ /Γ ₆
VALUE	DOCUMENT ID		TECN	COMMENT	
0.4±0.2	YIN	18	BELL	$e^+e^- ightarrow$	hadrons

au(11020) REFERENCES

DONG	20A	CP C44 083001	XK. Dong <i>et al.</i>	
MIZUK	19	JHEP 1910 220	R. Mizuk <i>et al.</i>	(BELLE Collab.)
YIN	18	PR D98 091102	J.H. Yin <i>et al.</i>	(BELLE Collab.)
MIZUK	16	PRL 117 142001	R. Mizuk <i>et al.</i>	(BELLE Collab.)
SANTEL	16	PR D93 011101	D. Santel <i>et al.</i>	(BELLE Collab.)
AUBERT	09E	PRL 102 012001	B. Aubert <i>et al.</i>	(BABAR Collab.)
BESSON	85	PRL 54 381	D. Besson <i>et al.</i>	(CLEO Collab.)
LOVELOCK	85	PRL 54 377	D.M.J. Lovelock <i>et al.</i>	(CUSB Collab.)
				. ,