Light Quarks (u, d, s)

OMITTED FROM SUMMARY TABLE See the related review(s):

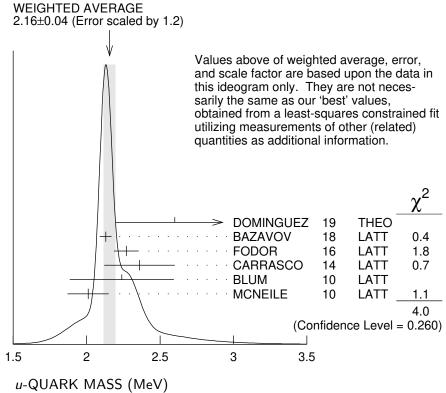
Quark Masses

u-QUARK MASS

The u-, d-, and s-quark masses are estimates of so-called "current-quark masses," in a mass- independent subtraction scheme such as $\overline{\rm MS}$. The ratios m_u/m_d and m_s/m_d are extracted from pion and kaon masses using chiral symmetry. The estimates of d and u masses are not without controversy and remain under active investigation. Within the literature there are even suggestions that the u quark could be essentially massless. The s-quark mass is estimated from SU(3) splittings in hadron masses.

We have normalized the $\overline{\rm MS}$ masses at a renormalization scale of $\mu=2$ GeV. Results quoted in the literature at $\mu=1$ GeV have been rescaled by dividing by 1.35. The values of "Our Evaluation" were determined in part via Figures 2 and 3 in the "Quark masses" review.

MS MASS (MeV) CL%	DOCUMENT ID		<u>TECN</u>
2.16 ± 0.07 (CL = 90%) OUR	EVALUATION Se	e the	ideogram below.
2.6 ± 0.4	$^{ m 1}$ DOMINGUEZ	19	THEO
2.130 ± 0.041	² BAZAVOV	18	LATT
$2.27 \pm 0.06 \pm 0.06$			LATT
2.36 ± 0.24	⁴ CARRASCO	14	LATT
$2.24 \pm 0.10 \pm 0.34$		10	LATT
2.01 ± 0.14	⁶ MCNEILE	10	LATT
ullet $ullet$ We do not use the following	ng data for averages	, fits,	limits, etc. • • •
$2.57 \pm 0.26 \pm 0.07$	⁷ AOKI	12	LATT
$2.15 \pm 0.03 \pm 0.10$	⁸ DURR	11	LATT
1.9 ± 0.2	⁹ BAZAVOV	10	LATT
2.01 ± 0.14		10	LATT
2.9 ± 0.2	¹⁰ DOMINGUEZ	09	THEO
2.9 ± 0.8	¹¹ DEANDREA	80	THEO
3.02 ± 0.33	¹² BLUM	07	LATT
2.7 ± 0.4	¹³ JAMIN	06	THEO
1.9 ± 0.2	¹⁴ MASON	06	LATT
2.8 ± 0.2	¹⁵ NARISON	06	THEO
1.7 ± 0.3	¹⁶ AUBIN	04A	LATT


¹ DOMINGUEZ 19 determine the quark mass from a QCD finite energy sum rule for the divergence of the axial current.

²BAZAVOV 18 determine the quark masses using a lattice computation with staggered fermions and four active quark flavors.

 $^{^3}$ FODOR 16 is a lattice simulation with $n_f=2+1$ dynamical flavors and includes partially quenched QED effects.

⁴CARRASCO 14 is a lattice QCD computation of light quark masses using 2+1+1 dynamical quarks, with $m_u=m_d \neq m_S \neq m_C$. The u and d quark masses are

obtained separately by using the K meson mass splittings and lattice results for the electromagnetic contributions.

- ⁵ BLUM 10 determines light quark masses using a QCD plus QED lattice computation of the electromagnetic mass splittings of the low-lying hadrons. The lattice simulations use 2+1 dynamical quark flavors.
- ⁶ DAVIES 10 and MCNEILE 10 determine $\overline{m}_{\mathcal{C}}(\mu)/\overline{m}_{\mathcal{S}}(\mu)=11.85\pm0.16$ using a lattice computation with $n_f=2+1$ dynamical fermions of the pseudoscalar meson masses. Mass m_U is obtained from this using the value of $m_{\mathcal{C}}$ from ALLISON 08 or MCNEILE 10 and the BAZAVOV 10 values for the light quark mass ratios, $m_{\mathcal{S}}/\overline{m}$ and m_U/m_d .
- 7 AOKI 12 is a lattice computation using 1+1+1 dynamical quark flavors.
- ⁸ DURR 11 determine quark mass from a lattice computation of the meson spectrum using $n_f=2+1$ dynamical flavors. The lattice simulations were done at the physical quark mass, so that extrapolation in the quark mass was not needed. The individual m_u , m_d values are obtained using the lattice determination of the average mass $m_{\rm ud}$ and of the ratio $m_{\rm S}/m_{\rm ud}$ and the value of $Q=\left(m_{\rm S}^2-m_{\rm ud}^2\right)/\left(m_{\rm d}^2-m_{\rm u}^2\right)$ as determined from $n\to 3\pi$ decays.
- ⁹BAZAVOV 10 is a lattice computation using 2+1 dynamical quark flavors.
- ¹⁰ DOMINGUEZ 09 use QCD finite energy sum rules for the two-point function of the divergence of the axial vector current computed to order α_s^4 .
- ¹¹ DEANDREA 08 determine $m_u m_d$ from $\eta \to 3\pi^0$, and combine with the PDG 06 lattice average value of $m_u + m_d = 7.6 \pm 1.6$ to determine m_u and m_d .
- ¹² BLUM 07 determine quark masses from the pseudoscalar meson masses using a QED plus QCD lattice computation with two dynamical quark flavors.

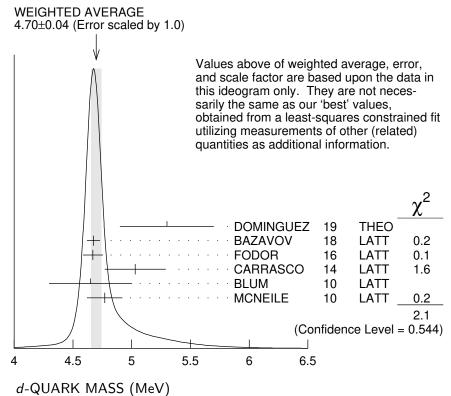
- ¹³ JAMIN 06 determine $m_u(2 \text{ GeV})$ by combining the value of m_s obtained from the spectral function for the scalar $K\pi$ form factor with other determinations of the quark mass ratios.
- ¹⁴ MASON 06 extract light quark masses from a lattice simulation using staggered fermions with an improved action, and three dynamical light quark flavors with degenerate u and d quarks. Perturbative corrections were included at NNLO order. The quark masses m_u and m_d were determined from their $(m_u + m_d)/2$ measurement and AUBIN 04A m_u/m_d value.
- ¹⁵ NARISON 06 uses sum rules for $e^+e^-\to hadrons$ to order α_s^3 to determine m_s combined with other determinations of the quark mass ratios.
- ¹⁶ AUBIN 04A employ a partially quenched lattice calculation of the pseudoscalar meson masses.

d-QUARK MASS

See the comment for the u quark above.

We have normalized the $\overline{\rm MS}$ masses at a renormalization scale of $\mu=2$ GeV. Results quoted in the literature at $\mu=1$ GeV have been rescaled by dividing by 1.35. The values of "Our Evaluation" were determined in part via Figures 2 and 3 in the "Quark masses" review.

MS MASS (MeV) CL%	DOCUMENT ID		TECN
4.70 ± 0.07 (CL = 90%) OUR	EVALUATION Se	e the	ideogram below.
5.3 ± 0.4	¹ DOMINGUEZ	19	THEO
4.675 ± 0.056	² BAZAVOV	18	LATT
$4.67 \pm 0.06 \pm 0.06$	³ FODOR	16	
5.03 ± 0.26	⁴ CARRASCO	14	LATT
$4.65 \pm 0.15 \pm 0.32$		10	LATT
4.77 ± 0.15	⁶ MCNEILE	10	LATT
• • • We do not use the following	g data for averages	, fits,	limits, etc. • • •
$3.68 \pm 0.29 \pm 0.10$	⁷ AOKI	12	LATT
$4.79 \pm 0.07 \pm 0.12$	⁸ DURR	11	LATT
4.6 ± 0.3	⁹ BAZAVOV	10	LATT
4.79 ± 0.16	⁶ DAVIES	10	LATT
5.3 ± 0.4	¹⁰ DOMINGUEZ	09	THEO
4.7 ± 0.8	¹¹ DEANDREA	80	THEO
5.49 ± 0.39	¹² BLUM	07	LATT
4.8 ± 0.5	¹³ JAMIN	06	THEO
4.4 ± 0.3	¹⁴ MASON	06	LATT
5.1 ± 0.4	¹⁵ NARISON	06	THEO
3.9 ± 0.5	¹⁶ AUBIN	04A	LATT


¹ DOMINGUEZ 19 determine the quark mass from a QCD finite energy sum rule for the divergence of the axial current.

² BAZAVOV 18 determine the quark masses using a lattice computation with staggered fermions and four active quark flavors.

 $^{^3}$ FODOR 16 is a lattice simulation with $n_f=2+1$ dynamical flavors and includes partially quenched QED effects.

⁴ CARRASCO 14 is a lattice QCD computation of light quark masses using 2+1+1 dynamical quarks, with $m_u=m_d \neq m_s \neq m_c$. The u and d quark masses are

obtained separately by using the K meson mass splittings and lattice results for the electromagnetic contributions.

⁵ BLUM 10 determines light quark masses using a QCD plus QED lattice computation of the electromagnetic mass splittings of the low-lying hadrons. The lattice simulations use 2+1 dynamical quark flavors.

⁶ DAVIES 10 and MCNEILE 10 determine $\overline{m}_{\mathcal{C}}(\mu)/\overline{m}_{\mathcal{S}}(\mu)=11.85\pm0.16$ using a lattice computation with $n_f=2+1$ dynamical fermions of the pseudoscalar meson masses. Mass m_d is obtained from this using the value of $m_{\mathcal{C}}$ from ALLISON 08 or MCNEILE 10 and the BAZAVOV 10 values for the light quark mass ratios, $m_{\mathcal{S}}/\overline{m}$ and $m_{\mathcal{U}}/m_d$.

 7 AOKI 12 is a lattice computation using 1+1+1 dynamical quark flavors.

⁸ DURR 11 determine quark mass from a lattice computation of the meson spectrum using $n_f=2+1$ dynamical flavors. The lattice simulations were done at the physical quark mass, so that extrapolation in the quark mass was not needed. The individual m_u , m_d values are obtained using the lattice determination of the average mass $m_{\rm ud}$ and of the ratio $m_s/m_{\rm ud}$ and the value of $Q=(m_s^2-m_{\rm ud}^2)/(m_d^2-m_u^2)$ as determined from $n\to 3\pi$ decays.

⁹BAZAVOV 10 is a lattice computation using 2+1 dynamical quark flavors.

¹⁰ DOMINGUEZ 09 use QCD finite energy sum rules for the two-point function of the divergence of the axial vector current computed to order α_s^4 .

¹¹ DEANDREA 08 determine $m_u - m_d$ from $\eta \to 3\pi^0$, and combine with the PDG 06 lattice average value of $m_u + m_d = 7.6 \pm 1.6$ to determine m_u and m_d .

¹² BLUM 07 determine quark masses from the pseudoscalar meson masses using a QED plus QCD lattice computation with two dynamical quark flavors.

- ¹³ JAMIN 06 determine m_d (2 GeV) by combining the value of m_s obtained from the spectral function for the scalar $K\pi$ form factor with other determinations of the quark mass ratios.
- ¹⁴ MASON 06 extract light quark masses from a lattice simulation using staggered fermions with an improved action, and three dynamical light quark flavors with degenerate u and d quarks. Perturbative corrections were included at NNLO order. The quark masses m_u and m_d were determined from their $(m_u + m_d)/2$ measurement and AUBIN 04A m_u/m_d value.
- 15 NARISON 06 uses sum rules for $e^+\,e^-\to {\rm hadrons}$ to order α_s^3 to determine m_s combined with other determinations of the quark mass ratios.
- AUBIN 04A perform three flavor dynamical lattice calculation of pseudoscalar meson masses, with continuum estimate of electromagnetic effects in the kaon masses, and one-loop perturbative renormalization constant.

$$\overline{m} = (m_u + m_d)/2$$

See the comments for the u quark above.

We have normalized the $\overline{\rm MS}$ masses at a renormalization scale of $\mu=2$ GeV. Results quoted in the literature at $\mu=1$ GeV have been rescaled by dividing by 1.35. The values of "Our Evaluation" were determined in part via Figures 2 and 3 in the "Quark masses" review.

MS MASS (MeV)	CL%	DOCUMENT ID		TECN
3.49 ± 0.07	(CL = 90%) OUI	R EVALUATION	See t	he ideogram below.
3.636 ± 0.066	$+0.060 \\ -0.057$	¹ ALEXANDRO	J21	LATT
3.54 ± 0.12 3.9 ± 0.3	± 0.09	² BRUNO ³ DOMINGUEZ		LATT THEO
$\begin{array}{cc} 4.7 & +0.8 \\ -0.7 \end{array}$		⁴ YUAN	17	THEO
3.70 ± 0.17 3.45 ± 0.12 3.469 ± 0.047 3.6 ± 0.2 3.39 ± 0.06		⁵ CARRASCO ⁶ ARTHUR ⁷ DURR ⁸ BLOSSIER ⁹ MCNEILE	13 11 10 10	
• • • We do no	ot use the following	g data for averages	s, fits,	limits, etc. • • •
$\begin{array}{c} 3.59 \ \pm 0.21 \\ 3.40 \ \pm 0.07 \\ 4.1 \ \pm 0.2 \\ 3.72 \ \pm 0.41 \\ 3.85 \ \pm 0.12 \\ \geq 4.85 \ \pm 0.20 \end{array}$	±0.4	10 AOKI 9 DAVIES 11 DOMINGUEZ 12 ALLTON 13 BLOSSIER 14 DOMINGUEZ.	10 09 08 08	LATT LATT
$\begin{array}{c} 3.55 \ \ \begin{array}{r} +0.65 \\ -0.28 \end{array} \\ 4.026 \pm 0.048 \\ 4.25 \ \ \pm 0.35 \\ 4.08 \ \ \pm 0.25 \\ 4.7 \ \ \ \pm 0.2 \\ 3.2 \ \ \pm 0.3 \end{array}$		15 ISHIKAWA 16 NAKAMURA 17 BLUM 18 GOCKELER 19 GOCKELER 20 MASON		LATT LATT LATT LATT LATT LATT

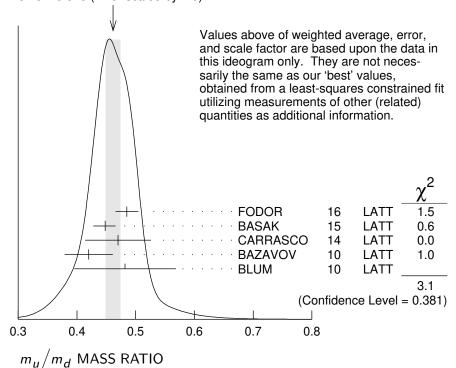
Page 5


Created: 5/30/2025 07:49

https://pdg.lbl.gov

3.95 ± 0.3	²¹ NARISON	06	THEO
2.8 ± 0.3	²² AUBIN	04	LATT
$4.29 \pm 0.14 \pm 0.65$	²³ AOKI	03	LATT
3.223 ± 0.3	²⁴ AOKI		LATT
$4.4 \pm 0.1 \pm 0.4$	²⁵ BECIREVIC	03	LATT
$4.1 \pm 0.3 \pm 1.0$	²⁶ CHIU	03	LATT

- ¹ ALEXANDROU 21 determines the quark mass using a lattice calculation of the meson and baryon masses with a twisted mass fermion action. The simulations are carried out using 2+1+1 dynamical quarks with $m_u = m_d \neq m_s \neq m_c$, including gauge ensembles close to the physical pion point.
- ² BRUNO 20 determines the light quark mass using a lattice calculation with $n_f=2+1$ flavors of Wilson fermions. The scale has been set from f_π and f_K . The tuning was done using the masses of the lightest (π) and strange (K) pseudoscalar mesons.
- ³ DOMINGUEZ 19 determine the quark mass from a QCD finite energy sum rule for the divergence of the axial current.
- ⁴ YUAN 17 determine \overline{m} using QCD sum rules in the isospin I=0 scalar channel. At the end of the "Numerical Results" section of YUAN 17 the authors discuss the significance of their larger value of the light quark mass compared to previous determinations.
- ⁵CARRASCO 14 is a lattice QCD computation of light quark masses using 2+1+1 dynamical quarks, with $m_u=m_d\neq m_s\neq m_c$. The u and d quark masses are obtained separately by using the K meson mass splittings and lattice results for the electromagnetic contributions.
- ⁶ ARTHUR 13 is a lattice computation using 2+1 dynamical domain wall fermions. Masses at $\mu=3$ GeV have been converted to $\mu=2$ GeV using conversion factors given in their paper.
- ⁷ DURR 11 determine quark mass from a lattice computation of the meson spectrum using $n_f=2+1$ dynamical flavors. The lattice simulations were done at the physical quark mass, so that extrapolation in the quark mass was not needed.
- ⁸ BLOSSIER 10 determines quark masses from a computation of the hadron spectrum using n_f =2 dynamical twisted-mass Wilson fermions.
- ⁹ DAVIES 10 and MCNEILE 10 determine $\overline{m}_{\mathcal{C}}(\mu)/\overline{m}_{\mathcal{S}}(\mu)=11.85\pm0.16$ using a lattice computation with $n_f=2+1$ dynamical fermions of the pseudoscalar meson masses. Mass \overline{m} is obtained from this using the value of $m_{\mathcal{C}}$ from ALLISON 08 or MCNEILE 10 and the BAZAVOV 10 values for the light quark mass ratio, $m_{\mathcal{S}}/\overline{m}$.
- 10 AOKI 11 A determine quark masses from a lattice computation of the hadron spectrum using $n_f=2+1$ dynamical flavors of domain wall fermions.
- ¹¹ DOMINGUEZ 09 use QCD finite energy sum rules for the two-point function of the divergence of the axial vector current computed to order α_s^4 .
- ¹² ALLTON 08 use a lattice computation of the π , K, and Ω masses with 2+1 dynamical flavors of domain wall quarks, and non-perturbative renormalization.
- ¹³ BLOSSIER 08 use a lattice computation of pseudoscalar meson masses and decay constants with 2 dynamical flavors and non-perturbative renormalization.
- 14 DOMINGUEZ-CLARIMON 08B obtain an inequality from sum rules for the scalar two-point correlator.
- ¹⁵ ISHIKAWA 08 use a lattice computation of the light meson spectrum with 2+1 dynamical flavors of $\mathcal{O}(a)$ improved Wilson quarks, and one-loop perturbative renormalization.
- ¹⁶ NAKAMURA 08 do a lattice computation using quenched domain wall fermions and non-perturbative renormalization.
- ¹⁷ BLUM 07 determine quark masses from the pseudoscalar meson masses using a QED plus QCD lattice computation with two dynamical quark flavors.
- 18 GOCKELER 06 use an unquenched lattice computation of the axial Ward Identity with $n_f=2$ dynamical light quark flavors, and non-perturbative renormalization, to obtain $\overline{m}(2~{\rm GeV})=4.08\pm0.25\pm0.19\pm0.23~{\rm MeV},$ where the first error is statistical, the second and third are systematic due to the fit range and force scale uncertainties, respectively. We have combined the systematic errors linearly.


- 19 GOCKELER 06A use an unquenched lattice computation of the pseudoscalar meson masses with $n_f = 2$ dynamical light quark flavors, and non-perturbative renormalization.
- 20 MASON 06 extract light quark masses from a lattice simulation using staggered fermions with an improved action, and three dynamical light quark flavors with degenerate u and d quarks. Perturbative corrections were included at NNLO order.
- ²¹ NARISON 06 uses sum rules for $e^+e^- \to hadrons$ to order α_s^3 to determine m_s combined with other determinations of the quark mass ratios.
- ²² AUBIN 04 perform three flavor dynamical lattice calculation of pseudoscalar meson masses, with one-loop perturbative renormalization constant.
- 23 AOKI 03 uses quenched lattice simulation of the meson and baryon masses with degenerate light quarks. The extrapolations are done using quenched chiral perturbation theory.
- 24 The errors given in AOKI 03B were $^{+0.046}_{-0.069}.$ We changed them to ± 0.3 for calculating the overall best values. AOKI 03B uses lattice simulation of the meson and baryon masses with two dynamical light quarks. Simulations are performed using the $\mathcal{O}(a)$ improved Wilson action.
- ²⁵ BECIREVIC 03 perform quenched lattice computation using the vector and axial Ward identities. Uses $\mathcal{O}(a)$ improved Wilson action and nonperturbative renormalization.
- ²⁶ CHIU 03 determines quark masses from the pion and kaon masses using a lattice simulation with a chiral fermion action in quenched approximation.

m_u/m_d MASS RATIO

VALUE CL%	DOCUMENT ID		TECN COMMENT	
$0.462 \pm 0.020 \text{ (CL} = 90\%) \text{ OU}$	R EVALUATION	See t	ne ideogram below.	
$0.485\ \pm0.011\ \pm0.016$	$^{ m 1}$ FODOR	16	LATT	
$0.4482^{igoplus 0.0173}_{igoplus 0.0206}$	² BASAK	15	LATT	
0.470 ± 0.056	³ CARRASCO	14	LATT	
$0.42 \pm 0.01 \pm 0.04$	⁴ BAZAVOV	10	LATT	
$0.4818 \pm 0.0096 \pm 0.0860$	⁵ BLUM	10	LATT	
• • • We do not use the following	g data for averages	s, fits,	limits, etc. • • •	
$0.698\ \pm0.051$	⁶ AOKI	12	LATT	
0.550 ± 0.031	⁷ BLUM	07	LATT	
0.43 ± 0.08	⁸ AUBIN	04A	LATT	
0.410 ± 0.036	⁹ NELSON	03	LATT	
0.553 ± 0.043	¹⁰ LEUTWYLER	96	THEO Compilation	

WEIGHTED AVERAGE 0.462±0.013 (Error scaled by 1.0)

 $^{^{1}}$ FODOR 16 is a lattice simulation with $n_{f}=2+1$ dynamical flavors and includes partially quenched QED effects.

 $^{^2}$ BASAK 15 is a lattice computation using 2+1 dynamical quark flavors.

³CARRASCO 14 is a lattice QCD computation of light quark masses using 2+1+1 dynamical quarks, with $m_u=m_d\neq m_s\neq m_c$. The u and d quark masses are obtained separately by using the K meson mass splittings and lattice results for the electromagnetic contributions.

 $^{^4\,\}text{BAZAVOV}$ 10 is a lattice computation using 2+1 dynamical quark flavors.

 $^{^{5}\,\}mathrm{BLUM}$ 10 is a lattice computation using 2+1 dynamical quark flavors.

 $^{^{}m 6}$ AOKI 12 is a lattice computation using 1+1+1 dynamical quark flavors.

⁸ AUBIN 04A perform three flavor dynamical lattice calculation of pseudoscalar meson masses, with continuum estimate of electromagnetic effects in the kaon masses.

¹⁰ LEUTWYLER 96 uses a combined fit to $\eta \to 3\pi$ and $\psi' \to J/\psi$ (π,η) decay rates, and the electromagnetic mass differences of the π and K.

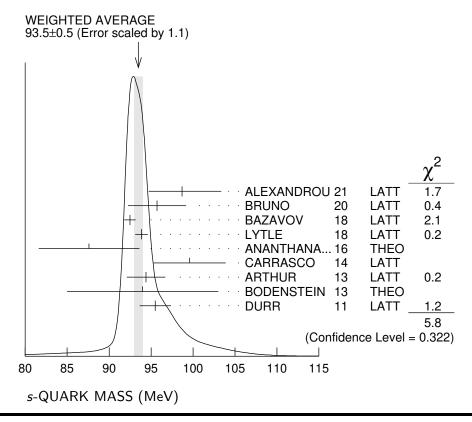
s-QUARK MASS

See the comment for the u quark above.

We have normalized the $\overline{\rm MS}$ masses at a renormalization scale of $\mu=2$ GeV. Results quoted in the literature at $\mu=1$ GeV have been rescaled by dividing by 1.35.

MS MASS (MeV) CL%	DOCUMENT ID		<u>TECN</u>
$93.5 \pm 0.8 \text{ (CL} = 90\%) \text{ OUR}$	EVALUATION S	ee th	e ideogram below.
$98.7 \pm 2.4 + 4.0 \\ - 3.2$	¹ ALEXANDRO	J21	LATT
$95.7 \pm 2.5 \pm 2.4$	² BRUNO	20	LATT
92.47 ± 0.69	³ BAZAVOV	18	LATT
93.85 ± 0.75	⁴ LYTLE	18	
87.6 ± 6.0	⁵ ANANTHANA	16	
99.6 \pm 4.3	⁶ CARRASCO		
94.4 ± 2.3	⁷ ARTHUR		LATT
94 ± 9	⁸ BODENSTEIN	13	THEO
$95.5 \pm 1.1 \pm 1.5$	⁹ DURR	11	LATT
• • • We do not use the following	-		
93.6 ± 0.8	¹⁰ CHAKRABOR	15	LATT
102 \pm 3 \pm 1	¹¹ FRITZSCH	12	
96.2 ± 2.7	¹² AOKI	11A	LATT
95 ± 6	¹³ BLOSSIER	10	LATT
$97.6 \pm 2.9 \pm 5.5$	¹⁴ BLUM	10	LATT
92.4 \pm 1.5	¹⁵ DAVIES	10	LATT
$92.2 ~\pm~ 1.3$	15 MCNEILE	10	LATT
107.3 ± 11.7	¹⁶ ALLTON	80	LATT
105 \pm 3 \pm 9	¹⁷ BLOSSIER	80	LATT
102 ± 8	¹⁸ DOMINGUEZ	A80	THEO
$90.1 \begin{array}{l} +17.2 \\ -6.1 \end{array}$	¹⁹ ISHIKAWA	80	LATT
105.6 ± 1.2	²⁰ NAKAMURA	80	LATT
119.5 ± 9.3	²¹ BLUM	07	LATT
105 \pm 6 \pm 7	²² CHETYRKIN	06	THEO
111 \pm 6 \pm 10	²³ GOCKELER	06	LATT
119 \pm 5 \pm 8	²⁴ GOCKELER	06A	LATT
92 ± 9	²⁵ JAMIN	06	THEO
87 ± 6	²⁶ MASON	06	LATT
104 ± 15	²⁷ NARISON	06	THEO
\geq 71 \pm 4, \leq 151 \pm 14	²⁸ NARISON	06	THEO

 $^{^7\,\}mathrm{BLUM}$ 07 determine quark masses from the pseudoscalar meson masses using a QED plus QCD lattice computation with two dynamical quark flavors.


⁹ NELSON 03 computes coefficients in the order p^4 chiral Lagrangian using a lattice calculation with three dynamical flavors. The ratio m_u/m_d is obtained by combining this with the chiral perturbation theory computation of the meson masses to order p^4 .

96	+ 5 - 3	$^{+16}_{-18}$	²⁹ BAIKOV	05	THEO
81	± 22		³⁰ GAMIZ	05	THEO
125	± 28		³¹ GORBUNOV	05	THEO
93	± 32		³² NARISON	05	THEO
76	± 8		³³ AUBIN	04	LATT
116	\pm 6	\pm 0.65	³⁴ AOKI	03	LATT
84.5	$+12 \\ -1.7$		³⁵ AOKI	03 B	LATT
106	± 2	± 8	³⁶ BECIREVIC	03	LATT
92	± 9	± 16	³⁷ CHIU	03	LATT
117	± 17		³⁸ GAMIZ	03	THEO
103	± 17		³⁹ GAMIZ	03	THEO

- ¹ ALEXANDROU 21 determines the quark mass using a lattice calculation of the meson and baryon masses with a twisted mass fermion action. The simulations are carried out using 2+1+1 dynamical quarks with $m_u = m_d \neq m_s \neq m_c$, including gauge ensembles close to the physical pion point.
- ² BRUNO 20 determines the light quark mass using a lattice calculation with $n_f=2+1$ flavors of Wilson fermions. The scale has been set from f_π and f_K . The tuning was done using the masses of the lightest (π) and strange (K) pseudoscalar mesons.
- ³BAZAVOV 18 determine the quark masses using a lattice computation with staggered fermions and four active quark flavors.
- ⁴ LYTLE 18 combined with CHAKRABORTY 2015 determine $\overline{m}_s(3 \text{ GeV}) = 84.78 \pm 0.65$ MeV from a lattice simulation with $n_f = 2+1+1$ flavors. They also determine the quoted value $\overline{m}_s(2 \text{ GeV})$ for $n_f = 4$ dynamical flavors.
- 5 ANANTHANARAYAN 16 determine $\overline{m}_s(2~{\rm GeV})=106.70\pm9.36$ MeV and 74.47 ± 7.77 MeV from fits to ALEPH and OPAL τ decay data, respectively. We have used the weighted average of the two.
- ⁶ CARRASCO 14 is a lattice QCD computation of light quark masses using 2+1+1 dynamical quarks, with $m_u=m_d \neq m_s \neq m_c$. The u and d quark masses are obtained separately by using the K meson mass splittings and lattice results for the electromagnetic contributions.
- ⁷ ARTHUR 13 is a lattice computation using 2+1 dynamical domain wall fermions. Masses at $\mu=3$ GeV have been converted to $\mu=2$ GeV using conversion factors given in their paper.
- $^8\, {\rm BODENSTEIN}\, 13$ determines $m_{\rm S}$ from QCD finite energy sum rules, and the perturbative computation of the pseudoscalar correlator to five-loop order.
- ⁹ DURR 11 determine quark mass from a lattice computation of the meson spectrum using $n_f=2+1$ dynamical flavors. The lattice simulations were done at the physical quark mass, so that extrapolation in the quark mass was not needed.
- 10 CHAKRABORTY 15 is a lattice QCD computation that determines m_{c} and m_{c}/m_{s} using pseudoscalar mesons masses tuned on gluon field configurations with 2+1+1 dynamical flavors of HISQ quarks with u/d masses down to the physical value.
- 11 FRITZSCH 12 determine $m_{_{m{S}}}$ using a lattice computation with $n_{f}=2$ dynamical flavors.
- 12 AOKI 11 A determine quark masses from a lattice computation of the hadron spectrum using $n_f=2+1$ dynamical flavors of domain wall fermions.
- 13 BLOSSIER 10 determines quark masses from a computation of the hadron spectrum using n_f =2 dynamical twisted-mass Wilson fermions.
- ¹⁴ BLUM 10 determines light quark masses using a QCD plus QED lattice computation of the electromagnetic mass splittings of the low-lying hadrons. The lattice simulations use 2+1 dynamical quark flavors.
- 15 DAVIES 10 and MCNEILE 10 determine $\overline{m}_{\mathcal{C}}(\mu)/\overline{m}_{\mathcal{S}}(\mu)=11.85\pm0.16$ using a lattice computation with $n_f=2+1$ dynamical fermions of the pseudoscalar meson masses. Mass $m_{\mathcal{S}}$ is obtained from this using the value of $m_{\mathcal{C}}$ from ALLISON 08 or MCNEILE 10.

- 16 ALLTON 08 use a lattice computation of the π , K, and Ω masses with 2+1 dynamical flavors of domain wall quarks, and non-perturbative renormalization.
- $^{
 m 17}$ BLOSSIER 08 use a lattice computation of pseudoscalar meson masses and decay constants with 2 dynamical flavors and non-perturbative renormalization.
- $^{
 m 18}\,{\sf DOMINGUEZ}$ 08A make determination from QCD finite energy sum rules for the pseudoscalar two-point function computed to order α_{\circ}^{4} .
- 19 ISHIKAWA 08 use a lattice computation of the light meson spectrum with $2\!+\!1$ dynamical flavors of $\mathcal{O}(a)$ improved Wilson quarks, and one-loop perturbative renormalization.
- $^{
 m 20}\,{
 m NAKAMURA}$ 08 do a lattice computation using quenched domain wall fermions and non-perturbative renormalization.
- $^{21}\,\mathrm{BLUM}$ 07 determine quark masses from the pseudoscalar meson masses using a QED plus QCD lattice computation with two dynamical quark flavors.
- ²² CHETYRKIN 06 use QCD sum rules in the pseudoscalar channel to order α_s^4 .
- 23 GOCKELER 06 use an unquenched lattice computation of the axial Ward Identity with $n_f=2$ dynamical light quark flavors, and non-perturbative renormalization, to obtain $\overline{m}_{\rm S}(2~{\rm GeV})=111\pm 6\pm 4\pm 6~{\rm MeV}$, where the first error is statistical, the second and third are systematic due to the fit range and force scale uncertainties, respectively. We have combined the systematic errors linearly.
- $^{24}\,\mathsf{GOCKELER}$ 06A use an unquenched lattice computation of the pseudoscalar meson masses with $n_f = 2$ dynamical light quark flavors, and non-perturbative renormalization.
- 25 JAMIN 06 determine \overline{m}_{s} (2 GeV) from the spectral function for the scalar $K\pi$ form
- 26 MASON 06 extract light quark masses from a lattice simulation using staggered fermions with an improved action, and three dynamical light quark flavors with degenerate u and d quarks. Perturbative corrections were included at NNLO order.
- ²⁷ NARISON 06 uses sum rules for $e^+e^-
 ightarrow$ hadrons to order $lpha_s^3$.
- 28 NARISON 06 obtains the quoted range from positivity of the spectral functions. 29 BAIKOV 05 determines $\overline{m}_{\rm S}(M_{\tau})=100^{+5}_{-3}^{+5}^{+17}_{-19}$ from sum rules using the strange spectral function in τ decay. The computations were done to order α_s^3 , with an estimate of the $\alpha_{_{\boldsymbol{S}}}^{\boldsymbol{4}}$ terms. We have converted the result to $\mu=$ 2 GeV.
- $^{30}\,\mathrm{GAMIZ}$ 05 determines $\overline{m}_{\mathrm{S}}(\mathrm{2~GeV})$ from sum rules using the strange spectral function in τ decay. The computations were done to order α_s^2 , with an estimate of the α_s^3 terms.
- $^{
 m 31}$ GORBUNOV 05 use hadronic tau decays to N3LO, including power corrections.
- 32 NARISON 05 determines $\overline{m}_{
 m S}$ (2 GeV) from sum rules using the strange spectral function in τ decay. The computations were done to order α_s^3 .
- 33 AUBIN 04 perform three flavor dynamical lattice calculation of pseudoscalar meson masses, with one-loop perturbative renormalization constant.
- $^{34}\,\mathrm{AOKI}$ 03 uses quenched lattice simulation of the meson and baryon masses with degenerate light quarks. The extrapolations are done using quenched chiral perturbation theory. Determines ${\rm m}_s$ =113.8 \pm 2.3 $^{+5.8}_{-2.9}$ using ${\it K}$ mass as input and ${\rm m}_s$ =142.3 \pm 5.8 $^{+22}_{-0}$ using ϕ mass as input. We have performed a weighted average of these values.
- $^{
 m 35}\,{\rm AOKI}$ 03B uses lattice simulation of the meson and baryon masses with two dynamical light quarks. Simulations are performed using the $\mathcal{O}(a)$ improved Wilson action.
- $^{
 m 36}$ BECIREVIC 03 perform quenched lattice computation using the vector and axial Ward identities. Uses $\mathcal{O}(a)$ improved Wilson action and nonperturbative renormalization. They also quote $\overline{m}/m_s = 24.3 \pm 0.2 \pm 0.6$.
- ³⁷CHIU 03 determines quark masses from the pion and kaon masses using a lattice simulation with a chiral fermion action in quenched approximation.
- 38 GAMIZ 03 determines m_{s} from SU(3) breaking in the au hadronic width. The value of $V_{\mu s}$ is chosen to satisfy ČKM unitarity.

 39 GAMIZ 03 determines m_s from SU(3) breaking in the τ hadronic width. The value of V_{US} is taken from the PDG.

OTHER LIGHT QUARK MASS RATIOS

m_s/m_d MASS RATIO

VALUE	DOCUMENT ID		TECN	COMMENT
17-22 OUR EVALUATION				
20.0	J	٠.	THEO	
18.9 ± 0.8	² LEUTWYLER	96	THEO	Compilation
21	³ DONOGHUE	92	THEO	
18	⁴ GERARD	90	THEO	
18 to 23	⁵ LEUTWYLER	90 B	THEO	

¹ GAO 97 uses electromagnetic mass splittings of light mesons.

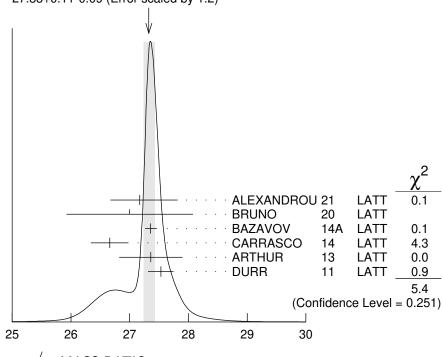
²LEUTWYLER 96 uses a combined fit to $\eta \to 3\pi$ and $\psi' \to J/\psi$ (π,η) decay rates, and the electromagnetic mass differences of the π and K.

³ DONOGHUE 92 result is from a combined analysis of meson masses, $\eta \to 3\pi$ using second-order chiral perturbation theory including nonanalytic terms, and $(\psi(2S) \to J/\psi(1S)\pi)/(\psi(2S) \to J/\psi(1S)\eta)$.

 $^{^4}$ GERARD 90 uses large N and η - η' mixing.

 $^{^5}$ LEUTWYLER 90B determines quark mass ratios using second-order chiral perturbation theory for the meson and baryon masses, including nonanalytic corrections. Also uses Weinberg sum rules to determine L_7 .

m_s/\overline{m} MASS RATIO


$$\overline{m} \equiv (m_u + m_d)/2$$
 $CL\%$ DOCUMENT ID TECN

$27.33^{+0.18}_{-0.14}$ (CL = 90%) OUR EVALUATION See the ideogram below.

$27.17 \pm 0.32 ^{+0.56}_{-0.38}$	¹ ALEXANDROU	LATT	
$27.0 \pm 1.0 \pm 0.4$	² BRUNO	20	LATT
$27.35 \pm 0.05 ^{+0.10}_{-0.07}$	³ BAZAVOV	14A	LATT
26.66 ± 0.32	⁴ CARRASCO		
27.36 ± 0.54	⁵ ARTHUR	13	LATT
$27.53 \pm 0.20 \pm 0.08$	⁶ DURR	11	LATT
• • • We do not use the following	data for averages	. fits.	limits, etc.

26.8	± 1.4	⁷ AOKI	11A	LATT
27.3	± 0.9	⁸ BLOSSIER	10	LATT
28.8	± 1.65	⁹ ALLTON	80	LATT
27.3	± 0.3 ± 1.2	¹⁰ BLOSSIER	80	LATT
23.5	± 1.5	¹¹ OLLER	07A	THEO
27.4	± 0.4	¹² AUBIN	04	LATT

WEIGHTED AVERAGE 27.33+0.11-0.09 (Error scaled by 1.2)

 m_s/\overline{m} MASS RATIO

 $^{^{}m 1}$ ALEXANDROU 21 determines the quark mass using a lattice calculation of the meson and baryon masses with a twisted mass fermion action. The simulations are carried out using 2+1+1 dynamical quarks with $m_u=m_d \neq m_s \neq m_c$, including gauge ensembles close to the physical pion point.

 $^{^2}$ BRUNO 20 determines the light quark mass using a lattice calculation with $n_f=2\!+\!1$ flavors of Wilson fermions. The scale has been set from f_{π} and f_{K} . The tuning was done using the masses of the lightest (π) and strange (K) pseudoscalar mesons.

Q MASS RATIO

$$Q \equiv \sqrt{(m_s^2 - \overline{m}^2)/(m_d^2 - m_u^2)}; \quad \overline{m} \equiv (m_u + m_d)/2$$

$$\underline{m} \equiv (m_u + m_d)/2$$

$$\underline{m} \equiv (m_u + m_d)/2$$

$$\underline{m} \equiv (m_u + m_d)/2$$

• • We do not use the following data for averages, fits, limits, etc. • •

	0		•
22.1 ± 0.7	¹ COLANGELO		
22.0 ± 0.7	² COLANGELO		
21.6 ± 1.1	³ GUO		
$23.4 \pm 0.4 \pm 0.5$	⁴ FODOR		
21.4 ± 0.4	⁵ GUO		
22.8 ± 0.4	⁶ MARTEMYA		
22.7 ± 0.8	⁷ ANISOVICH	96	THEO

¹COLANGELO 18 obtain Q from a dispersive analysis of $\eta \to 3\pi$ decay.

 $^{^3}$ BAZAVOV 14A is a lattice computation using 4 dynamical flavors of HISQ fermions.

 $^{^4}$ CARRASCO 14 is a lattice QCD computation of light quark masses using $2\,+\,1\,+\,1$ dynamical quarks, with $m_u=m_d \neq m_s \neq m_c$. The u and d quark masses are obtained separately by using the K meson mass splittings and lattice results for the electromagnetic contributions.

 $^{^{5}}$ ARTHUR 13 is a lattice computation using 2+1 dynamical domain wall fermions.

 $^{^{}m 6}$ DURR 11 determine quark mass from a lattice computation of the meson spectrum using $n_f = 2 + 1$ dynamical flavors. The lattice simulations were done at the physical quark mass, so that extrapolation in the quark mass was not needed.

 $^{^7\}mathrm{AOKI}$ 11A determine quark masses from a lattice computation of the hadron spectrum using $n_f = 2 + 1$ dynamical flavors of domain wall fermions.

 $^{^{8}\,\}mathrm{BLOSSIER}$ 10 determines quark masses from a computation of the hadron spectrum using $n_f=2$ dynamical twisted-mass Wilson fermions.

 $^{^9}$ ALLTON 08 use a lattice computation of the $\pi,~K,$ and Ω masses with 2+1 dynamical flavors of domain wall quarks, and non-perturbative renormalization.

 $^{^{}m 10}\,{\sf BLOSSIER}$ 08 use a lattice computation of pseudoscalar meson masses and decay constants with 2 dynamical flavors and non-perturbative renormalization.

¹¹OLLER 07A use unitarized chiral perturbation theory to order p^4 .

¹² Three flavor dynamical lattice calculation of pseudoscalar meson masses.

 $^{^2}$ COLANGELO 17 obtain Q from a dispersive analysis of KLOE collaboration data on $\eta \to \pi^+\pi^-\pi^0$ decays and chiral perturbation theory input.

 $^{^3}$ GUO 17 determine Q from a dispersive model fit to KLOE and WASA-at-COSY data on $\eta \to \pi^+ \pi^- \pi^0$ decay and matching to chiral perturbation theory.

⁴ FODOR 16 is a lattice simulation with $n_f = 2 + 1$ dynamical flavors and includes partially quenched QED effects.

 $^{^{5}}$ GUO 15F determine \it{Q} from a Khuri-Treiman analysis of $\eta
ightarrow 3\pi$ decays.

 $^{^6}$ MARTEMYANOV 05 determine Q from $\eta\to 3\pi$ decay. 7 ANISOVICH 96 find Q from $\eta\to \pi^+\pi^-\pi^0$ decay using dispersion relations and chiral perturbation theory.

LIGHT QUARKS (u, d, s) REFERENCES

ALEXANDROU 21 BRUNO 20 DOMINGUEZ 19 BAZAVOV 18	PR D104 074515 EPJ C80 169 JHEP 1902 057 PR D98 054517	C. Alexandrou et al. (ETM Collab.) M. Bruno et al. (ALPHA Collab.) C.A. Dominguez, A. Mes, K. Schilcher (CAPE, MAINZ) A. Bazavov et al. (Fermilab Lattice, MILC, TUMQCD)
COLANGELO 18 LYTLE 18 COLANGELO 17 GUO 17 YUAN 17	EPJ C78 947 PR D98 014513 PRL 118 022001 PL B771 497 PR D96 014034	G. Colangelo et al. A.T. Lytle et al. G. Colangelo et al. P. Guo et al. JM. Yuan et al. (HPQCD Collab.) (BERN, IND, JLAB)
ANANTHANA16 FODOR 16 BASAK 15 CHAKRABOR15 GUO 15F	PR D94 116014 PRL 117 082001 JPCS 640 012052 PR D91 054508 PR D92 054016	B. Ananthanarayan, D. Das (BANG, AHMED) Z. Fodor et al. (BMW Collab.) S. Basak et al. (MILC Collab.) B. Chakraborty et al. (HPQCD Collab.) P. Guo et al.
BAZAVOV 14A CARRASCO 14 ARTHUR 13 BODENSTEIN 13	PR D90 074509 NP B887 19 PR D87 094514 JHEP 1307 138	A. Bazavov et al. N. Carrasco et al. R. Arthur et al. S. Bodenstein, C.A. Dominguez, K. Schilcher
AOKI 12 FRITZSCH 12 AOKI 11A DURR 11 BAZAVOV 10	PR D86 034507 NP B865 397 PR D83 074508 PL B701 265 RMP 82 1349	S. Aoki et al. P. Fritzsch et al. Y. Aoki et al. S. Durr et al. A. Bazavov et al. (PACS-CS Collab.) (ALPHA Collab.) (RBC-UKQCD Collab.) (BMW Collab.) (MILC Collab.)
BLOSSIER 10 BLUM 10 DAVIES 10 MCNEILE 10 DOMINGUEZ 09	PR D82 114513 PR D82 094508 PRL 104 132003 PR D82 034512 PR D79 014009	B. Blossier et al. T. Blum et al. C.T.H. Davies et al. C. McNeile et al. C.A. Dominguez et al. (ETM Collab.) (HPQCD Collab.)
ALLISON 08 ALLTON 08 BLOSSIER 08 DEANDREA 08 DOMINGUEZ 08A	PR D78 054513 PR D78 114509 JHEP 0804 020 PR D78 034032 JHEP 0805 020	I. Allison et al. C. Allton et al. B. Blossier et al. A. Deandrea, A. Nehme, P. Talavera C.A. Dominguez et al. (HPQCD Collabs.) (ETM Collab.)
DOMINGUEZ 08B ISHIKAWA 08 NAKAMURA 08 BLUM 07	PL B660 49 PR D78 011502 PR D78 034502 PR D76 114508	A. Dominguez-Clarimon, E. de Rafael, J. Taron T. Ishikawa et al. (CP-PACS and JLQCD Collabs.) Y. Nakamura et al. (CP-PACS Collab.) T. Blum et al. (RBC Collab.)
OLLER 07A CHETYRKIN 06 GOCKELER 06 GOCKELER 06A JAMIN 06	EPJ A34 371 EPJ C46 721 PR D73 054508 PL B639 307 PR D74 074009	J.A. Oller, L. Roca K.G. Chetyrkin, A. Khodjamirian M. Gockeler <i>et al.</i> (QCDSF and UKQCD Collabs) M. Gockeler <i>et al.</i> (QCDSF and UKQCD Collabs) M. Jamin, J.A. Oller, A. Pich
MASON 06 NARISON 06 PDG 06 BAIKOV 05	PR D73 114501 PR D74 034013 JP G33 1 PRL 95 012003	Q. Mason et al. (HPQCD Collab.) S. Narison WM. Yao et al. (PDG Collab.) P.A. Baikov, K.G. Chetyrkin, J.H. Kuhn
GAMIZ 05 GORBUNOV 05 MARTEMYA 05 NARISON 05	PRL 94 011803 PR D71 013002 PR D71 017501 PL B626 101	E. Gamiz <i>et al.</i> D.S. Gorbunov, A.A. Pivovarov B.V. Martemyanov, V.S. Sopov S. Narison C. Aubin <i>et al.</i> (HPQCD, MILC, UKQCD Collabs.)
AUBIN 04 AUBIN 04A AOKI 03 AOKI 03B BECIREVIC 03	PR D70 031504 PR D70 114501 PR D67 034503 PR D68 054502 PL B558 69	C. Aubin et al. S. Aoki et al. S. Aoki et al. D. Becirevic, V. Lubicz, C. Tarantino (MILC Collab.) (CP-PACS Collab.) (CP-PACS Collab.)
CHIU 03 GAMIZ 03 NELSON 03 GAO 97 ANISOVICH 96	NP B673 217 JHEP 0301 060 PRL 90 021601 PR D56 4115 PL B375 335	TW. Chiu, TH. Hsieh E. Gamiz <i>et al.</i> D. Nelson, G.T. Fleming, G.W. Kilcup DN. Gao, B.A. Li, ML. Yan A.V. Anisovich, H. Leutwyler
LEUTWYLER 96 DONOGHUE 92 GERARD 90 LEUTWYLER 90B	PL B378 313 PRL 69 3444 MPL A5 391 NP B337 108	H. Leutwyler J.F. Donoghue, B.R. Holstein, D. Wyler J.M. Gerard H. Leutwyler (MASA+) (MPIM) (BERN)