$$\psi$$
(4660)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

also known as Y(4660); was X(4660)See the reviews on the "Spectroscopy of Mesons Containing two Heavy Quarks" and on "Heavy Non-qqbar Mesons."

### $\psi$ (4660) MASS

| VALUE  | (MeV)                 |                  | 1        | EVTS    |    | DOCUMENT IL    | )           | TECN        | COMMENT                                                                                   |
|--------|-----------------------|------------------|----------|---------|----|----------------|-------------|-------------|-------------------------------------------------------------------------------------------|
| 4623   | ±10                   | 0                | UR AVE   | RAGE    |    | Error includes | s scale     | factor      | of 3.7. See the ideogram below.                                                           |
| 4603.1 | $1\pm$ 3.9            | 9±               | 0.8      |         | 1  | ABLIKIM        | 24BN        | BES3        | $e^+e^- \rightarrow D_s^+ D_{s2}^* (2573)^-$                                              |
| 4584   | $\pm 14$              | ±٤               | 30       |         | 2  | ABLIKIM        | 24BN        | BES3        | $e^+e^- \rightarrow D_s^+ D_{s1}(2536)^-$                                                 |
| 4708   | $^{+17}_{-15}$        | $\pm 2$          | 21       |         | 3  | ABLIKIM        | 23BI        | BES3        | $e^+e^- \rightarrow K^+K^-J/\psi$                                                         |
| 4701.8 | $8\pm10.9$            | )±               | 2.7      |         | 4  | ABLIKIM        | 23н         | BES3        | $e^+e^- \rightarrow \phi \chi_{c2}$                                                       |
| 4675.3 | $3 \pm 29.5$          | $5\pm$           | 3.5      |         | 5  | ABLIKIM        | 23X         | BES3        | $e^+e^- \to D^{*0}D^{*-}\pi^+$                                                            |
| 4651.0 | $0 \pm 37.8$          | 3±               | 2.1      |         | 6  | ABLIKIM        | 21AJ        | BES3        | $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$                                                   |
| 4619.8 | $8^+ 8.9^- 8.0$       | $3^{\pm}$        | 2.3      | 66      | 7  | JIA            | 20          | BELL        | $e^+e^- \rightarrow \gamma D_s^+ D_{s2}^* (2573)^-$                                       |
| 4625.9 | $9^+$ 6.2<br>- 6.0    | $\frac{2}{5}\pm$ | 0.4      | 89      | 8  | JIA            | 19A         | BELL        | $e^+e^- \rightarrow \gamma D_s^+ D_{s1}(2536)^-$                                          |
| 4652   | $\pm 10$              | ± 1              | 11       | 279     | 9  | WANG           | 15A         | BELL        | $10.58 e^+ e^- \rightarrow \\ \sim \pi^+ \pi^- \sqrt{2}$                                  |
| 4669   | $\pm 21$              | ±                | 3        | 37      | 10 | LEES           | 14F         | BABR        | $10.58 e^+ e^- \rightarrow \gamma \pi^+ \pi^- \psi(2S)$                                   |
| 4634   | $^{+}_{-}$ $^{8}_{7}$ | $^+$             | 5<br>8   | 142     | 11 | PAKHLOVA       | <b>08</b> B | BELL        | $e^+e^- \rightarrow \Lambda^+_c \Lambda^c$                                                |
| • • •  | We do                 | o no             | t use th | e follo | wi | ng data for av | erage       | s, fits, li | mits, etc. • • •                                                                          |
| 4647.9 | 9± 8.6                | δ±               | 0.8      |         | 12 | ABLIKIM        | 22R         | BES3        | $e^+e^- \rightarrow \pi^+\pi^-\chi_{c1}\gamma$                                            |
| 4652.5 | $5\pm$ 3.4            | ł±               | 1.1      |         | 13 | DAI            | 17          | RVUE        | $e^+e^- \rightarrow \Lambda_c^+\Lambda_c^-$                                               |
| 4645.2 | 2± 9.5                | $5\pm$           | 6.0      |         | 14 | ZHANG          | <b>17</b> B | RVUE        | $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$                                                   |
| 4646.4 | 4± 9.7                | 7±               | 4.8      |         | 15 | ZHANG          | 17C         | RVUE        | $e^+e^-  ightarrow \pi^+\pi^- J/\psi$ or $\psi(2S)$                                       |
| 4661   | $^{+}$ 9<br>$^{-}$ 8  | ±                | 6        | 44      | 16 | LIU            | 08H         | RVUE        | $\begin{array}{c} 10.58 \ e^+ e^- \rightarrow \\ \gamma \pi^+ \pi^- \psi(2S) \end{array}$ |
| 4664   | $\pm 11$              | ±                | 5        | 44      |    | WANG           | <b>07</b> D | BELL        | $10.58 \ e^+ e^- \rightarrow \gamma \pi^+ \pi^- \psi(2S)$                                 |

 $^{1}$  Extracted in a fit that employs two BW resonances. The second one at about 4720 MeV shows low statistical significance of 2.7  $\sigma.$ 

- <sup>2</sup> Extracted from a fit with two BW functions. The second one located at about 4750 MeV show a low statistical significance of 4.3  $\sigma$ .
- <sup>3</sup>Seen as a peak in the c.m. energy dependence of the  $e^+e^- \rightarrow K^+K^-J/\psi$  cross section using 5.85 fb<sup>-1</sup> of data at c.m. energies 4.61–4.95 GeV. Statistical significance is over  $5\sigma$ .
- <sup>4</sup> Fit model parameterized as the coherent sum of a Breit-Wigner resonance and a continuum amplitude term.
- <sup>5</sup> From a cross-section measurement of  $e^+e^- \rightarrow D^{*0}D^{*-}\pi^+$  between 4.189 and 4.951 GeV, assuming a coherent sum of 3 Breit-Wigner resonances plus a continuum amplitude. The two other resonances have masses (widths) 4209.6 ± 7.5 (81.6 ± 19.9) MeV and 4469.1 ± 26.4 (246.3 ± 37.9) MeV.

https://pdg.lbl.gov

<sup>6</sup> From a three-resonance fit to the Born cross section in the range  $\sqrt{s}$  = 4.008–4.698 GeV. <sup>7</sup> Using  $D_{s2}^*(2573)^- \rightarrow \overline{D}{}^0 K^-$  decays.

<sup>8</sup> From a fit of a Breit-Wigner convolved with a Gaussian.

 $^9$  From a two-resonance fit. Supersedes WANG 07D.

<sup>10</sup> From a two-resonance fit. <sup>11</sup> The  $\pi^+\pi^-\psi(2S)$  and  $\Lambda_c^+\Lambda_c^-$  states are not necessarily the same. <sup>12</sup> From a fit to the  $e^+e^- \rightarrow \pi^+\pi^-\psi(3823)$  cross section between 4.23 and 4.70 GeV with two coherent Breit-Wigner resonances. The data is also consistent with a single peak with mass 4417.5  $\pm$  26.2  $\pm$  3.5 MeV and width 245  $\pm$  48  $\pm$  13 MeV.

 $^{13}\,\mathrm{The}$  pole parameters are extracted from the speed plot.

<sup>14</sup> From a three-resonance fit. <sup>15</sup> From a combined fit of BELLE, BABAR and BES3  $e^+e^- \rightarrow \pi^+\pi^- J/\psi$  and  $e^+e^- \rightarrow$  $\pi^+\pi^-\psi(2S)$  data.

<sup>16</sup> From a combined fit of AUBERT 07S and WANG 07D data with two resonances.



#### $\psi$ (4660) WIDTH

| VALUE (MeV) EVTS                                   | DOCUMENT ID          | TECN           | COMMENT                                      |
|----------------------------------------------------|----------------------|----------------|----------------------------------------------|
| 55 $\pm$ 9 OUR AVERAGE                             | Error includes       | scale factor o | f 1.9. See the ideogram below.               |
| $57$ $\pm 12$ $\pm 219$                            | $^1$ ABLIKIM         | 24BN BES3      | $e^+e^- \rightarrow D_s^+ D_{s1}(2536)^-$    |
| $45.2\pm~5.7\pm~0.7$                               | <sup>2</sup> ABLIKIM | 24BN BES3      | $e^+e^- \rightarrow D_s^+ D_{s2}^* (2573)^-$ |
| $126 \begin{array}{r} +27\\ -23\end{array} \pm 30$ | <sup>3</sup> ABLIKIM | 23BI BES3      | $e^+e^- \rightarrow K^+K^-J/\psi$            |
| $30.5 \pm 22.3 \pm 14.6$                           | <sup>4</sup> ABLIKIM | 23H BES3       | $e^+e^- \rightarrow \phi \chi_{c2}$          |
| $218.3 \pm 72.9 \pm 9.3$                           | <sup>5</sup> ABLIKIM | 23X BES3       | $e^+e^- \rightarrow D^{*0}D^{*-}\pi^+$       |
| https://pdg.lbl.gov                                | Page 2               |                | Created: 5/30/2025 07:48                     |

| 155.4 | 4±24.8              | 8±       | 0.8      |           | <sup>6</sup> ABLIKIM   | 21AJ        | BES3        | $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$                                                                                  |
|-------|---------------------|----------|----------|-----------|------------------------|-------------|-------------|--------------------------------------------------------------------------------------------------------------------------|
| 47.0  | $0^{+31.3}_{-14.8}$ | 3<br>8±  | 4.6      | 66        | <sup>7</sup> JIA       | 20          | BELL        | $e^+e^- \rightarrow \gamma D_s^+ D_{s2}^* (2573)^-$                                                                      |
| 49.8  | $8^{+13.9}_{-11.5}$ | 9<br>5 ± | 4.0      | 89        | <sup>8</sup> JIA       | 19A         | BELL        | $e^+e^- \rightarrow \gamma D_s^+ D_{s1}(2536)^-$                                                                         |
| 68    | $\pm 11$            | ±        | 5        | 279       | <sup>9</sup> WANG      | 15A         | BELL        | 10.58 $e^+e^- \rightarrow$                                                                                               |
| 104   | $\pm$ 48            | ±        | 10       | 37        | <sup>10</sup> LEES     | 14F         | BABR        | $\gamma \pi^{+} \pi^{-} \psi(2S)$ 10.58 e <sup>+</sup> e <sup>-</sup> $\rightarrow$<br>$\gamma \pi^{+} \pi^{-} \psi(2S)$ |
| 92    | $^{+40}_{-24}$      | +        | 10<br>21 | 142       | <sup>11</sup> PAKHLOVA | <b>08</b> B | BELL        | $e^+e^- \rightarrow \Lambda_c^+ \Lambda_c^-$                                                                             |
| • •   | • We d              | do n     | ot use   | the follo | owing data for av      | /erage      | s, fits, li | mits, etc. • • •                                                                                                         |
| 33.   | $1\pm18.6$          | б±       | 4.1      |           | <sup>12</sup> ABLIKIM  | 22R         | BES3        | $e^+e^- \rightarrow \pi^+\pi^-\chi_{c1}\gamma$                                                                           |
| 62.0  | 6± 5.6              | 6±       | 4.3      |           | <sup>13</sup> DAI      | 17          | RVUE        | $e^+e^- \rightarrow \Lambda_c^+\Lambda_c^-$                                                                              |
| 113.8 | $8 \pm 18.2$        | $1\pm$   | 3.4      |           | <sup>14</sup> ZHANG    | <b>17</b> B | RVUE        | $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$                                                                                  |
| 103.  | $5 \pm 15.6$        | б±       | 4.0      |           | <sup>15</sup> ZHANG    | 17C         | RVUE        | $e^+e^- \rightarrow \pi^+\pi^- J/\psi$ or $\psi(2S)$                                                                     |
| 42    | $^{+17}_{-12}$      | ±        | 6        | 44        | <sup>16</sup> LIU      | 08н         | RVUE        | $10.58 \ e^+ e^- \rightarrow \gamma \pi^+ \pi^- \psi(2S)$                                                                |
| 48    | $\pm 15$            | ±        | 3        | 44        | WANG                   | <b>07</b> D | BELL        | $10.58 \ e^+ e^- \rightarrow \gamma \pi^+ \pi^- \psi(2S)$                                                                |

 $^{1}$  Extracted from a fit with two BW functions. The second one located at about 4750 MeV show a low statistical significance of 4.3  $\sigma.$ 

 $^2$  Extracted in a fit that employs two BW resonances. The second one at about 4720 MeV shows low statistical significance of 2.7  $\sigma$ .

<sup>3</sup>Seen as a peak in the c.m. energy dependence of the  $e^+e^- \rightarrow K^+K^-J/\psi$  cross section using 5.85 fb<sup>-1</sup> of data at c.m. energies 4.61–4.95 GeV. Statistical significance is over  $5\sigma$ .

<sup>4</sup> Fit model parameterized as the coherent sum of a Breit-Wigner resonance and a continuum amplitude term.

<sup>5</sup> From a cross-section measurement of  $e^+e^- \rightarrow D^{*0}D^{*-}\pi^+$  between 4.189 and 4.951 GeV, assuming a coherent sum of 3 Breit-Wigner resonances plus a continuum amplitude. The two other resonances have masses (widths) 4209.6 ± 7.5 (81.6 ± 19.9) MeV and 4469.1 ± 26.4 (246.3 ± 37.9) MeV.

<sup>6</sup> From a three-resonance fit to the Born cross section in the range  $\sqrt{s} = 4.008-4.698$  GeV.

<sup>*i*</sup> Using 
$$D^*_{s2}(2573)^- \rightarrow \overline{D}{}^0 K^-$$
 decays.

 $^{8}$  From a fit of a Breit-Wigner convolved with a Gaussian.

<sup>9</sup> From a two-resonance fit. Supersedes WANG 07D.

<sup>11</sup> The  $\pi^+\pi^-\psi(2S)$  and  $\Lambda^+_c\Lambda^-_c$  states are not necessarily the same.

- <sup>12</sup> From a fit to the  $e^+e^- \rightarrow \pi^+\pi^-\psi(3823)$  cross section between 4.23 and 4.70 GeV with two coherent Breit-Wigner resonances. The data is also consistent with a single peak with mass 4417.5  $\pm$  26.2  $\pm$  3.5 MeV and width 245  $\pm$  48  $\pm$  13 MeV.
- $^{13}$  The pole parameters are extracted from the speed plot.
- $^{14}$  From a three-resonance fit.

<sup>15</sup> From a combined fit of BELLE, BABAR and BES3  $e^+e^- \rightarrow \pi^+\pi^- J/\psi$  and  $e^+e^- \rightarrow \pi^+\pi^- \psi(2S)$  data.

 $^{16}$  From a combined fit of AUBERT 07S and WANG 07D data with two resonances.



### $\psi$ (4660) DECAY MODES

|                 | Mode                            | Fraction $(\Gamma_i/\Gamma)$ |
|-----------------|---------------------------------|------------------------------|
| $\Gamma_1$      | $e^{+}e^{-}$                    | not seen                     |
| Γ2              | $\psi(2S)\pi^+\pi^-$            | seen                         |
| Γ <sub>3</sub>  | $J/\psi \eta$                   | not seen                     |
| Γ <sub>4</sub>  | $D^0 D^{*-} \pi^+$              | not seen                     |
| Γ <sub>5</sub>  | $D^{*0}D^{*-}\pi^+$             | seen                         |
| Г <sub>6</sub>  | $\psi_2(3823)\pi^+\pi^-$        | seen                         |
| Γ <sub>7</sub>  | $\chi_{c1}\gamma$               | not seen                     |
| Г <sub>8</sub>  | $\chi_{c1}\phi$                 | not seen                     |
| Γ9              | $\chi_{c2}\gamma$               | not seen                     |
| Γ <sub>10</sub> | $\chi_{c2}\phi$                 | not seen                     |
| $\Gamma_{11}$   | $\Lambda_c^+ \Lambda_c^-$       | seen                         |
| Γ <sub>12</sub> | $D_s^+ D_{s1}(2536)^-$          | seen                         |
| Γ <sub>13</sub> | $D_{s}^{+}D_{s2}^{*}(2573)^{-}$ | seen                         |
| $\Gamma_{14}$   | $\omega \pi^0$                  | not seen                     |
| Γ <sub>15</sub> | $\omega \eta$                   | not seen                     |
| Γ <sub>16</sub> | $\Sigma^+ \overline{\Sigma}^-$  | not seen                     |
| $\Gamma_{17}$   | $\equiv^0 \overline{\equiv}^0$  |                              |
| Γ <sub>18</sub> | <u>=</u> - <u>=</u> +           | not seen                     |

https://pdg.lbl.gov

| Г <sub>19</sub> | $pK^{-}\overline{\Lambda}+$ c.c.              | not seen |
|-----------------|-----------------------------------------------|----------|
| Г <sub>20</sub> | $\Lambda \overline{\Xi}^+ K^- + \text{c.c.}$  | not seen |
| Γ <sub>21</sub> | $\Sigma^0 \overline{\Xi}^+ K^- + \text{c.c.}$ | not seen |

# $\psi$ (4660) $\Gamma$ (i) $\times \Gamma$ ( $e^+e^-$ )/ $\Gamma$ (total)

| Γ( | (ψ(2 <i>S</i> )π <sup>+</sup> | $\pi^{-})$ | × | Г( | (e+ | e_) | /Γ <sub>t</sub> | otal |
|----|-------------------------------|------------|---|----|-----|-----|-----------------|------|
|    |                               |            |   |    | _   |     |                 |      |

## $\Gamma_2\Gamma_1/\Gamma$

| VALUE (eV)                | EVTS      | DOCUMENT ID          | TECN             | COMMENT                                              |
|---------------------------|-----------|----------------------|------------------|------------------------------------------------------|
| • • • We do no            | ot use th | e following data for | r averages, fits | , limits, etc. • • •                                 |
| 4.7±3.8                   |           | <sup>1</sup> ABLIKIM | 21AJ BES3        | $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$              |
| $11.2 \pm 3.2$            |           | <sup>2</sup> ABLIKIM | 21AJ BES3        | $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$              |
| 4.7±4.2                   |           | <sup>3</sup> ABLIKIM | 21AJ BES3        | $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$              |
| $11.3 \pm 3.3$            |           | <sup>4</sup> ABLIKIM | 21AJ BES3        | $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$              |
| $2.0\!\pm\!0.3\!\pm\!0.2$ | 279       | <sup>5</sup> WANG    | 15A BELL         | 10.58 $e^+e^- \rightarrow \gamma \pi^+\pi^-\psi(2S)$ |
| $8.1\!\pm\!1.1\!\pm\!1.0$ | 279       | <sup>6</sup> WANG    | 15A BELL         | 10.58 $e^+e^- \rightarrow \gamma \pi^+\pi^-\psi(2S)$ |
| $2.7\!\pm\!1.3\!\pm\!0.5$ | 37        | <sup>7</sup> LEES    | 14F BABR         | 10.58 $e^+e^- \rightarrow \gamma \pi^+\pi^-\psi(2S)$ |
| $7.5\!\pm\!1.7\!\pm\!0.7$ | 37        | <sup>8</sup> LEES    | 14F BABR         | 10.58 $e^+e^- \rightarrow \gamma \pi^+\pi^-\psi(2S)$ |
| $2.2^{+0.7}_{-0.6}$       | 44        | <sup>9</sup> LIU     | 08H RVUE         | 10.58 $e^+e^- \rightarrow \gamma \pi^+\pi^-\psi(2S)$ |
| $5.9 \pm 1.6$             | 44        | <sup>10</sup> LIU    | 08H RVUE         | 10.58 $e^+e^- \rightarrow \gamma \pi^+\pi^-\psi(2S)$ |
| $3.0\!\pm\!0.9\!\pm\!0.3$ | 44        | <sup>7</sup> WANG    | 07D BELL         | 10.58 $e^+e^- \rightarrow \gamma \pi^+\pi^-\psi(2S)$ |
| $7.6\!\pm\!1.8\!\pm\!0.8$ | 44        | <sup>8</sup> WANG    | 07D BELL         | 10.58 $e^+e^- \to \gamma \pi^+\pi^-\psi(2S)$         |
|                           |           |                      |                  |                                                      |

<sup>1</sup>Solution I of four equivalent solutions in a fit using three interfering resonances.

<sup>2</sup>Solution II of four equivalent solutions in a fit using three interfering resonances.

<sup>3</sup>Solution III of four equivalent solutions in a fit using three interfering resonances.

<sup>4</sup>Solution IV of four equivalent solutions in a fit using three interfering resonances.

<sup>5</sup> Solution I of two equivalent solutions from a fit using two interfering resonances. Supersedes WANG 07D.

<sup>6</sup>Solution II of two equivalent solutions from a fit using two interfering resonances. Supersedes WANG 07D.

<sup>7</sup>Solution I of two equivalent solutions in a fit using two interfering resonances.

<sup>8</sup> Solution II of two equivalent solutions in a fit using two interfering resonances.
 <sup>9</sup> Solution I in a combined fit of AUBERT 07S and WANG 07D data with two resonances.
 <sup>10</sup> Solution II in a combined fit of AUBERT 07S and WANG 07D data with two resonances.

| $\Gamma(J/\psi\eta) \times \Gamma(e$            | $(+e^{-})/\Gamma_{tota}$            | 1                                                            |                                |                       |                              | $\Gamma_3\Gamma_1/\Gamma$        |
|-------------------------------------------------|-------------------------------------|--------------------------------------------------------------|--------------------------------|-----------------------|------------------------------|----------------------------------|
| VALUE (eV)                                      | CL%                                 | DOCUMENT I                                                   | D                              | TECN                  | COMMENT                      | -                                |
| • • • We do not us                              | se the followin                     | g data for averag                                            | ges, fits,                     | limits,               | etc. • • •                   |                                  |
| <0.94                                           | 90                                  | WANG                                                         | <b>13</b> B                    | BELL                  | $e^+e^-  ightarrow$          | $J/\psi\eta\gamma$               |
| $\Gamma(D^{*0}D^{*-}\pi^+)$                     | × Г(е <sup>+</sup> е <sup>-</sup> ) | )/F <sub>total</sub>                                         |                                | TFCN                  | COMMENT                      | $\Gamma_5\Gamma_1/\Gamma$        |
| • • • We do not us                              | se the followin                     | g data for averag                                            | ges, fits,                     | limits,               | etc. • • •                   |                                  |
| 19 to 2005                                      |                                     | <sup>1</sup> ABLIKIM                                         | 23X                            | BES3                  | $e^+e^- \rightarrow$         | $D^{*0}D^{*-}\pi^+$              |
| <sup>1</sup> From a cross-se<br>GeV, assuming a | ction measure<br>a coherent sum     | ment of e <sup>+</sup> e <sup>-</sup> –<br>n of 3 Breit-Wign | → D <sup>*0</sup><br>er resona | $D^{*-}\pi^+$ ances p | - between 4<br>lus a continu | .189 and 4.951<br>ium amplitude. |

Depending on solutions I - VIII with same fit qualities.

https://pdg.lbl.gov



| $\Gamma(\Xi^-\overline{\Xi}^+) \times \Gamma(e$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | e <sup>+</sup> e <sup>-</sup> )/Γ <sub>tα</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | otal                                                                                                                                                                                                                                                                                                                                                        |                                                                  |                                                                                                     |                                                                                                                                                                                                                                                                                             | Г <sub>18</sub> Г <sub>1</sub> /Г                                                                                                                                                                                                                                                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| VALUE (eV)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CL%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DOCUMENT ID                                                                                                                                                                                                                                                                                                                                                 |                                                                  | TECN                                                                                                | COMMENT                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                            |
| <19.9 × 10 <sup>-3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <sup>1</sup> ABLIKIM                                                                                                                                                                                                                                                                                                                                        | 23Bk                                                             | BES3                                                                                                | $e^+e^- \rightarrow$                                                                                                                                                                                                                                                                        | $\psi$ (4660)                                                                                                                                                                                                                                                                              |
| <sup>1</sup> From a fit to $e^+$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $e^- \rightarrow \Xi^-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\overline{\Xi}^+$ cross sections                                                                                                                                                                                                                                                                                                                           |                                                                  |                                                                                                     |                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                            |
| $(pK^{-}\overline{\Lambda}+c.c.)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | × Г( <i>е</i> +е-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <sup>-</sup> )/Γ <sub>total</sub>                                                                                                                                                                                                                                                                                                                           |                                                                  |                                                                                                     |                                                                                                                                                                                                                                                                                             | $\Gamma_{19}\Gamma_1/\Gamma$                                                                                                                                                                                                                                                               |
| VALUE (eV)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u>CL%</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DOCUMENT ID                                                                                                                                                                                                                                                                                                                                                 |                                                                  | TECN                                                                                                | COMMENT                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                            |
| $< 2.8 \times 10^{-3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <sup>1</sup> ABLIKIM                                                                                                                                                                                                                                                                                                                                        | 23BL                                                             | BES3                                                                                                | $e^+e^- \rightarrow$                                                                                                                                                                                                                                                                        | $\psi$ (4660)                                                                                                                                                                                                                                                                              |
| <sup>1</sup> From a fit to e <sup>+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $e^- \rightarrow pK$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\overline{\Lambda}$ + c.c. cross se                                                                                                                                                                                                                                                                                                                        | ctions.                                                          |                                                                                                     |                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                            |
| $(\Lambda \overline{\Xi}^+ K^- + c.c.)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ) × Г(е <sup>+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $e^{-})/\Gamma_{total}$                                                                                                                                                                                                                                                                                                                                     |                                                                  |                                                                                                     |                                                                                                                                                                                                                                                                                             | Г <sub>20</sub> Г <sub>1</sub> /Г                                                                                                                                                                                                                                                          |
| <i>ALUE</i> (eV)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <u>CL%</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DOCUMENT ID                                                                                                                                                                                                                                                                                                                                                 | TEC                                                              | <u>CN</u> <u>CO</u>                                                                                 | MMENT                                                                                                                                                                                                                                                                                       | - 1                                                                                                                                                                                                                                                                                        |
| <13.0 × 10 <sup>-5</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 90 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ABLIKIM 24                                                                                                                                                                                                                                                                                                                                                  | IAL BE                                                           | S3 e <sup>+</sup>                                                                                   | $e^- \rightarrow \Lambda \Xi$                                                                                                                                                                                                                                                               | $K^+ K^- + c.c.$                                                                                                                                                                                                                                                                           |
| <sup>1</sup> A fit to the Born<br>the continuum.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | cross sectior<br>Two solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $h 	ext{ of } e^+ e^- 	o \Lambda \Xi$<br>s from the fit.                                                                                                                                                                                                                                                                                                    | + K-                                                             | + c.c. i                                                                                            | ncluding int                                                                                                                                                                                                                                                                                | erference with                                                                                                                                                                                                                                                                             |
| $(\Sigma^0 \overline{\Xi}^+ K^- + c.c)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | с.) × Г(е                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $+e^{-})/\Gamma_{total}$                                                                                                                                                                                                                                                                                                                                    |                                                                  |                                                                                                     |                                                                                                                                                                                                                                                                                             | $\Gamma_{21}\Gamma_1/\Gamma_1$                                                                                                                                                                                                                                                             |
| ALUE (eV)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u></u> <u>D</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | OCUMENT ID                                                                                                                                                                                                                                                                                                                                                  | TECN                                                             | СОМ                                                                                                 | MENT                                                                                                                                                                                                                                                                                        | /                                                                                                                                                                                                                                                                                          |
| <b>&lt;77.3 × 10<sup>−3</sup></b> g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 00 <sup>1</sup> A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BLIKIM 24A                                                                                                                                                                                                                                                                                                                                                  | L BESS                                                           | 3 e <sup>+</sup> e                                                                                  | $- \rightarrow \Sigma^0 \Xi$                                                                                                                                                                                                                                                                | $\frac{1}{K^{-}} + c.c.$                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | cross sectio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | on of $e^+e^- \rightarrow \Sigma$                                                                                                                                                                                                                                                                                                                           | <u>−0</u> <u>=</u> +                                             | K <sup>-</sup> + 0                                                                                  | c.c. includin                                                                                                                                                                                                                                                                               | g interference                                                                                                                                                                                                                                                                             |
| <sup>1</sup> A fit to the Born<br>with the continu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | um. Two sol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | utions from the fit                                                                                                                                                                                                                                                                                                                                         | •                                                                |                                                                                                     |                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                            |
| <sup>1</sup> A fit to the Born<br>with the continue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | um. Two sol<br><b>ψ(466(</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | )) Γ(i) × Γ(e <sup>+</sup> e                                                                                                                                                                                                                                                                                                                                | -)/Г²                                                            | <sup>2</sup> (total)                                                                                | )                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                            |
| <sup>1</sup> A fit to the Born<br>with the continue<br>$(D^0 D^{*-} \pi^+)/\Gamma_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | um. Two sol<br>ψ(4660<br>cotal × Γ(0<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | b) $\Gamma(i) \times \Gamma(e^+ e^-) / \Gamma_{total}$                                                                                                                                                                                                                                                                                                      | -)/Г²                                                            | 2(total)                                                                                            | COMMENT                                                                                                                                                                                                                                                                                     | <sup></sup>                                                                                                                                                                                                                                                                                |
| <sup>1</sup> A fit to the Born<br>with the continue<br>$(D^0 D^{*-} \pi^+)/\Gamma_1$<br>(ALUE<br>(0.37 × 10 <sup>-6</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\frac{\psi(4660)}{\psi(4660)} \times \Gamma(460)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | b) $\Gamma(i) \times \Gamma(e^+ e^-)$<br>$e^+ e^-) / \Gamma_{total}$<br>$\frac{DOCUMENT ID}{1}$<br>PAKHLOVA                                                                                                                                                                                                                                                 | _ <b>)/Γ</b> <sup>2</sup><br>09                                  | 2(total)<br><u>TECN</u><br>BELL                                                                     | $\frac{COMMENT}{e^+e^-} \rightarrow$                                                                                                                                                                                                                                                        | $\frac{\Gamma_4}{D^0 D^{*-} \pi^+}$                                                                                                                                                                                                                                                        |
| <sup>1</sup> A fit to the Born<br>with the continue<br>$(D^0 D^{*-} \pi^+)/\Gamma_1$<br>ALUE<br>$< 0.37 \times 10^{-6}$<br><sup>1</sup> Using 4664 ± 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | um. Two sol<br>$\psi$ (4660<br>sotal × Γ( $\frac{CL\%}{90}$<br>± 5 MeV for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>D)</b> $\Gamma(\mathbf{i}) \times \Gamma(e^+ e^-)$<br>$e^+ e^-) / \Gamma_{\mathbf{total}}$<br>$\frac{DOCUMENT ID}{1}$<br>PAKHLOVA<br>for the mass of $\psi(4)$                                                                                                                                                                                           | ·<br>)/Γ <sup>2</sup> 09 660).                                   | 2 <b>(total</b> )<br><u>TECN</u><br>BELL                                                            | $\frac{COMMENT}{e^+e^-} \rightarrow$                                                                                                                                                                                                                                                        | $\frac{\Gamma_4}{D^0 D^{*-} \pi^+}$                                                                                                                                                                                                                                                        |
| <sup>1</sup> A fit to the Born<br>with the continue<br>$(D^0 D^{*-} \pi^+)/\Gamma_1$<br>ALUE<br>$< 0.37 \times 10^{-6}$<br><sup>1</sup> Using 4664 ± 11<br>$(\Lambda_c^+ \Lambda_c^-)/\Gamma_{total}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | um. Two sol<br>$\psi(4660)$<br>sotal × $\Gamma(e)$<br>$g_0$<br>$\pm 5  MeV for × \Gamma(e^+e^-)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>D)</b> $\Gamma(\mathbf{i}) \times \Gamma(e^+ e^-)$<br>$e^+ e^-) / \Gamma_{\mathbf{total}}$<br>$\frac{DOCUMENT ID}{1}$<br>PAKHLOVA<br>for the mass of $\psi(4^-) / \Gamma_{\mathbf{total}}$                                                                                                                                                               | - <b>_)/Γ<sup>2</sup></b><br>09<br>660).                         | 2 <b>(total</b> )<br><u>TECN</u><br>BELL                                                            | $\Gamma$ $\frac{COMMENT}{e^+e^-} \rightarrow$ $\Gamma_1$                                                                                                                                                                                                                                    | $\frac{\Gamma_4}{\Gamma} \times \Gamma_1 / \Gamma$<br>$\frac{\Gamma_0 D^* - \pi^+}{\Gamma_1 / \Gamma}$                                                                                                                                                                                     |
| <sup>1</sup> A fit to the Born<br>with the continue<br>$(D^0 D^{*-} \pi^+)/\Gamma_1$<br>(ALUE<br>$< 0.37 \times 10^{-6}$<br><sup>1</sup> Using 4664 ± 11<br>$(\Lambda_c^+ \Lambda_c^-)/\Gamma_{total}$<br>(ALUE (units 10 <sup>-6</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | um. Two sol<br>$\psi(4666)$<br>total × $\Gamma(4)$<br>$g_0$<br>$\pm 5  MeV for × \Gamma(e^+e^-)EVTS$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>b)</b> $\Gamma(\mathbf{i}) \times \Gamma(e^+ e^-)$<br>$e^+ e^-) / \Gamma_{\mathbf{total}}$<br>$\frac{DOCUMENT \ ID}{1}$<br>PAKHLOVA<br>for the mass of $\psi(4^-) / \Gamma_{\mathbf{total}}$<br>$\frac{DOCUMENT \ ID}{1}$                                                                                                                                | <b>)/Г<sup>2</sup></b><br>09<br>660).                            | 2(total)<br><u>TECN</u><br>BELL<br><u>TECN</u>                                                      | $\begin{matrix} \hline \Gamma \\ \underline{COMMENT} \\ e^+ e^- \rightarrow \\ \hline \Gamma_1 \\ \underline{COMMENT} \end{matrix}$                                                                                                                                                         | $\frac{\mathbf{f}_4}{D^0 D^{*-} \pi^+}$ $\frac{1}{\Gamma} \times \Gamma_1 / \Gamma$                                                                                                                                                                                                        |
| <sup>1</sup> A fit to the Born<br>with the continue<br>( $D^0 D^{*-} \pi^+$ )/ $\Gamma_1$<br>(ALUE<br>(0.37 × 10 <sup>-6</sup> )<br><sup>1</sup> Using 4664 ± 11<br>( $\Lambda_c^+ \Lambda_c^-$ )/ $\Gamma_{total}$<br>(ALUE (units 10 <sup>-6</sup> )<br>.68+0.16+0.29<br>-0.15-0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | um. Two sol<br>$\psi(4660)$<br>sotal × $\Gamma(4)$<br>$g_{0}$<br>$\pm 5  MeV for × \Gamma(e^+e^-)EVTS142$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>b)</b> $\Gamma(\mathbf{i}) \times \Gamma(e^+ e^-)$<br>$e^+ e^-) / \Gamma_{\mathbf{total}}$<br>$\frac{DOCUMENT \ ID}{1}$<br>PAKHLOVA<br>for the mass of $\psi(4^-) / \Gamma_{\mathbf{total}}$<br>$\frac{DOCUMENT \ ID}{1}$<br>1 PAKHLOVA                                                                                                                  | <b>)/Г<sup>2</sup></b><br>09<br>660).<br>08в                     | 2(total)<br><u>TECN</u><br>BELL<br><u>TECN</u><br>BELL                                              | $   \begin{array}{c}     \hline \Gamma_{1} \\     \hline e^{+}e^{-} \rightarrow \\   \end{array}   \begin{array}{c}     \hline \Gamma_{1} \\     \hline e^{+}e^{-} \rightarrow \\   \end{array} $                                                                                           | $\frac{\Gamma_4}{D^0 D^{*-} \pi^+}$<br>1/ $\Gamma \times \Gamma_1/\Gamma$<br>$\Lambda_c^+ \Lambda_c^-$                                                                                                                                                                                     |
| <sup>1</sup> A fit to the Born<br>with the continuut<br>( $D^0 D^{*-} \pi^+$ )/ $\Gamma_1$<br>(ALUE<br>(0.37 × 10 <sup>-6</sup> )<br><sup>1</sup> Using 4664 ± 11<br>( $\Lambda_c^+ \Lambda_c^-$ )/ $\Gamma_{total}$<br>(ALUE (units 10 <sup>-6</sup> )<br>( $\Delta_{c} - 0.15 - 0.30$ )<br><sup>1</sup> The $\pi^+ \pi^- \psi$ (25)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | um. Two sol<br>$\psi(4660)$<br>sotal × $\Gamma(e^{-1})$<br>$\pm 5  MeV for × \Gamma(e^+e^-)-\frac{EVTS}{142}\psi(4660)\pm 5  MeV for \psi(4660)\pm 5  MeV for \psi(460)\pm 5  MeV for \psi(460)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>b)</b> $\Gamma(\mathbf{i}) \times \Gamma(e^+ e^-)$<br>$e^+ e^-)/\Gamma_{\mathbf{total}}$<br>$\frac{DOCUMENT ID}{1}$ PAKHLOVA<br>for the mass of $\psi(4^-)/\Gamma_{\mathbf{total}}$<br>$\frac{DOCUMENT ID}{1}$<br>1 PAKHLOVA<br>$= 1^-$ States are not no                                                                                                | <b>)/Г<sup>2</sup></b><br>09<br>660).<br>08B                     | 2(total)<br><u>TECN</u><br>BELL<br><u>TECN</u><br>BELL                                              | $\Gamma$ $\frac{COMMENT}{e^+e^-} \rightarrow$ $\Gamma_1$ $\frac{COMMENT}{e^+e^-} \rightarrow$ ame.                                                                                                                                                                                          | $\frac{\Gamma_4}{D^0 D^{*-} \pi^+}$<br>1/ $\Gamma \times \Gamma_1/\Gamma$<br>$\Lambda_c^+ \Lambda_c^-$                                                                                                                                                                                     |
| <sup>1</sup> A fit to the Born<br>with the continue<br>( $D^0 D^{*-} \pi^+$ )/ $\Gamma_{t}$<br>( $AUE$<br>(0.37 × 10 <sup>-6</sup><br><sup>1</sup> Using 4664 ± 11<br>( $A_c^+ \Lambda_c^-$ )/ $\Gamma_{total}$<br>( $AUE$ (units 10 <sup>-6</sup> )<br>( $AB_{-0.15-0.30}$<br><sup>1</sup> The $\pi^+ \pi^- \psi$ (25)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | um. Two sol<br>$\psi(4660)$<br>$\phi(4660)$<br>$\phi(4660)$<br>$\phi(4660)$<br>$\phi(4660)$<br>$\phi(4660)$<br>$\phi(4660)$<br>$\phi(4660)$<br>$\phi(4660)$<br>$\phi(4660)$<br>$\phi(4660)$<br>$\phi(4660)$<br>$\phi(4660)$<br>$\phi(4660)$<br>$\phi(4660)$<br>$\phi(4660)$<br>$\phi(4660)$<br>$\phi(4660)$<br>$\phi(4660)$<br>$\phi(4660)$<br>$\phi(4660)$<br>$\phi(4660)$<br>$\phi(4660)$<br>$\phi(4660)$<br>$\phi(4660)$<br>$\phi(4660)$<br>$\phi(4660)$<br>$\phi(4660)$<br>$\phi(4660)$<br>$\phi(4660)$<br>$\phi(4660)$<br>$\phi(4660)$<br>$\phi(4660)$<br>$\phi(4660)$<br>$\phi(4660)$<br>$\phi(4660)$<br>$\phi(4660)$<br>$\phi(4660)$<br>$\phi(4660)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi(460)$<br>$\phi($ | <b>b)</b> $\Gamma(\mathbf{i}) \times \Gamma(e^+ e^-)$<br>$e^+ e^-)/\Gamma_{\mathbf{total}}$<br>$\frac{DOCUMENT ID}{1}$<br>PAKHLOVA<br>for the mass of $\psi(4^-)/\Gamma_{\mathbf{total}}$<br>$\frac{DOCUMENT ID}{1}$<br>1 PAKHLOVA<br>$1^-$ states are not not                                                                                              | — <b>)/Г<sup>2</sup></b><br>09<br>660).<br>08в<br>ecessar        | 2(total)<br><u>TECN</u><br>BELL<br><u>TECN</u><br>BELL<br>ily the s                                 | $ \frac{COMMENT}{e^+e^-} \rightarrow F_1 $ $ \frac{COMMENT}{e^+e^-} \rightarrow ame. $                                                                                                                                                                                                      | $\frac{\mathbf{f}_4}{\mathbf{f}_c} \times \mathbf{F}_1 / \mathbf{F}_1$ $\frac{\mathbf{f}_c}{\mathbf{f}_c} = \frac{\mathbf{f}_1}{\mathbf{f}_c} \times \mathbf{F}_1 / \mathbf{F}_1$                                                                                                          |
| <sup>1</sup> A fit to the Born<br>with the continue<br>$(D^0 D^{*-} \pi^+)/\Gamma_{1}$<br>(ALUE<br>(0.37 × 10 <sup>-6</sup><br><sup>1</sup> Using 4664 ± 11<br>$(\Lambda_c^+ \Lambda_c^-)/\Gamma_{total}$<br>(ALUE (units 10 <sup>-6</sup> )<br>(ALUE (units 10 <sup>-6</sup> )) | um. Two sol<br>$\psi(4660)$<br>$\psi(4660)$<br>$\psi(460)$<br>$\pm 5  MeV for \pm 5 \text{ MeV for \times \Gamma(e^+e^-)142\psi(46)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>b)</b> $\Gamma(\mathbf{i}) \times \Gamma(e^+ e^-)$<br>$e^+ e^-)/\Gamma_{\mathbf{total}}$<br>$\frac{DOCUMENT \ ID}{1}$<br>PAKHLOVA<br>for the mass of $\psi(4^-)/\Gamma_{\mathbf{total}}$<br>$\frac{DOCUMENT \ ID}{1}$<br>1 PAKHLOVA<br>$1^-$ states are not not<br>$1^-$ states are not not                                                              | - <b>)/Γ<sup>2</sup></b><br>09<br>660).<br>08Β<br>ecessar        | 2(total)<br><u>TECN</u><br>BELL<br>BELL<br>ily the s                                                | $   \begin{array}{c}     \hline \Gamma_{1} \\     \hline e^{+}e^{-} \rightarrow \\     \hline \Gamma_{1} \\     \hline e^{+}e^{-} \rightarrow \\     ame.   \end{array} $                                                                                                                   | $\frac{\mathbf{f}_{4}}{D^{0}D^{*-}\pi^{+}}$ $1/\mathbf{\Gamma} \times \mathbf{\Gamma}_{1}/\mathbf{\Gamma}$ $\Lambda_{c}^{+}\Lambda_{c}^{-}$                                                                                                                                                |
| <sup>1</sup> A fit to the Born<br>with the continue<br>$(D^0 D^{*-} \pi^+)/\Gamma_1$<br>$(ALUE - \pi^+)/\Gamma_1$<br>$(A_{C}^+ \Lambda_{C}^-)/\Gamma_{total}$<br>$(A_{LUE (units 10^{-6})}^{-6})$<br>$(B_{-0.15 - 0.30}^{-6})$<br>$(D^0 D^{*-} \pi^+)/\Gamma_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | um. Two sol<br>$\psi(4660)$<br>$\psi(4660)$<br>$\psi(460)$<br>$\pm 5  MeV for \times \Gamma(e^+e^-)\frac{EVTS}{142}\psi(46)\psi(46)\psi(2S)\pi^+$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (utions from the fit<br><b>D)</b> $\Gamma(\mathbf{i}) \times \Gamma(e^+ e^-)$<br>$e^+ e^-)/\Gamma_{\mathbf{total}}$<br>$\frac{DOCUMENT \ ID}{1}$<br>1  PAKHLOVA<br>for the mass of $\psi(4^-)/\Gamma_{\mathbf{total}}$<br>$\frac{DOCUMENT \ ID}{1}$<br>1  PAKHLOVA<br>$\frac{1}{c}$ states are not not<br><b>60) BRANCHIN</b><br>$\pi^-$                    | <b>)/Г<sup>2</sup></b><br>09<br>660).<br>08B<br>ecessar          | 2(total)<br><u>TECN</u><br>BELL<br>BELL<br>ily the s                                                | $\Gamma_{e^{+}e^{-}} \rightarrow \Gamma_{1}$ $\frac{COMMENT}{e^{+}e^{-}} \rightarrow T_{1}$ ame.                                                                                                                                                                                            | $ \frac{\mathbf{f}_4}{\mathbf{f}} \times \mathbf{F}_1 / \mathbf{F}_1 \\ \frac{\mathbf{f}_0}{\mathbf{f}_0} \mathbf{f}_0^{*-} \pi^+ $ $ \mathbf{f}_1 / \mathbf{f} \times \mathbf{F}_1 / \mathbf{F}_1 \\ \frac{\mathbf{f}_c}{\mathbf{f}_c^+ \mathbf{f}_c^-} $ $ \mathbf{F}_4 / \mathbf{F}_2 $ |
| <sup>1</sup> A fit to the Born<br>with the continue<br>( $D^0 D^{*-} \pi^+$ )/ $\Gamma_1$<br>(ALUE<br><0.37 × 10 <sup>-6</sup><br><sup>1</sup> Using 4664 ± 11<br>( $\Lambda_c^+ \Lambda_c^-$ )/ $\Gamma_{total}$<br>( $\Lambda_c^+ \Lambda_c^-$ )/ $\Gamma_{total}$<br>(ALUE (units 10 <sup>-6</sup> )<br>1.68+0.16+0.29<br>-0.15-0.30<br><sup>1</sup> The $\pi^+ \pi^- \psi(2S)$<br>( $D^0 D^{*-} \pi^+$ )/ $\Gamma_1$<br>(ALUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | um. Two sol<br>$\psi(4660)$<br>$\phi(4660)$<br>$\phi(460)$<br>$\pm 5  MeV for \times \Gamma(e^+e^-)\frac{EVTS}{142}\psi(46)\psi(46)(\psi(2S)\pi^+)\frac{CL\%}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | b) $\Gamma(i) \times \Gamma(e^+ e^-)$<br>$\frac{DOCUMENT ID}{1}$<br>$\frac{DOCUMENT ID}{1}$<br>$\Gamma$ PAKHLOVA<br>for the mass of $\psi(4^-)/\Gamma_{total}$<br>$\frac{DOCUMENT ID}{1}$<br>$\frac{1}{PAKHLOVA}$<br>$\frac{1}{c}$ states are not not<br>$\frac{1}{c}$ States are not not<br>$\frac{1}{c}$ DBRANCHIN<br>$\pi^-)$<br>$\frac{DOCUMENT ID}{1}$ | <b>)/Г<sup>2</sup></b><br>09<br>660).<br>08B<br>ecessar          | <b>TECN</b><br>BELL<br><u>TECN</u><br>BELL<br>ily the s<br><b>TIOS</b>                              | $\Gamma$ $\frac{COMMENT}{e^+e^-} \rightarrow$ $\Gamma_1$ $\frac{COMMENT}{e^+e^-} \rightarrow$ ame.                                                                                                                                                                                          | $\frac{\Gamma_4}{\Gamma} \times \Gamma_1/\Gamma$ $\frac{\Gamma_0 D^* - \pi^+}{\Gamma_1/\Gamma}$ $\frac{\Gamma_1/\Gamma}{\Lambda_c^+ \Lambda_c^-}$ $\Gamma_4/\Gamma_2$                                                                                                                      |
| <sup>1</sup> A fit to the Born<br>with the continue<br>( $D^0 D^{*-} \pi^+$ )/ $\Gamma_{1}$<br>( $\Delta LUE$<br><0.37 × 10 <sup>-6</sup><br><sup>1</sup> Using 4664 ± 11<br>( $\Lambda_c^+ \Lambda_c^-$ )/ $\Gamma_{total}$<br>( $\Delta LUE$ (units 10 <sup>-6</sup> )<br>( $\Delta B + 0.16 + 0.29$<br>-0.15 - 0.30<br><sup>1</sup> The $\pi^+ \pi^- \psi$ (25)<br>( $D^0 D^{*-} \pi^+$ )/ $\Gamma_{1}$<br>( $\Delta LUE$<br><10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | um. Two sol<br>$\psi(4666)$<br>$\phi(4666)$<br>$\phi(466)$<br>$\pm 5  MeV for \times \Gamma(e^+e^-evts142\psi(46)\psi(46)(\psi(2S)\pi^+g_0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | b) $\Gamma(i) \times \Gamma(e^+ e^-)$<br>$\frac{DOCUMENT ID}{1}$<br>$\frac{DOCUMENT ID}{1}$<br>$\Gamma$ PAKHLOVA<br>for the mass of $\psi(4^-)/\Gamma_{total}$<br>$\frac{DOCUMENT ID}{1}$<br>$\frac{DOCUMENT ID}{1}$<br>$\Gamma$ states are not not<br>$\pi^-$ )<br>$\frac{DOCUMENT ID}{2}$<br>$\pi^-$ )<br>$\frac{DOCUMENT ID}{2}$                         | -<br>)/Γ <sup>2</sup><br>09<br>660).<br>08Β<br>ecessar<br>IG RA  | 2(total)<br><u>TECN</u><br>BELL<br>ily the s<br>TIOS<br><u>TECN</u><br>BELL                         | $ \begin{array}{c} \Gamma \\ \underline{COMMENT} \\ e^+ e^- \rightarrow \\ \Gamma_1 \\ \underline{COMMENT} \\ e^+ e^- \rightarrow \\ ame. \\ \end{array} $                                                                                                                                  | $ \frac{\mathbf{f}_{4}}{D^{0} D^{*-} \pi^{+}} $ $ \frac{\mathbf{f}_{1}}{D^{0} D^{*-} \pi^{+}} $ $ \frac{\mathbf{f}_{4}}{\Lambda_{c}^{+} \Lambda_{c}^{-}} $ $ \frac{\mathbf{f}_{4}}{D^{0} D^{*-} \pi^{+}} $                                                                                 |
| <sup>1</sup> A fit to the Born<br>with the continue<br>( $D^0 D^{*-} \pi^+$ )/ $\Gamma_1$<br>(ALUE<br>(0.37 × 10 <sup>-6</sup> )<br><sup>1</sup> Using 4664 ± 11<br>( $\Lambda_c^+ \Lambda_c^-$ )/ $\Gamma_{total}$<br>(ALUE (units 10 <sup>-6</sup> )<br>( $\Delta_{LUE}$ (units 10 <sup>-6</sup> )<br>( $D^0 D^{*-} \pi^+$ )/ $\Gamma_1$<br>( $\Delta_{LUE}$<br>(10<br>( $\psi_2$ (3823) $\pi^+ \pi^-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | um. Two sol<br>$\psi(4660)$<br>$\phi(4660)$<br>$\phi(4660)$<br>$\pm 5  MeV for \times \Gamma(e^+e^-)\frac{EVTS}{142}\psi(460)\psi(460)(\psi(2S)\pi^+)\frac{CL\%}{90}\phi(-)/\Gamma_{\text{total}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | b) $\Gamma(i) \times \Gamma(e^+ e^-)$<br>$\frac{DOCUMENT ID}{1}$<br>1  PAKHLOVA<br>for the mass of $\psi(4^-)/\Gamma_{\text{total}}$<br>$\frac{DOCUMENT ID}{1}$<br>1  PAKHLOVA<br>$\frac{DOCUMENT ID}{1}$<br>1  PAKHLOVA<br>$\frac{1}{c}$ states are not not<br>$\pi^-)$<br>$\frac{DOCUMENT ID}{1}$<br>PAKHLOVA                                             | <b>)/Г<sup>2</sup></b><br>09<br>660).<br>08B<br>ecessar<br>IG RA | etation (total)                                                                                     | $\frac{COMMENT}{e^+e^-} \rightarrow \mathbf{\Gamma_1}$ $\frac{COMMENT}{e^+e^-} \rightarrow \mathbf{ame}.$ $\frac{COMMENT}{e^+e^-} \rightarrow \mathbf{ame}$                                                                                                                                 | $ \frac{\Gamma_4}{\Gamma} \times \Gamma_1/\Gamma \\ \frac{\Gamma_0}{D^0} D^{*-} \pi^+ $ $ \frac{\Gamma_4}{\Gamma_2} \Gamma_2 $ $ \frac{\Gamma_4}{\Gamma_2} \Gamma_6/\Gamma $                                                                                                               |
| <sup>1</sup> A fit to the Born<br>with the continue<br>( $D^0 D^{*-} \pi^+$ )/ $\Gamma_1$<br>( <u>ALUE</u><br>(0.37 × 10 <sup>-6</sup><br><sup>1</sup> Using 4664 ± 11<br>( <u>ALUE (units 10<sup>-6</sup>)</u> ).<br>( $A_{c}^{+} \Lambda_{c}^{-}$ )/ $\Gamma_{total}$<br>( <u>ALUE (units 10<sup>-6</sup>)</u> ).<br>( $B_{-0.15 - 0.30$<br><sup>1</sup> The $\pi^+ \pi^- \psi$ (25)<br>( <u>ALUE</u><br>(10)<br>( <u>(<math>\psi_2</math>(3823))<math>\pi^+ \pi^-</math><br/>(<u>ALUE</u>)</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | um. Two sol<br>$\psi(4666)$<br>$\phi(4666)$<br>$\phi(4666)$<br>$\pm 5 \text{ MeV for \times \Gamma(e^+e^-)^{EVTS}142\psi(46)\psi(46)(\psi(2S)\pi^+)^{-}g_0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | b) $\Gamma(i) \times \Gamma(e^+ e^-)$<br>$\frac{DOCUMENT ID}{1}$<br>$\frac{DOCUMENT ID}{1}$<br>$\Gamma$ PAKHLOVA<br>for the mass of $\psi(4^-)/\Gamma_{total}$<br>$\frac{DOCUMENT ID}{1}$<br>$\frac{DOCUMENT ID}{1}$<br>$\pi^-)$<br>$\frac{DOCUMENT ID}{1}$<br>PAKHLOVA                                                                                     | -<br>)/Γ <sup>2</sup><br>09<br>660).<br>08Β<br>ecessar<br>IG RA  | 2 (total)<br><u>TECN</u><br>BELL<br>ily the s<br>TIOS<br><u>TECN</u><br>BELL<br><u>TECN</u><br>BELL | $ \begin{array}{c} \Gamma \\ \underline{COMMENT} \\ e^+ e^- \rightarrow \\ \end{array} $ $ \begin{array}{c} COMMENT \\ e^+ e^- \rightarrow \\ \hline \\ ame. \\ \end{array} $ $ \begin{array}{c} COMMENT \\ e^+ e^- \rightarrow \\ \hline \\ \hline \\ e^+ e^- \rightarrow \\ \end{array} $ | $\frac{\mathbf{f}_{4}/\mathbf{\Gamma} \times \mathbf{\Gamma}_{1}/\mathbf{\Gamma}}{D^{0} D^{*-} \pi^{+}}$ $1/\mathbf{\Gamma} \times \mathbf{\Gamma}_{1}/\mathbf{\Gamma}$ $\frac{\Lambda_{c}^{+} \Lambda_{c}^{-}}{\Gamma_{c}^{0} D^{*-} \pi^{+}}$ $\mathbf{\Gamma}_{6}/\mathbf{\Gamma}$      |

https://pdg.lbl.gov

Created: 5/30/2025 07:48

Citation: S. Navas et al. (Particle Data Group), Phys. Rev. D  ${\bf 110},$  030001 (2024) and 2025 update

| $\Gamma(\omega \pi^0) / \Gamma_{total}$ |             |     |      |                                  | Г <sub>14</sub> /Г |
|-----------------------------------------|-------------|-----|------|----------------------------------|--------------------|
| VALUE                                   | DOCUMENT ID |     | TECN | COMMENT                          |                    |
| not seen                                | ABLIKIM     | 22к | BES3 | $e^+e^-  ightarrow \omega \pi^0$ |                    |
| $\Gamma(\omega\eta)/\Gamma_{total}$     |             |     |      |                                  | Г <sub>15</sub> /Г |
| VALUE                                   | DOCUMENT ID |     | TECN | COMMENT                          |                    |
| not seen                                | ABLIKIM     | 22K | BES3 | $e^+ e^-  ightarrow \omega \eta$ |                    |

# $\psi$ (4660) REFERENCES

| ABLIKIM  | 24AH       | JHEP 2405 022                  | M. Ablikim <i>et al.</i>                           | (BESIII Collab.)                      |
|----------|------------|--------------------------------|----------------------------------------------------|---------------------------------------|
| ABLIKIM  | 24AL       | JHEP 2407 258                  | M. Ablikim <i>et al.</i>                           | (BESIII Collab.)                      |
| ABLIKIM  | 24BN       | PRL 133 171903                 | M. Ablikim <i>et al.</i>                           | (BESIII Collab.)                      |
| ABLIKIM  | 24CD       | JHEP 2411 062                  | M. Ablikim <i>et al.</i>                           | (BESIII Collab.)                      |
| ABLIKIM  | 23BI       | PRL 131 211902                 | M. Ablikim <i>et al.</i>                           | (BESIII Collab.)                      |
| ABLIKIM  | 23BK       | JHEP 2311 228                  | M. Ablikim <i>et al.</i>                           | (BESIII Collab.)                      |
| ABLIKIM  | 23BL       | JHEP 2312 027                  | M. Ablikim <i>et al.</i>                           | (BESIII Collab.)                      |
| ABLIKIM  | 23H        | JHEP 2301 132                  | M. Ablikim <i>et al.</i>                           | (BESIII Collab.)                      |
| ABLIKIM  | 23X        | PRL 130 121901                 | M. Ablikim <i>et al.</i>                           | (BESIII Collab.)                      |
| ABLIKIM  | 22K        | JHEP 2207 064                  | M. Ablikim <i>et al.</i>                           | (BESIII Collab.)                      |
| ABLIKIM  | 22R        | PRL 129 102003                 | M. Ablikim <i>et al.</i>                           | (BESIII Collab.)                      |
| ABLIKIM  | 21AJ       | PR D104 052012                 | M. Ablikim <i>et al.</i>                           | (BESIII Collab.)                      |
| JIA      | 20         | PR D101 091101                 | S. Jia <i>et al.</i>                               | (BELLE Collab.)                       |
| JIA      | 19A        | PR D100 111103                 | S. Jia <i>et al.</i>                               | (BELLE Collab.)                       |
| DAI      | 17         | PR D96 116001                  | LY. Dai, J. Haidenbauer, UG.                       | Meissner (JULI+)                      |
| ZHANG    | 17B        | PR D96 054008                  | J. Zhang, J. Zhang                                 | · · · · · · · · · · · · · · · · · · · |
| ZHANG    | 17C        | EPJ C77 727                    | J. Zhang, L. Yuan                                  |                                       |
| HAN      | 15         | PR D92 012011                  | Y.L. Han et al.                                    | (BELLE Collab.)                       |
| WANG     | 15A        | PR D91 112007                  | X.L. Wang <i>et al.</i>                            | (BELLE Collab.)                       |
| LEES     | 14F        | PR D89 111103                  | J.P. Lees <i>et al.</i>                            | (BABAR Collab.)                       |
| WANG     | 13B        | PR D87 051101                  | X.L. Wang <i>et al.</i>                            | (BELLE Collab.)                       |
| PAKHLOVA | 09         | PR D80 091101                  | G. Pakhlova <i>et al.</i>                          | (BELLE Collab.)                       |
| LIU      | 08H        | PR D78 014032                  | Z.Q. Liu, X.S. Qin, C.Z. Yuan                      | (                                     |
| PAKHLOVA | 08B        | PRL 101 172001                 | C. Pakhlova <i>et al.</i>                          | (BELLE Collab.)                       |
| AUDEDT   | -          |                                |                                                    | (                                     |
| AUBERT   | 07S        | PRL 98 212001                  | B. Aubert <i>et al.</i>                            | (BABAR Collab.)                       |
| WANG     | 07S<br>07D | PRL 98 212001<br>PRL 99 142002 | B. Aubert <i>et al.</i><br>X.L. Wang <i>et al.</i> | (BABAR Collab.)<br>(BELLE Collab.)    |