Extra Dimensions

For explanation of terms used and discussion of significant model dependence of following limits, see the "Extra Dimensions" review. Footnotes describe originally quoted limit. δ indicates the number of extra dimensions.

Limits not encoded here are summarized in the "Extra Dimensions" review, where the latest unpublished results are also described.

See the related review(s):

Extra Dimensions

CONTENTS:

Limits on R from Deviations in Gravitational Force Law

Limits on R from On-Shell Production of Gravitons: $\delta = 2$

Mass Limits on M_{TT}

Limits on $1/R = \dot{M}_C$

Limits on Kaluza-Klein Gravitons in Warped Extra Dimensions

Limits on Kaluza-Klein Gluons in Warped Extra Dimensions

Black Hole Production Limits

- Semiclassical Black Holes
- Quantum Black Holes

Limits on R from Deviations in Gravitational Force Law

This section includes limits on the size of extra dimensions from deviations in the Newtonian $(1/r^2)$ gravitational force law at short distances. Deviations are parametrized by a gravitational potential of the form $V = -(G \ m \ m'/r) \ [1 + \alpha \ \exp(-r/R)]$. For δ toroidal extra dimensions of equal size, $\alpha = 8\delta/3$. Quoted bounds are for $\delta = 2$ unless otherwise noted.

$VALUE~(\mu m)$	CL%	DOCUMENT ID		TECN	COMMENT
• • • We do not use the	e followir	ng data for averages	s, fits,	limits,	etc. • • •
< 37	95	1 BLAKEMORE 2 HEACOCK 3 LEE 4 TAN 5 BERGE 6 FAYET 7 KLIMCHITSK.	21 20 20A 18	MICR MICR	Optical levitation Neutron scattering Torsion pendulum Torsion pendulum Space accelerometer Space accelerometer Torsion oscillator
< 37 < 47	95 95	8 XU 9 BEZERRA 10 SUSHKOV 11 BEZERRA 12 MASUDA 13 GERACI 14 TRENKEL 15 DECCA 16 KAPNER 17 TU	13 11 11 10 09 08 08 07A 07		Nuclei properties Torsion oscillator Torsion pendulum Microcantilever Torsion pendulum Microcantilever Newton's constant Torsion oscillator Torsion pendulum Torsion pendulum
https://pdg.lbl.gov		Page 1		Creat	ted: 5/30/2025 07:50

Created: 5/30/2025 07:50 nttps://pag.ibi.gov

		¹⁸ SMULLIN	05	Microcantilever
<130	95	¹⁹ HOYLE	04	Torsion pendulum
		²⁰ CHIAVERINI	03	Microcantilever
\lesssim 200	95	²¹ LONG	03	Microcantilever
<190	95	²² HOYLE	01	Torsion pendulum
		²³ HOSKINS	85	Torsion pendulum

 $^{^1}$ BLAKEMORE 21 obtain constraints on non-Newtonian forces with strengths $|\alpha|\gtrsim 10^8$ and length scales $R>10~\mu \mathrm{m}$. See their Fig. 4 for more details including comparison with previous searches.

 2 HEACOCK 21 obtain constraints on non-Newtonian forces with strengths $10^{18}\lesssim |\alpha|\lesssim 10^{25}$ and length scales $R\simeq 0.02$ –10 nm. See their Figure 3 for more details. This improves the results of HADDOCK 18. These constraints do not place limits on the size of extra flat dimensions.

³ LEE 20 search for new forces probing a range of $|\alpha| \simeq 0.1$ – 10^5 and length scales $R \simeq 7$ – $90~\mu m$. For $\delta = 1$ the bound on R is 30 μm . See their Fig. 5 for details on the bound

⁴ TAN 20A search for new forces probing a range of $|\alpha| \simeq 4 \times 10^{-3} - 1 \times 10^2$ and length scales $R \simeq 40$ –350 μ m. See their Fig. 6 for details on the bound.

 5 BERGE 18 uses results from the MICROSCOPE experiment to obtain constraints on non-Newtonian forces with strengths $10^{-11}\lesssim |\alpha|\lesssim 10^{-7}$ and length scales $R\gtrsim 10^5$ m. See their Figure 1 for more details. These constraints do not place limits on the size of extra flat dimensions.

⁶ FAYET 18A uses results from the MICROSCOPE experiment to obtain constraints on an EP-violating force possibly arising from a new U(1) gauge boson. For $R \gtrsim 10^7$ m the limits are $|\alpha| \lesssim$ a few 10^{-13} to a few 10^{-11} depending on the coupling, corresponding to $|\epsilon| \lesssim 10^{-24}$ for the coupling of the new spin-1 or spin-0 mediator. These constraints do not place limits on the size of extra flat dimensions. This extends the results of FAYET 18.

 7 KLIMCHITSKAYA 17A uses an experiment that measures the difference of Casimir forces to obtain bounds on non-Newtonian forces with strengths $|\alpha| \simeq 10^5 - 10^{17}$ and length scales $R=0.03-10~\mu \mathrm{m}$. See their Fig. 3. These constraints do not place limits on the size of extra flat dimensions.

⁸ XU 13 obtain constraints on non-Newtonian forces with strengths $|\alpha| \simeq 10^{34}$ – 10^{36} and length scales $R \simeq 1$ –10 fm. See their Fig. 4 for more details. These constraints do not place limits on the size of extra flat dimensions.

 9 BEZERRA 11 obtain constraints on non-Newtonian forces with strengths $10^{11}\lesssim |\alpha|\lesssim 10^{18}$ and length scales R=30–1260 nm. See their Fig. 2 for more details. These constraints do not place limits on the size of extra flat dimensions.

 $^{10}\, {\rm SUSHKOV}$ 11 obtain improved limits on non-Newtonian forces with strengths $10^7 \lesssim |\alpha| \lesssim 10^{11}$ and length scales 0.4 $\mu{\rm m} < R <$ 4 $\mu{\rm m}$ (95% CL). See their Fig. 2. These bounds do not place limits on the size of extra flat dimensions. However, a model dependent bound of $M_* >$ 70 TeV is obtained assuming gauge bosons that couple to baryon number also propagate in (4 + δ) dimensions.

 11 BEZERRA 10 obtain improved constraints on non-Newtonian forces with strengths $10^{19}\lesssim |\alpha|\lesssim 10^{29}$ and length scales R=1.6–14 nm (95% CL). See their Fig. 1. This bound does not place limits on the size of extra flat dimensions.

 12 MASUDA 09 obtain improved constraints on non-Newtonian forces with strengths $10^9 \lesssim |\alpha| \lesssim 10^{11}$ and length scales R= 1.0–2.9 μm (95% CL). See their Fig. 3. This bound does not place limits on the size of extra flat dimensions.

 13 GERACI 08 obtain improved constraints on non-Newtonian forces with strengths $|\alpha|>$ 14,000 and length scales R= 5–15 $\mu\mathrm{m}.$ See their Fig. 9. This bound does not place limits on the size of extra flat dimensions.

- 14 TRENKEL 08 uses two independent measurements of Newton's constant $\it G$ to constrain new forces with strength $|\alpha| \simeq 10^{-4}$ and length scales $\it R = 0.02-1$ m. See their Fig. 1. This bound does not place limits on the size of extra flat dimensions.
- 15 DECCA 07A search for new forces and obtain bounds in the region with strengths $|\alpha| \simeq 10^{13} 10^{18}$ and length scales R= 20–86 nm. See their Fig. 6. This bound does not place limits on the size of extra flat dimensions.
- 16 KAPNER 07 search for new forces, probing a range of $|\alpha| \simeq 10^{-3} \text{--}10^5$ and length scales $R \simeq 10\text{--}1000~\mu\text{m}$. For $\delta = 1$ the bound on R is 44 μm . For $\delta = 2$, the bound is expressed in terms of M_* , here translated to a bound on the radius. See their Fig. 6 for details on the bound.
- 17 TU 07 search for new forces probing a range of $|\alpha| \simeq 10^{-1}$ – 10^5 and length scales $R \simeq 20$ – $1000~\mu m$. For $\delta = 1$ the bound on R is 53 μm . See their Fig. 3 for details on the bound.
- 18 SMULLIN 05 search for new forces, and obtain bounds in the region with strengths $\alpha \simeq 10^3 10^8$ and length scales $R = 6 20~\mu m$. See their Figs. 1 and 16 for details on the bound. This work does not place limits on the size of extra flat dimensions.
- ²⁰ CHIAVERINI 03 search for new forces, probing α above 10^4 and λ down to 3μ m, finding no signal. See their Fig. 4 for details on the bound. This bound does not place limits on the size of extra flat dimensions.
- 21 LONG 03 search for new forces, probing α down to 3, and distances down to about $10\mu m$. See their Fig. 4 for details on the bound.
- ²² HOYLE 01 search for new forces, probing α down to 10^{-2} and distances down to $20\mu m$. See their Fig. 4 for details on the bound. The quoted bound is for $\alpha \geq 3$.
- ²³ HOSKINS 85 search for new forces, probing distances down to 4 mm. See their Fig. 13 for details on the bound. This bound does not place limits on the size of extra flat dimensions.

Limits on R from On-Shell Production of Gravitons: $\delta = 2$

This section includes limits on on-shell production of gravitons in collider and astrophysical processes. Bounds quoted are on R, the assumed common radius of the flat extra dimensions, for $\delta=2$ extra dimensions. Studies often quote bounds in terms of derived parameter; experiments are actually sensitive to the masses of the KK gravitons: $m_{\vec{n}}=|\vec{n}|/R$. See the Review on "Extra Dimensions" for details. Bounds are given in μm for $\delta=2$.

VALU	/Ε (μm)	CL%	DOCUMENT ID		TECN	COMMENT
<	3.8	95	¹ AAD	21F	ATLS	$pp \rightarrow jG$
<	0.00016	95	² HANNESTAD	03		Neutron star heating
• •	 We do not use the 	following	data for averages	, fits,	limits, e	tc. • • •
<	56	95	³ SIRUNYAN	21A	CMS	$pp \rightarrow ZG$
<	4.1	95		21 D	CMS	$pp \rightarrow jG$
			⁵ SIRUNYAN	17AQ	CMS	$pp \rightarrow \gamma G$
<	90	95				$pp \rightarrow \gamma G$
			⁷ KHACHATRY	.16N	CMS	$pp \rightarrow \gamma G$
			⁸ AAD	15 CS	ATLS	$pp \rightarrow \gamma G$
< 1	127		⁹ AAD	13 C	ATLS	$pp \rightarrow \gamma G$
<	34.4		LO AAD	13 D	ATLS	$pp \rightarrow jj$
<	0.0087		^{l1} AJELLO	12	FLAT	Neutron star γ sources
< 2	245		^{L2} AALTONEN	08 AC	CDF	$p\overline{p} ightarrow \ \gamma G$, jG
< 6	515		^{l3} ABAZOV	08 S	D0	$p\overline{p} o \gamma G$
<	0.916	95 1	^{L4} DAS	80		Supernova cooling

https://pdg.lbl.gov

Page 3

< 350	95	¹⁵ ABULENCIA,A 06	CDF	$p\overline{p} o jG$
< 270	95	¹⁶ ABDALLAH 05B	DLPH	$e^+e^- ightarrow \gamma G$
< 210	95	¹⁷ ACHARD 04E	L3	$e^+e^- ightarrow \gamma G$
< 480	95	¹⁸ ACOSTA 04C	CDF	$\overline{p}p \rightarrow jG$
< 0.00038	95	¹⁹ CASSE 04		Neutron star γ sources
< 610	95	²⁰ ABAZOV 03	D0	$\overline{p}p \rightarrow jG$
< 0.96	95	²¹ HANNESTAD 03		Supernova cooling
< 0.096	95	²² HANNESTAD 03		Diffuse γ background
< 0.051	95	²³ HANNESTAD 03		Neutron star γ sources
< 300	95	²⁴ HEISTER 03C	ALEP	$e^+e^- ightarrow \gamma G$
		²⁵ FAIRBAIRN 01		Cosmology
< 0.66	95	²⁶ HANHART 01		Supernova cooling
		²⁷ CASSISI 00		Red giants
<1300	95	²⁸ ACCIARRI 99s	L3	$e^+e^- ightarrow ZG$

- 1 AAD 21F search for $p\,p o j\,G$, using 139 fb $^{-1}$ of data at $\sqrt{s}=13$ TeV to place lower limits on M_D for two to six extra dimensions (see their Table X), from which this bound on R is derived. This limit supersedes that in AABOUD 18I.
- 2 HANNESTAD 03 obtain a limit on R from the heating of old neutron stars by the surrounding cloud of trapped KK gravitons. Limits for all $\delta \leq 7$ are given in their Tables V and VI. These limits supersede those in HANNESTAD 02.
- ³ SIRUNYAN 21A search for $pp \to ZG$, using 137 fb⁻¹ of data at $\sqrt{s}=13$ TeV to place lower limits on M_D for two to seven extra dimensions (see their Figure 12), from which this bound on R is derived. These limits supersede those obtained in SIRUNYAN 18BV.
- ⁴ TUMASYAN 21D search for $pp \to jG$, using 137 fb⁻¹ of data at $\sqrt{s}=13$ TeV to place lower limits on M_D for two to seven extra dimensions (see their Table 3), from which this bound on R is derived. This limit supersedes that in SIRUNYAN 18S.
- 5 SIRUNYAN 17AQ search for $pp\to \gamma\, G$, using 12.9 fb $^{-1}$ of data at $\sqrt{s}=$ 13 TeV to place limits on M_D for three to six extra dimensions (see their Table 3).
- ⁶ AABOUD 16F search for $pp \to \gamma G$, using 3.2 fb⁻¹ of data at $\sqrt{s}=13$ TeV to place limits on M_D for two to six extra dimensions (see their Figure 9), from which this bound on R is derived.
- ⁷ KHACHATRYAN 16N search for $pp \to \gamma G$, using 19.6 fb⁻¹ of data at $\sqrt{s} = 8$ TeV to place limits on M_D for three to six extra dimensions (see their Table 5).
- ⁸ AAD 15CS search for $p\,p \to \gamma\,G$, using 20.3 fb⁻¹ of data at $\sqrt{s}=8$ TeV to place lower limits on M_D for two to six extra dimensions (see their Fig. 18).
- ⁹ AAD 13C search for $pp \to \gamma G$, using 4.6 fb⁻¹ of data at $\sqrt{s}=7$ TeV to place bounds on M_D for two to six extra dimensions, from which this bound on R is derived.
- 10 AAD 13D search for the dijet decay of quantum black holes in 4.8 fb $^{-1}$ of data produced in pp collisions at $\sqrt{s}=7$ TeV to place bounds on M_D for two to seven extra dimensions, from which these bounds on R are derived. Limits on M_D for all $\delta \leq 7$ are given in their Table 3
- ¹¹ AJELLO 12 obtain a limit on R from the gamma-ray emission of point γ sources that arise from the photon decay of KK gravitons which are gravitationally bound around neutron stars. Limits for all $\delta \leq 7$ are given in their Table 7.
- 12 AALTONEN 08AC search for $p\overline{p}\to \gamma\,G$ and $p\overline{p}\to j\,G$ at $\sqrt{s}=1.96$ TeV with 2.0 fb $^{-1}$ and 1.1 fb $^{-1}$ respectively, in order to place bounds on the fundamental scale and size of the extra dimensions. See their Table III for limits on all $\delta\leq 6$.
- ¹³ ABAZOV 08S search for $p\overline{p} \to \gamma G$, using 1 fb⁻¹ of data at $\sqrt{s} = 1.96$ TeV to place bounds on M_D for two to eight extra dimensions, from which these bounds on R are derived. See their paper for intermediate values of δ .
- $^{14}\,\mathrm{DAS}$ 08 obtain a limit on R from Kaluza-Klein graviton cooling of SN1987A due to plasmon-plasmon annihilation.
- ¹⁵ ABULENCIA,A 06 search for $p\overline{p} \to jG$ using 368 pb⁻¹ of data at $\sqrt{s} = 1.96$ TeV. See their Table II for bounds for all $\delta < 6$.

- 16 ABDALLAH 05B search for $e^+e^- o \gamma G$ at $\sqrt{s}=180$ –209 GeV to place bounds on the size of extra dimensions and the fundamental scale. Limits for all $\delta \leq 6$ are given in their Table 6. These limits supersede those in ABREU 00Z.
- ¹⁷ ACHARD 04E search for $e^+e^- \to \gamma G$ at $\sqrt{s}=189$ –209 GeV to place bounds on the size of extra dimensions and the fundamental scale. See their Table 8 for limits with $\delta \leq 8$. These limits supersede those in ACCIARRI 99R.
- 18 ACOSTA 04C search for $\overline{p}p \rightarrow jG$ at $\sqrt{s}=1.8$ TeV to place bounds on the size of extra dimensions and the fundamental scale. See their paper for bounds on $\delta=4,6$.
- ¹⁹ CASSE 04 obtain a limit on R from the gamma-ray emission of point γ sources that arises from the photon decay of gravitons around newly born neutron stars, applying the technique of HANNESTAD 03 to neutron stars in the galactic bulge. Limits for all $\delta \leq 7$ are given in their Table I.
- ²⁰ ABAZOV 03 search for $p\overline{p} \to j\,G$ at $\sqrt{s}{=}1.8$ TeV to place bounds on M_D for 2 to 7 extra dimensions, from which these bounds on R are derived. See their paper for bounds on intermediate values of δ . We quote results without the approximate NLO scaling introduced in the paper.
- ²¹ HANNESTAD 03 obtain a limit on R from graviton cooling of supernova SN1987a. Limits for all $\delta \leq 7$ are given in their Tables V and VI.
- ²² HANNESTAD 03 obtain a limit on R from gravitons emitted in supernovae and which subsequently decay, contaminating the diffuse cosmic γ background. Limits for all $\delta \leq 7$ are given in their Tables V and VI. These limits supersede those in HANNESTAD 02.
- ²³ HANNESTAD 03 obtain a limit on R from gravitons emitted in two recent supernovae and which subsequently decay, creating point γ sources. Limits for all $\delta \leq 7$ are given in their Tables V and VI. These limits are corrected in the published erratum.
- ²⁴ HEISTER 03C use the process $e^+e^- \to \gamma G$ at $\sqrt{s}=189$ –209 GeV to place bounds on the size of extra dimensions and the scale of gravity. See their Table 4 for limits with $\delta \leq 6$ for derived limits on M_D .
- ²⁵ FAIRBAIRN 01 obtains bounds on R from over production of KK gravitons in the early universe. Bounds are quoted in paper in terms of fundamental scale of gravity. Bounds depend strongly on temperature of QCD phase transition and range from R< 0.13 μ m to 0.001 μ m for δ =2; bounds for δ =3,4 can be derived from Table 1 in the paper.
- ²⁶ HANHART 01 obtain bounds on *R* from limits on graviton cooling of supernova SN 1987a using numerical simulations of proto-neutron star neutrino emission.
- ²⁷ CASSISI 00 obtain rough bounds on M_D (and thus R) from red giant cooling for δ =2,3. See their paper for details.
- ²⁸ ACCIARRI 99S search for $e^+e^- \rightarrow ZG$ at \sqrt{s} =189 GeV. Limits on the gravity scale are found in their Table 2, for $\delta < 4$.

Mass Limits on M_{TT}

This section includes limits on the cut-off mass scale, M_{TT} , of dimension-8 operators from KK graviton exchange in models of large extra dimensions. Ambiguities in the UV-divergent summation are absorbed into the parameter λ , which is taken to be $\lambda=\pm 1$ in the following analyses. Bounds for $\lambda=-1$ are shown in parenthesis after the bound for $\lambda=+1$, if appropriate. Different papers use slightly different definitions of the mass scale. The definition used here is related to another popular convention by $M_{TT}^4=(2/\pi)~\Lambda_T^4$, as discussed in the above Review on "Extra Dimensions."

VALUE (TeV)		CL%	DOCUMENT ID	TECN	COMMENT
> 9.02		95		18DD CMS	$pp \rightarrow \text{dijet, ang. distrib.}$
>20.6	(> 15.7)	95	² GIUDICE (03 RVUE	Dim-6 operators
• • • We	do not use t	he follow	ng data for average	es, fits, limits	, etc. • • •
> 8.3	(>7.1)	95	³ HAYRAPETY2		
> 6.7		95	⁴ SIRUNYAN 2	21N CMS	$pp ightarrow e^+e^-, \mu^+\mu^-$
> 6.9		95	⁵ SIRUNYAN	19AC CMS	$pp \rightarrow e^+e^-, \mu^+\mu^-, \gamma\gamma$

https://pdg.lbl.gov

Page 5

> 6.5		95	⁶ AABOUD		ATLS	$pp \rightarrow \gamma \gamma$
> 3.8		95	⁷ AAD		ATLS	$pp \rightarrow e^+e^-, \mu^+\mu^-$
> 3.2		95	⁸ AAD		ATLS	$pp \rightarrow e^+e^-, \mu^+\mu^-, \gamma\gamma$
			9 BAAK	12	RVUE	Electroweak
> 0.90	(>0.92)	95	10 AARON	11 C		$e^{\pm} p \rightarrow e^{\pm} X$
> 1.48		95	11 ABAZOV	09AE		$p\overline{p} \to \text{dijet}$, ang. distrib.
> 1.45		95	12 ABAZOV	09 D		$p\overline{p} \rightarrow e^+e^-, \gamma\gamma$
> 1.1	(> 1.0)	95	¹³ SCHAEL		ALEP	$e^+e^- \rightarrow e^+e^-$
> 0.898	(> 0.998)	95	¹⁴ ABDALLAH	06 C	DLPH	$e^+e^- \rightarrow \ell^+\ell^-$
> 0.853	(> 0.939)	95	¹⁵ GERDES	06		$p\overline{p} ightarrow e^+e^-$, $\gamma\gamma$
> 0.96	(> 0.93)	95	¹⁶ ABAZOV	05∨	D0	$p\overline{p} \rightarrow \mu^+\mu^-$
> 0.78	(> 0.79)	95	¹⁷ CHEKANOV	04 B	ZEUS	$e^{\pm} p \rightarrow e^{\pm} X$
> 0.805	(> 0.956)	95	¹⁸ ABBIENDI	03 D	OPAL	$e^+e^- \rightarrow \gamma \gamma$
> 0.7	(> 0.7)	95	¹⁹ ACHARD	03 D	L3	$e^+e^- \rightarrow ZZ$
> 0.82	(> 0.78)	95	²⁰ ADLOFF	03	H1	$e^{\pm} p \rightarrow e^{\pm} X$
> 1.28	(> 1.25)	95	²¹ GIUDICE	03	RVUE	•
> 0.80	(> 0.85)	95	²² HEISTER	03 C	ALEP	$e^+e^- ightarrow \gamma \gamma$
> 0.84	(> 0.99)	95	²³ ACHARD	02 D	L3	$e^+e^- \rightarrow \gamma \gamma$
> 1.2	(>1.1)	95	²⁴ ABBOTT	01	D0	$p\overline{p} \rightarrow e^+e^-, \gamma\gamma$
> 0.60	(> 0.63)	95	²⁵ ABBIENDI	00R	OPAL	$e^+e^- \rightarrow \mu^+\mu^-$
> 0.63	(> 0.50)	95	²⁵ ABBIENDI	00R	OPAL	$e^+e^- ightarrow au^+ au^-$
> 0.68	(> 0.61)	95	²⁵ ABBIENDI	00 R	OPAL	$e^+e^- \rightarrow \mu^+\mu^-, \tau^+\tau^-$
	(, , ,		²⁶ ABREU	00A	DLPH	$e^+e^- ightarrow \gamma \gamma$
> 0.680	(> 0.542)	95	²⁷ ABREU	005	DLPH	$e^+e^- \rightarrow \mu^+\mu^-, \tau^+\tau^-$
> 15–28	(> 0.0.=)	99.7	²⁸ CHANG	00B		Electroweak
> 0.98		95	²⁹ CHEUNG	00	RVUE	$e^+e^- \rightarrow \gamma \gamma$
> 0.29–0.38		95	³⁰ GRAESSER	00	RVUE	$(g-2)_{\mu}$
> 0.50–1.1		95	³¹ HAN	00	RVUE	Electroweak
> 2.0	(> 2.0)	95	32 MATHEWS	00	RVUE	$\overline{p}p \rightarrow jj$
> 1.0	(> 1.1)	95	33 MELE	00	RVUE	$e^+e^- \rightarrow VV$
/ 1.0	(> 1.1)	93	34 ABBIENDI	99P	OPAL	ere — v v
			35 ACCIARRI	99M		
			³⁶ ACCIARRI	99S	L3	
> 1.412	(> 1.077)	05	37 BOURILKOV	993		$e^+e^- ightarrow e^+e^-$
/ 1.712	(/1.011)	55	DOUNIEROV	33		

 $^1\,\rm SIRUNYAN~18DD$ use dijet angular distributions in 35.9 fb $^{-1}$ of data from pp collisions at $\sqrt{s}=13~\rm TeV$ to place a lower bound on Λ_T , here converted to $M_{TT}.$ This updates

the results of SIRUNYAN 17F. 2 GIUDICE 03 place bounds on Λ_6 , the coefficient of the gravitationally-induced dimension- 6 operator $(2\pi\lambda/\Lambda_6^2)(\sum\overline{f}\gamma_\mu\gamma^5f)(\sum\overline{f}\gamma^\mu\gamma^5f)$, using data from a variety of experiments. Results are quoted for $\lambda=\pm 1$ and are independent of δ .

 3 HAYRAPETYAN 24AJ use 138 fb $^{-1}$ of data from pp collisions at $\sqrt{s}=$ 13 TeV to place lower limits on M_{TT} (equivalent to their M_{S}). This updates the results of SIRUN-YAN 18DU.

YAN 18DU. 4 SIRUNYAN 21N use 137 (140) fb $^{-1}$ of data from pp collisions at $\sqrt{s}=13$ TeV in the dielectron (dimuon) channels to place a lower limit on Λ_T , here converted to M_{TT} . Bounds on individual channels can be found in their Table 7. 5 SIRUNYAN 19AC use 35.9 (36.3) fb $^{-1}$ of data from pp collisions at $\sqrt{s}=13$ TeV in the dielectron (dimuon) channels to place a lower limit on Λ_T , here converted to M_{TT} .

The dielectron and dimuon channels are combined with previous results in the diphoton channel to set the best limit. Bounds on individual channels and different priors can be found in their Table 2. This updates the results in KHACHATRYAN 15AE.

- 6 AABOUD 17AP use 36.7 fb $^{-1}$ of data from pp collisions at $\sqrt{s}=$ 13 TeV to place lower limits on M_{TT} (equivalent to their M_S). This updates the results of AAD 13AS.
- 7 AAD 14BE use 20 fb $^{-1}$ of data from $p\,p$ collisions at $\sqrt{s}=8$ TeV in the dilepton channel to place lower limits on M_{TT} (equivalent to their $M_{\mbox{\scriptsize \mathcal{S}}}).$
- 8 AAD 13E use 4.9 and 5.0 fb $^{-1}$ of data from pp collisions at $\sqrt{s}=$ 7 TeV in the dielectron and dimuon channels, respectively, to place lower limits on \emph{M}_{TT} (equivalent to their M_S). The dielectron and dimuon channels are combined with previous results in the diphoton channel to set the best limit. Bounds on individual channels and different priors can be found in their Table VIII.
- g BAAK 12 use electroweak precision observables to place bounds on the ratio Λ_T/M_D as a function of M_D . See their Fig. 22 for constraints with a Higgs mass of 120 GeV.
- 10 AARON 11 C search for deviations in the differential cross section of $e^\pm p
 ightarrow \; e^\pm X$ in 446 pb $^{-1}$ of data taken at $\sqrt{s}=$ 301 and 319 GeV to place a bound on M_{TT} .
- 11 ABAZOV 09AE use dijet angular distributions in 0.7 fb $^{-1}$ of data from $p\overline{p}$ collisions at $\sqrt{s}=1.96$ TeV to place lower bounds on Λ_T (equivalent to their M_S), here converted to M_{TT} .
- 12 ABAZOV 09D use 1.05 fb $^{-1}$ of data from $p\overline{p}$ collisions at $\sqrt{s}=1.96$ TeV to place lower bounds on Λ_T (equivalent to their M_s), here converted to M_{TT} .
- 13 SCHAEL 07A use e^+e^- collisions at $\sqrt{s}=189$ –209 GeV to place lower limits on Λ_T , here converted to limits on M_{TT} .
- 14 ABDALLAH 06C use $e^+\,e^-$ collisions at $\sqrt{s}\sim$ 130–207 GeV to place lower limits on M_{TT} , which is equivalent to their definition of $M_{
 m S}$. Bound shown includes all possible final state leptons, $\ell=e,\,\mu,\, au.$ Bounds on individual leptonic final states can be found
- 15 GERDES 06 use 100 to 110 pb $^{-1}$ of data from $p\overline{p}$ collisions at $\sqrt{s}=1.8$ TeV, as recorded by the CDF Collaboration during Run I of the Tevatron. Bound shown includes a K-factor of 1.3. Bounds on individual e^+e^- and $\gamma\gamma$ final states are found in their
- 16 ABAZOV 05V use 246 pb $^{-1}$ of data from $p\overline{p}$ collisions at $\sqrt{s}=1.96$ TeV to search for deviations in the differential cross section to $\mu^+\mu^-$ from graviton exchange.
- 17 CHEKANOV 04B search for deviations in the differential cross section of $e^{\pm}\,p
 ightarrow \,e^{\pm}\,X$ with 130 pb^{-1} of combined data and Q^2 values up to 40,000 GeV² to place a bound
- 18 ABBIENDI 03D use e^+e^- collisions at \sqrt{s} =181–209 GeV to place bounds on the ultraviolet scale M_{TT} , which is equivalent to their definition of M_{S} .
- 19 ACHARD 03D look for deviations in the cross section for $e^+e^- o ZZ$ from $\sqrt{s}=$ 200–209 GeV to place a bound on M_{TT} .
- 20 ADLOFF 03 search for deviations in the differential cross section of $e^\pm p
 ightarrow \ e^\pm X$ at \sqrt{s} =301 and 319 GeV to place bounds on M_{TT} .
- 21 GIUDICE 03 review existing experimental bounds on M_{TT} and derive a combined limit.
- 22 HEISTER 03C use e^+e^- collisions at $\sqrt{s}=$ 189–209 GeV to place bounds on the scale of dim-8 gravitational interactions. Their M_s^{\pm} is equivalent to our M_{TT} with $\lambda = \pm 1$.
- 23 ACHARD 02 search for s-channel graviton exchange effects in $e^+\,e^-\,\to\,\,\gamma\gamma$ at $E_{\rm cm}=$
- 192–209 GeV. 24 ABBOTT 01 search for variations in differential cross sections to e^+e^- and $\gamma\gamma$ final
- states at the Tevatron. 25 ABBIENDI 00R uses e^+e^- collisions at $\sqrt{s}=$ 189 GeV.
- 26 ABREU 00A search for s-channel graviton exchange effects in $e^+e^-
 ightarrow \gamma \gamma$ at $E_{
 m cm} =$ 189-202 GeV.
- 27 ABREU 00S uses e^+e^- collisions at \sqrt{s} =183 and 189 GeV. Bounds on μ and au individual final states given in paper.
- ²⁸ CHANG 00B derive 3 σ limit on M_{TT} of (28,19,15) TeV for δ =(2,4,6) respectively assuming the presence of a torsional coupling in the gravitational action. Highly model dependent.

- ²⁹ CHEUNG 00 obtains limits from anomalous diphoton production at OPAL due to graviton exchange. Original limit for δ =4. However, unknown UV theory renders δ dependence unreliable. Original paper works in HLZ convention.
- 30 GRAESSER 00 obtains a bound from graviton contributions to g-2 of the muon through loops of 0.29 TeV for $\delta=2$ and 0.38 TeV for $\delta=4,6$. Limits scale as $\lambda^{1/2}$. However calculational scheme not well-defined without specification of high-scale theory. See the "Extra Dimensions Review."
- ³¹ HAN 00 calculates corrections to gauge boson self-energies from KK graviton loops and constrain them using S and T. Bounds on M_{TT} range from 0.5 TeV (δ =6) to 1.1 TeV (δ =2); see text. Limits have strong dependence, $\lambda^{\delta+2}$, on unknown λ coefficient.
- ³² MATHEWS 00 search for evidence of graviton exchange in CDF and DØ dijet production data. See their Table 2 for slightly stronger δ -dependent bounds. Limits expressed in terms of $\widetilde{M}_S^4 = M_{TT}^4/8$.
- ³³ MELE 00 obtains bound from KK graviton contributions to $e^+e^- \rightarrow VV$ ($V=\gamma,W,Z$) at LEP. Authors use Hewett conventions.
- ³⁴ ABBIENDI 99P search for s-channel graviton exchange effects in $e^+e^- \rightarrow \gamma\gamma$ at $E_{\rm cm}=$ 189 GeV. The limits $G_+>$ 660 GeV and $G_->$ 634 GeV are obtained from combined $E_{\rm cm}=$ 183 and 189 GeV data, where G_\pm is a scale related to the fundamental gravity scale.
- 35 ACCIARRI 99M search for the reaction $e^+e^- \to \gamma \, G$ and s-channel graviton exchange effects in $e^+e^- \to \gamma \, \gamma$, W^+W^- , ZZ, e^+e^- , $\mu^+\mu^-$, $\tau^+\tau^-$, $q \, \overline{q}$ at $E_{\rm cm} = 183$ GeV. Limits on the gravity scale are listed in their Tables 1 and 2.
- ³⁶ ACCIARRI 99S search for the reaction $e^+e^- \to ZG$ and s-channel graviton exchange effects in $e^+e^- \to \gamma\gamma$, W^+W^- , ZZ, e^+e^- , $\mu^+\mu^-$, $\tau^+\tau^-$, $q\overline{q}$ at $E_{\rm cm}=$ 189 GeV. Limits on the gravity scale are listed in their Tables 1 and 2.
- ³⁷ BOURILKOV 99 performs global analysis of LEP data on e^+e^- collisions at \sqrt{s} =183 and 189 GeV. Bound is on Λ_T .

Limits on $1/R = M_c$

This section includes limits on $1/R=M_{\rm C}$, the compactification scale in models with one TeV-sized extra dimension, due to exchange of Standard Model KK excitations. Bounds assume fermions are not in the bulk, unless stated otherwise. See the "Extra Dimensions" review for discussion of model dependence.

<i>VALUE</i> (TeV)	CL%	DOCUMENT ID TECN COMMENT
>4.16	95	1 AAD 12cc ATLS $pp ightarrow \ell \overline{\ell}$
>6.1		² BARBIERI 04 RVUE Electroweak
• • • We do no	ot use the	following data for averages, fits, limits, etc. ● ●
		³ FLORES 23 RVUE minimal universal extra dims
		⁴ AVNISH 21 RVUE $pp \rightarrow \text{multijet}$
		5 AABOUD 18AV ATLS $pp ightarrow t \overline{t} t \overline{t}$
		6 AABOUD 18CE ATLS $pp o t \overline{t} t \overline{t}$
>3.8	95	ACCOMANDO 15 RVUE Electroweak
>3.40	95	8 KHACHATRY15T CMS $pp o \ell X$
		9 CHATRCHYAN 13AQ CMS $pp o \ell X$
>1.38	95	¹⁰ CHATRCHYAN 13W CMS $pp \rightarrow \gamma \gamma$, δ =6, M_D =5 TeV
>0.715	95	11 EDELHAUSER 13 RVUE $pp ightarrow \ell \overline{\ell} + X$
>1.40	95	12 AAD 12CP ATLS $pp \rightarrow \gamma \gamma$, $\delta = 6$, $M_D = 5$ TeV
>1.23	95	13 AAD 12X ATLS $pp \rightarrow \gamma \gamma$, $\delta = 6$, $M_D = 5$ TeV
>0.26	95	14 ABAZOV 12M D0 $p\overline{p} ightarrow \mu \mu$
>0.75	95	¹⁵ BAAK 12 RVUE Electroweak
		¹⁶ FLACKE 12 RVUE Electroweak

https://pdg.lbl.gov Page 8 Created: 5/30/2025 07:50

>0.43	95	¹⁷ NISHIWAKI	12 RVUE	$H ightarrow \ W W$, $ \gamma \gamma$
>0.729	95	¹⁸ AAD	11F ATLS	$pp \rightarrow \gamma \gamma$, δ =6, M_D =5 TeV
>0.961	95	¹⁹ AAD	11X ATLS	$pp \rightarrow \gamma \gamma$, $\delta = 6$, $M_D = 5$ TeV
>0.477	95	²⁰ ABAZOV	10P D0	$p\overline{p} \rightarrow \gamma\gamma$, $\delta=6$, $M_D=5$ TeV
>1.59	95	²¹ ABAZOV		$p\overline{p} o dijet$, angular dist.
>0.6	95	²² HAISCH		
>0.6	90	²³ GOGOLADZE	06 RVUE	Electroweak
>3.3	95	²⁴ CORNET	00 RVUE	Electroweak
> 3.3–3.8	95	²⁵ RIZZO	00 RVUE	Electroweak

- 1 AAD 12CC use 4.9 and 5.0 fb $^{-1}$ of data from $p\,p$ collisions at $\sqrt{s}=7$ TeV in the dielectron and dimuon channels, respectively, to place a lower bound on the mass of the lightest KK Z/γ boson (equivalent to $1/R=M_{\rm C}$). The limit quoted here assumes a flat prior corresponding to when the pure Z/γ KK cross section term dominates. See their Section 15 for more details.
- 2 BARBIERI 04 use electroweak precision observables to place a lower bound on the compactification scale 1/R. Both the gauge bosons and the Higgs boson are assumed to propagate in the bulk.
- ³ FLORES 23 use a number of 13 TeV Run 2 searches at the LHC to place constraints on the compactification scale 1/R and cutoff scale Λ in the minimal universal extra dimension model with Standard Model fields propagating in the bulk (see their Fig.6).
- ⁴ AVNISH 21 perform a study on the ATLAS collaboration search for multiple jets plus missing transverse energy from pp collisions at $\sqrt{s}=13$ TeV and integrated luminosity of 139 fb⁻¹, to place constraints on the compactification scale and cutoff scale Λ in universal extra dimension models with Standard Model fields propagating in the bulk.
- 5 AABOUD 18AV use 36.1 fb $^{-1}$ of data from $p\,p$ collisions at $\sqrt{s}=13$ TeV in final states with multiple b-jets, to place a lower bound on the compactification scale in a model with two universal extra dimensions. Assuming the radii of the two extra dimensions are equal, a lower limit of 1.8 TeV for the Kaluza-Klein mass is obtained.
- ⁶ AABOUD 18CE use 36.1 fb⁻¹ of data from pp collisions at $\sqrt{s}=13$ TeV in final states with same-charge leptons and b-jets, to place a lower bound on the compactification scale in a model with two universal extra dimensions. Assuming the radii of the two extra dimensions are equal, a lower limit of 1.45 TeV for the Kaluza-Klein mass is obtained.
- ⁷ ACCOMANDO 15 use electroweak precision observables to place a lower bound on the compactification scale 1/R. See their Fig. 2 for the bound as a function of $\sin\beta$, which parametrizes the VEV contribution from brane and bulk Higgs fields. The quoted value is for the minimum bound which occurs at $\sin\beta = 0.45$.
- 8 KHACHATRYAN 15T use 19.7 fb $^{-1}$ of data from $p\,p$ collisions at $\sqrt{s}=8$ TeV to place a lower bound on the compactification scale 1/R.
- 9 CHATRCHYAN 13AQ use 5.0 fb $^{-1}$ of data from pp collisions at $\sqrt{s}=7$ TeV and a further 3.7 fb $^{-1}$ of data at $\sqrt{s}=8$ TeV to place a lower bound on the compactification scale 1/R, in models with universal extra dimensions and Standard Model fields propagating in the bulk. See their Fig. 5 for the bound as a function of the universal bulk fermion mass parameter μ .
- 10 CHATRCHYAN 13 W use diphoton events with large missing transverse momentum in 4.93 fb $^{-1}$ of data produced from pp collisions at $\sqrt{s}=7$ TeV to place a lower bound on the compactification scale in a universal extra dimension model with gravitational decays. The bound assumes that the cutoff scale \varLambda , for the radiative corrections to the Kaluza-Klein masses, satisfies $\Lambda/M_C=20$. The model parameters are chosen such that the decay $\gamma^*\to -G\gamma$ occurs with an appreciable branching fraction.
- ¹¹ EDELHAUSER 13 use 19.6 and 20.6 fb⁻¹ of data from pp collisions at $\sqrt{s}=8$ TeV analyzed by the CMS Collaboration in the dielectron and dimuon channels, respectively, to place a lower bound on the mass of the second lightest Kaluza-Klein Z/γ boson (converted to a limit on $1/R=M_C$). The bound assumes Standard Model fields propagating in the bulk and that the cutoff scale Λ , for the radiative corrections to the Kaluza-Klein masses, satisfies $\Lambda/M_C=20$.

- 12 AAD 12 CP use diphoton events with large missing transverse momentum in 4.8 fb $^{-1}$ of data produced from pp collisions at $\sqrt{s}=7$ TeV to place a lower bound on the compactification scale in a universal extra dimension model with gravitational decays. The bound assumes that the cutoff scale Λ , for the radiative corrections to the Kaluza-Klein masses, satisfies $\Lambda/M_c=20$. The model parameters are chosen such that the decay $\gamma^*\to G\gamma$ occurs with an appreciable branching fraction.
- ¹³ AAD 12x use diphoton events with large missing transverse momentum in 1.07 fb⁻¹ of data produced from pp collisions at $\sqrt{s}=7$ TeV to place a lower bound on the compactification scale in a universal extra dimension model with gravitational decays. The bound assumes that the cutoff scale Λ , for the radiative corrections to the Kaluza-Klein masses, satisfies $\Lambda/M_c=20$. The model parameters are chosen such that the decay $\gamma^* \to G\gamma$ occurs with an appreciable branching fraction.
- 14 ABAZOV 12M use same-sign dimuon events in 7.3 fb $^{-1}$ of data from $p\overline{p}$ collisions at $\sqrt{s}=1.96$ TeV to place a lower bound on the compactification scale 1/R, in models with universal extra dimensions where all Standard Model fields propagate in the bulk.
- 15 BAAK 12 use electroweak precision observables to place a lower bound on the compactification scale 1/R, in models with universal extra dimensions and Standard Model fields propagating in the bulk. Bound assumes a 125 GeV Higgs mass. See their Fig. 25 for the bound as a function of the Higgs mass.
- 16 FLACKE 12 use electroweak precision observables to place a lower bound on the compactification scale 1/R, in models with universal extra dimensions and Standard Model fields propagating in the bulk. See their Fig. 1 for the bound as a function of the universal bulk fermion mass parameter μ .
- 17 NISHIWAKI 12 use up to 2 fb $^{-1}$ of data from the ATLAS and CMS experiments that constrains the production cross section of a Higgs-like particle to place a lower bound on the compactification scale 1/R in universal extra dimension models. The quoted bound assumes Standard Model fields propagating in the bulk and a 125 GeV Higgs mass. See their Fig. 1 for the bound as a function of the Higgs mass.
- 18 AAD 11 F use diphoton events with large missing transverse energy in $3.1~{\rm pb}^{-1}$ of data produced from $p\,p$ collisions at $\sqrt{s}=7$ TeV to place a lower bound on the compactification scale in a universal extra dimension model with gravitational decays. The bound assumes that the cutoff scale Λ , for the radiative corrections to the Kaluza-Klein masses, satisfies $\Lambda/{\rm M}_{c}=20$. The model parameters are chosen such that the decay $\gamma^{*}\to G\,\gamma$ occurs with an appreciable branching fraction.
- AAD 11x use diphoton events with large missing transverse energy in 36 pb $^{-1}$ of data produced from $p\,p$ collisions at $\sqrt{s}=7$ TeV to place a lower bound on the compactification scale in a universal extra dimension model with gravitational decays. The bound assumes that the cutoff scale Λ , for the radiative corrections to the Kaluza-Klein masses, satisfies $\Lambda/M_{\mathcal{C}}=20$. The model parameters are chosen such that the decay $\gamma^*\to G\,\gamma$ occurs with an appreciable branching fraction.
- ²⁰ ABAZOV 10P use diphoton events with large missing transverse energy in 6.3 fb⁻¹ of data produced from $p\bar{p}$ collisions at $\sqrt{s}=1.96$ TeV to place a lower bound on the compactification scale in a universal extra dimension model with gravitational decays. The bound assumes that the cutoff scale Λ , for the radiative corrections to the Kaluza-Klein masses, satisfies Λ/M_c =20. The model parameters are chosen such that the decay
- $\gamma^* \to G \gamma$ occurs with an appreciable branching fraction. 21 ABAZOV 09AE use dijet angular distributions in 0.7 fb $^{-1}$ of data from $p\overline{p}$ collisions at $\sqrt{s}=1.96$ TeV to place a lower bound on the compactification scale.
- ²² HAISCH 07 use inclusive \overline{B} -meson decays to place a Higgs mass independent bound on the compactification scale 1/R in the minimal universal extra dimension model.
- 23 GOGOLADZE 06 use electroweak precision observables to place a lower bound on the compactification scale in models with universal extra dimensions. Bound assumes a 115 GeV Higgs mass. See their Fig. 3 for the bound as a function of the Higgs mass.
- ²⁴CORNET 00 translates a bound on the coefficient of the 4-fermion operator $(\overline{\ell}\gamma_{\mu}\tau^{a}\ell)(\overline{\ell}\gamma^{\mu}\tau^{a}\ell)$ derived by Hagiwara and Matsumoto into a limit on the mass scale of KK W bosons.

²⁵ RIZZO 00 obtains limits from global electroweak fits in models with a Higgs in the bulk (3.8 TeV) or on the standard brane (3.3 TeV).

Limits on Kaluza-Klein Gravitons in Warped Extra Dimensions

This section places limits on the mass of the first Kaluza-Klein (KK) excitation of the graviton in the warped extra dimension model of Randall and Sundrum. Bounds in parenthesis assume Standard Model fields propagate in the bulk. Experimental bounds depend strongly on the warp parameter, k. See the "Extra Dimensions" review for a full discussion.

Here we list limits for the value of the warp parameter $k/\overline{M}_P=0.1$.

<i>VALUE</i> (TeV)	CL%	DOCUMENT ID	TEC	N COMMENT
>4.78	95	¹ SIRUNYAN	21N CM	6 $pp \rightarrow G \rightarrow e^+e^-, \mu^+\mu^-$
• • • We do not u	se the fo	llowing data for ave	erages, fits	
		² HAYRAPETY.	24AE CM:	S pp o G o HH
>4.8	95	³ HAYRAPETY.		
		⁴ TUMASYAN	24B CM:	
		⁵ TUMASYAN	23AP CM	$S pp \rightarrow G \rightarrow WW, ZZ$
		⁶ AAD	22F ATL	$S pp \rightarrow G \rightarrow HH$
		⁷ TUMASYAN	22D CM	$5 pp \rightarrow G \rightarrow WW$
		⁸ TUMASYAN	22J CM:	$S pp \rightarrow G \rightarrow ZZ$
		⁹ TUMASYAN	22R CM	$S pp \rightarrow G \rightarrow ZZ$
		¹⁰ TUMASYAN	22U CM:	$5 pp \rightarrow G \rightarrow HH$
		¹¹ AAD	21AF ATL	$S pp \rightarrow G \rightarrow ZZ$
>4.5	95	¹² AAD	21AY ATL	S $pp o G o \gamma\gamma$
		¹³ AAD	20AT ATL	S $pp \rightarrow G \rightarrow WW, ZZ$
		¹⁴ AAD	20C ATL	S $pp o G o HH$
		¹⁵ AAD	20T ATL	S $pp \rightarrow G \rightarrow b\overline{b}$
>2.6	95	¹⁶ SIRUNYAN	20AI CM	6 $pp ightarrow G ightarrow jj$
		¹⁷ SIRUNYAN	20F CM:	6 $pp ightarrow G ightarrow HH$
		¹⁸ AABOUD	190 ATL	S $pp o G o HH$
		¹⁹ AAD	19D ATL	• •
		²⁰ SIRUNYAN	19BE CM:	6 $pp ightarrow G ightarrow HH$
		²¹ AABOUD	18BI ATL	• •
		²² AABOUD	18CJ ATL	• •
		²³ AABOUD	18cq ATL	S $pp o G o HH$
		²⁴ AABOUD	18cwATL	• •
		²⁵ SIRUNYAN	18AF CMS	
		²⁶ SIRUNYAN	18AS CMS	• •
		²⁷ SIRUNYAN	18cw CM	
		²⁸ SIRUNYAN	18ı CM:	• •
		²⁹ AAD	16R ATL	• •
		³⁰ AAD	15AZ ATL	
		31 AAD	15CP ATL	• •
>2.68	95	³² AAD	14∨ ATL	
>1.23 (>0.84)	95	³³ AAD	13A ATL	• •
>0.94 (>0.71)	95	34 AAD	13AO ATL	
>2.23	95	³⁵ AAD	13AS ATL	
>0.845	95	³⁶ AAD	12AD ATL	S $pp \rightarrow G \rightarrow ZZ$
		³⁷ AALTONEN	12V CDF	$p\overline{p} o G o ZZ$

		³⁸ BAAK	12	RVUE	Electroweak
		³⁹ AALTONEN	11 G	CDF	$p\overline{p} ightarrow \ G ightarrow \ Z Z$
>1.058	95	⁴⁰ AALTONEN	11 R	CDF	$p\overline{p} ightarrow G ightarrow e^+e^-, \gamma\gamma$
>0.754	95	⁴¹ ABAZOV	11H	D0	$p\overline{p} ightarrow \ G ightarrow \ W W$
>0.607		⁴² AALTONEN	10N	CDF	$p\overline{p} ightarrow \ G ightarrow \ W W$
>1.05		⁴³ ABAZOV	10F	D0	$p\overline{p} \rightarrow G \rightarrow e^+e^-, \gamma\gamma$
		⁴⁴ AALTONEN	08 S	CDF	$p\overline{p} ightarrow \ G ightarrow \ Z Z$
>0.90		⁴⁵ ABAZOV	08J	D0	$p\overline{p} ightarrow G ightarrow e^+e^-, \gamma\gamma$
		46 AALTONEN	07 G	CDF	$p\overline{p} ightarrow G ightarrow \gamma \gamma$
>0.889		47 AALTONEN	07H	CDF	$p\overline{p} ightarrow G ightarrow e\overline{e}$
>0.785		⁴⁸ ABAZOV	05N	D0	$p\overline{p} ightarrow G ightarrow \ell\ell$, $\gamma\gamma$
>0.71		⁴⁹ ABULENCIA	05A	CDF	$p\overline{p} ightarrow \ G ightarrow \ \ell\overline{\ell}$

- 1 SIRUNYAN 21N use 137 (140) fb $^{-1}$ of data from pp collisions at $\sqrt{s}=13$ TeV to search for dilepton resonances in the dielectron (dimuon) channel. See Table 6 for other limits with warp parameter values $k/\overline{M}_P=0.01$ and 0.05. This updates the results of SIRUNYAN 18BB.
- ² HAYRAPETYAN 24AE use 138 fb⁻¹ of data from pp collisions at $\sqrt{s}=13$ TeV to search for Higgs boson pair production in the $b\overline{b}WW$ final state. See their Figure 19 for limits on the cross section times branching fraction as a function of the KK graviton mass for $k/\overline{M}_P=0.3,\ 0.5$ and 1.
- 3 HAYRAPETYAN 24AJ use 138 fb $^{-1}$ of data from $p\,p$ collisions at $\sqrt{s}=13$ TeV, in the diphoton channel to place a lower limit on the mass of the lightest KK graviton. See their paper for limits with other warp parameter values $k/\overline{M}_P=0.01$ and 0.2. This updates the results of SIRUNYAN 18DU.
- 4 TUMASYAN 24B use 138 fb $^{-1}$ of data from $p\,p$ collisions at $\sqrt{s}=13$ TeV to search for Higgs boson pair production in the $\gamma\gamma\,b\overline{b}$ final state. See their Figure 6 for limits on the cross section times branching fraction as a function of the KK graviton mass assuming $k/\overline{M}_P=0.5$ and 1. This updates the result of SIRUNYAN 19.
- 5 TUMASYAN 23AP use 138 fb $^{-1}$ of data from pp collisions at $\sqrt{s}=13$ TeV to search for $W\,W,~Z\,Z$ diboson resonances in $q\,\overline{q}\,q\,\overline{q}$ final states. See their Figure 7 for the limit on the cross section times branching fraction as a function of the KK graviton mass. Assuming $k/\overline{M}_P=0.5$, a graviton mass is excluded below 1400 GeV. This updates the result of SIRUNYAN 20Q.
- ⁶ AAD 22F use 126–139 fb⁻¹ of data from pp collisions at $\sqrt{s}=13$ TeV to search for Higgs boson pair production in the $b\overline{b}b\overline{b}$ final state. See their Figure 14 for limits on the cross section times branching fraction as a function of the KK graviton mass. Assuming $k/\overline{M}_P=1$, gravitons in the mass range 298–1460 GeV are excluded. This updates the results of AABOUD 19A.
- 7 TUMASYAN 22D use 137 fb $^{-1}$ of data from $p\,p$ collisions at $\sqrt{s}=13$ TeV to search for $W\,W$ resonances in $\ell\,\nu\,q\,q$ final states ($\ell=e,\,\mu$). See their Figure 6 for the limit on the KK graviton mass as a function of the cross section times branching fraction, including theoretical values for $k/\overline{M}_P=0.5$. This updates the results of SIRUNYAN 18AX.
- 8 TUMASYAN 22J use $137~{\rm fb}^{-1}$ of data from pp collisions at $\sqrt{s}=13~{\rm TeV}$ to search for ZZ resonances in the $\nu\overline{\nu}\,q\overline{q}$ final state. See their Figure 10 for the limit on the KK graviton mass as a function of the cross section times branching fraction, assuming $k/\overline{M}_P=0.5$. This updates the result of SIRUNYAN 18BK.
- ⁹ TUMASYAN 22R use 138 fb⁻¹ of data from pp collisions at $\sqrt{s}=13$ TeV to search for ZZ resonances in $2\ell 2q$ final states ($\ell=e,\mu$). See their Figure 8 for the limit on the KK graviton mass as a function of the cross section times branching fraction. Assuming $k/M_P=0.5$, a graviton mass is excluded below 1200 GeV. This updates the result of SIRUNYAN 18DJ.
- ¹⁰ TUMASYAN 22U use 138 fb⁻¹ of data from pp collisions at $\sqrt{s}=13$ TeV to search for Higgs boson pair production in the $b\overline{b}q\overline{q}'\ell\nu$, $b\overline{b}\ell\nu\ell\nu$ and $b\overline{b}\ell\nu\nu\ell\nu$ final states $(\ell=e,\,\mu)$. See their Figure 7 for limits on the cross section times branching fraction

as a function of the KK graviton mass, including theoretical values for $k/\overline{M}_P=0.3$ and 0.5. This updates the results of SIRUNYAN 19CF and SIRUNYAN 18F.

 11 AAD 21AF use 139 fb $^{-1}$ of data from pp collisions at $\sqrt{s}=$ 13 TeV to search for ZZresonances in the $\ell\ell\ell\ell$ and $\ell\ell\nu\overline{\nu}$ final states ($\ell=e, \mu$). See their Figure 8 for the limit on the cross section times branching fraction as a function of the KK graviton mass, including theoretical values for $k/\overline{M}_P=1$. This updates the results of AAD 15AU and AABOUD 18BF.

 12 AAD 21AY use 139 fb $^{-1}$ of data from pp collisions at $\sqrt{s}=$ 13 TeV in the diphoton channel to place a lower limit on the mass of the lightest KK graviton. This updates the

results of AABOUD 17AP.

13 AAD 20AT use 139 fb $^{-1}$ of data from pp collisions at $\sqrt{s}=13$ TeV to search for diboson resonances in semileptonic final states $(\ell \nu q q, \ell \ell q q, \nu \nu q q)$. See their Figure 15 for the limit on the cross section times branching fraction as a function of the KK graviton mass. Lower limits on the graviton mass are also given for $k/\overline{M}_P=1$. This updates the results

of AABOUD 18AK and AABOUD 18AL. 14 AAD 20C use 36.1 fb $^{-1}$ of data from pp collisions at $\sqrt{s}=$ 13 TeV to search for Higgs boson pair production in the $b\overline{b}b\overline{b}$, $b\overline{b}W^+W^-$, and $b\overline{b}\tau^+\tau^-$ final states. See their Figure 5(b)(c) for limits on the cross section as a function of the KK graviton mass. In the case of $k/\overline{M}_P=1$ and 2, gravitons are excluded in the mass range 260–3000 GeV and 260–1760 GeV, respectively.

 15 AAD 20T use 139 fb $^{-1}$ of data from $p\,p$ collisions at $\sqrt{s}=$ 13 TeV to search for narrow resonances decaying to bottom quark pairs. See their Figure 7 for the limit on the product of the cross section, branching fraction, acceptance and b-tagging efficiency as a function of the KK graviton mass. In the case of $k/\overline{M}_P=0.2$, KK gravitons in the mass range 1.25–2.8 TeV are excluded.

 16 SIRUNYAN 20AI use 137 fb $^{-1}$ of data from pp collisions at $\sqrt{s}=13$ TeV to search for dijet resonances. See their Figure 6 for the limit on the product of the cross section, branching fraction and acceptance as a function of the KK graviton mass. This updates

- the results of SIRUNYAN 18BO. 17 SIRUNYAN 20F use 35.9 fb $^{-1}$ of data from pp collisions at $\sqrt{s}=$ 13 TeV to search for Higgs boson pair production in the $b\overline{b}ZZ$ final state. See their Figure 4 for limits on the cross section times branching fraction as a function of the KK graviton mass, and Figure 5 for limits as a function of k/M_P .
- 18 AABOUD 190 use 36.1 fb $^{-1}$ of data from $ho \,
 ho$ collisions at $\sqrt{s} =$ 13 TeV to search for Higgs boson pair production in the $b\overline{b}WW$ final state. See their Figure 12 for limits on the cross section times branching fraction as a function of the KK graviton mass for $k/\overline{M}_P = 1$ and $k/\overline{M}_P = 2$.
- 19 AAD 19 D use 139 fb $^{-1}$ of data from $p\,p$ collisions at $\sqrt{s}=13$ TeV to search for diboson resonances in the all-hadronic final state. See their Figure 9(b) for the limit on the cross section times branching fraction as a function of the KK graviton mass, including theoretical values for $k/\overline{M}_P=1$. This updates the results of AABOUD 18F.
- 20 SIRUNYAN 19BE use 35.9 fb $^{-1}$ of data from pp collisions at $\sqrt{s}=$ 13 TeV to search for Higgs boson pair production by combining the results from four final states: $b \, \overline{b} \gamma \gamma$, $b\overline{b}\tau\overline{\tau}$, $b\overline{b}b\overline{b}$, and $b\overline{b}VV$. See their Figure 7 for limits on the cross section times branching fraction as a function of the KK graviton mass.
- ²¹ AABOUD 18BI use 36.1 fb⁻¹ of data from pp collisions at $\sqrt{s}=13$ TeV to search for top-quark pairs decaying into the lepton-plus jets topology. See their Figure 16 for the limit on the KK graviton mass as a function of the cross section times branching fraction, including theoretical values for $k/\overline{M}_P = 1$.
- 22 AABOUD 18CJ combine the searches for heavy resonances decaying into bosonic and leptonic final states from 36.1 fb $^{-1}$ of pp collision data at $\sqrt{s}=$ 13 TeV. The lower limit on the KK graviton mass, with $k/\overline{M}_P=1$, is 2.3 TeV.
- 23 AABOUD 18CQ use 36.1 fb $^{-1}$ of data from pp collisions at $\sqrt{s}=$ 13 TeV to search for Higgs boson pair production in the $b\bar{b}\tau^+\tau^-$ final state. See their Figure 2 for limits on the cross section times branching fraction as a function of the KK graviton mass. Assuming $k/\overline{M}_P = 1$, gravitons in the mass range 325–885 GeV are excluded.

- 24 AABOUD 18CW use 36.1 fb $^{-1}$ of data from $p\,p$ collisions at $\sqrt{s}=13$ TeV to search for Higgs boson pair production in the $\gamma\,\gamma\,b\,\overline{b}$ final state. See their Figure 7 for limits on the cross section times branching fraction as a function of the KK graviton mass.
- ²⁵ SIRUNYAN 18AF use 35.9 fb⁻¹ of data from pp collisions at $\sqrt{s}=13$ TeV to search for Higgs boson pair production in the $b\overline{b}b\overline{b}$ final state. See their Figure 9 for limits on the cross section times branching fraction as a function of the KK graviton mass, including theoretical values for $k/\overline{M}_P=0.5$. This updates the results of KHACHATRYAN 15R.
- 26 SIRUNYAN 18AS use 35.9 fb $^{-1}$ of data from pp collisions at $\sqrt{s}=13$ TeV to search for ZZ resonances in the $\ell\ell\nu\overline{\nu}$ final state ($\ell=e,\,\mu$). See their Figure 5 for the limit on the KK graviton mass as a function of the cross section times branching fraction, including theoretical values for $k/\overline{M}_P=0.1,\,0.5,\,$ and 1.0.
- 27 SIRUNYAN 18cW use 35.9 fb $^{-1}$ of data from pp collisions at $\sqrt{s}=13$ TeV to search for Higgs boson pair production in the $b\overline{b}b\overline{b}$ final state. See their Figure 8 for limits on the cross section times branching fraction as a function of the KK graviton mass, including theoretical values for $k/\overline{M}_P=0.5$.
- 28 SIRUNYAN 18I use 19.7 fb $^{-1}$ of data from $p\,p$ collisions at $\sqrt{s}=8$ TeV to search for narrow resonances decaying to bottom quark pairs. See their Figure 3 for the limit on the KK graviton mass as a function of the cross section times branching fraction in the mass range of 325–1200 GeV.
- ²⁹ AAD 16R use 20.3 fb⁻¹ of data from pp collisions at $\sqrt{s}=8$ TeV to place a lower bound on the mass of the lightest KK graviton. See their Figure 4 for the limit on the KK graviton mass as a function of the cross section times branching fraction.
- 30 AAD 15AZ use 20.3 fb $^{-1}$ of data from pp collisions at $\sqrt{s}=8$ TeV to place a lower bound on the mass of the lightest KK graviton. See their Figure 2 for limits on the KK graviton mass as a function of the cross section times branching ratio.
- ³¹ AAD 15CP use 20.3 fb⁻¹ of data from pp collisions at $\sqrt{s}=8$ TeV to place a lower bound on the mass of the lightest KK graviton. See their Figures 6b and 6c for the limit on the KK graviton mass as a function of the cross section times branching fraction.
- 32 AAD 14V use 20.3 (20.5) fb $^{-1}$ of data from pp collisions at $\sqrt{s}=8$ TeV in the dielectron (dimuon) channels to place a lower bound on the mass of the lightest KK graviton. This updates the results of AAD 12CC .
- ³³ AAD 13A use 4.7 fb⁻¹ of data from pp collisions at $\sqrt{s}=7$ TeV in the $\ell\nu\ell\nu$ channel, to place a lower bound on the mass of the lightest KK graviton.
- ³⁴ AAD 13AO use 4.7 fb⁻¹ of data from pp collisions at $\sqrt{s}=7$ TeV in the $\ell\nu jj$ channel, to place a lower bound on the mass of the lightest KK graviton.
- 35 AAD 13 AS use 4.9 fb $^{-1}$ of data from pp collisions at $\sqrt{s}=7$ TeV in the diphoton channel to place lower limits on the mass of the lightest KK graviton. The diphoton channel is combined with previous results in the dielectron and dimuon channels to set the best limit. See their Table 2 for warp parameter values k/\overline{M}_P between 0.01 and 0.1. This updates the results of AAD 12Y .
- ³⁶ AAD 12AD use 1.02 fb⁻¹ of data from pp collisions at $\sqrt{s}=7$ TeV to search for KK gravitons in a warped extra dimension decaying to ZZ dibosons in the IIjj and IIII channels ($\ell=e, \mu$). The limit is quoted for the combined IIjj+IIII channels. See their Figure 5 for limits on the cross section $\sigma(G\to ZZ)$ as a function of the graviton mass.
- ³⁷ AALTONEN 12V use 6 fb⁻¹ of data from $p\overline{p}$ collisions at $\sqrt{s}=1.96$ TeV to search for KK gravitons in a warped extra dimension decaying to ZZ dibosons in the IIjj and IIII channels ($\ell=e, \mu$). It provides improved limits over the previous analysis in AALTONEN 11G. See their Figure 16 for limits from all channels combined on the cross section times branching ratio $\sigma(p\overline{p}\to G^*\to ZZ)$ as a function of the graviton mass.
- 38 BAAK 12 use electroweak precision observables to place a lower bound on the compactification scale $k~e^{-\pi~k~R}$, assuming Standard Model fields propagate in the bulk and the Higgs is confined to the IR brane. See their Fig. 27 for more details.
- 39 AALTONEN 11G use 2.5–2.9 fb $^{-1}$ of data from $p \overline{p}$ collisions at $\sqrt{s}=1.96$ TeV to search for KK gravitons in a warped extra dimension decaying to ZZ dibosons via the

- eeee, $ee\mu\mu$, $\mu\mu\mu\mu$, eejj, and $\mu\mu jj$ channels. See their Fig. 20 for limits on the cross section $\sigma(G\to ZZ)$ as a function of the graviton mass.
- 40 AALTONEN 11R uses 5.7 fb $^{-1}$ of data from $p\overline{p}$ collisions at $\sqrt{s}=1.96$ TeV in the dielectron channel to place a lower bound on the mass of the lightest graviton. It provides combined limits with the diphoton channel analysis of AALTONEN 11U. For warp parameter values k/\overline{M}_P between 0.01 to 0.1 the lower limit on the mass of the lightest graviton is between 612 and 1058 GeV. See their Table I for more details.
- ⁴¹ ABAZOV 11H use 5.4 fb⁻¹ of data from $p\overline{p}$ collisions at $\sqrt{s}=1.96$ TeV to place a lower bound on the mass of the lightest graviton. Their 95% C.L. exclusion limit does not include masses less than 300 GeV.
- ⁴² AALTONEN 10N use 2.9 fb⁻¹ of data from $p\overline{p}$ collisions at $\sqrt{s}=1.96$ TeV to place a lower bound on the mass of the lightest graviton.
- 43 ABAZOV 10F use 5.4 fb $^{-1}$ of data from $p\overline{p}$ collisions at $\sqrt{s}=1.96$ TeV to place a lower bound on the mass of the lightest graviton. For warp parameter values of k/\overline{M}_P between 0.01 and 0.1 the lower limit on the mass of the lightest graviton is between 560 and 1050 GeV. See their Fig. 3 for more details.
- ⁴⁴ AALTONEN 08S use $p\overline{p}$ collisions at $\sqrt{s}=1.96$ TeV to search for KK gravitons in warped extra dimensions. They search for graviton resonances decaying to four electrons via two Z bosons using 1.1 fb⁻¹ of data. See their Fig. 8 for limits on $\sigma \cdot \mathrm{B}(G \to ZZ)$ versus the graviton mass.
- ⁴⁵ ABAZOV 08J use $p\overline{p}$ collisions at $\sqrt{s}=1.96$ TeV to search for KK gravitons in warped extra dimensions. They search for graviton resonances decaying to electrons and photons using 1 fb⁻¹ of data. For warp parameter values of k/\overline{M}_P between 0.01 and 0.1 the lower limit on the mass of the lightest excitation is between 300 and 900 GeV. See their Fig. 4 for more details.
- ⁴⁶ AALTONEN 07G use $p\overline{p}$ collisions at $\sqrt{s}=1.96$ TeV to search for KK gravitons in warped extra dimensions. They search for graviton resonances decaying to photons using 1.2 fb⁻¹ of data. For warp parameter values of $k/\overline{M}_P=0.1,\,0.05,\,$ and 0.01 the bounds on the graviton mass are 850, 694, and 230 GeV, respectively. See their Fig. 3 for more details. See also AALTONEN 07H.
- ⁴⁷ AALTONEN 07H use $p\overline{p}$ collisions at $\sqrt{s}=1.96$ TeV to search for KK gravitons in warped extra dimensions. They search for graviton resonances decaying to electrons using 1.3 fb⁻¹ of data. For a warp parameter value of $k/\overline{M}_P=0.1$ the bound on the graviton mass is 807 GeV. See their Fig. 4 for more details. A combined analysis with the diphoton data of AALTONEN 07G yields for $k/\overline{M}_P=0.1$ a graviton mass lower bound of 889 GeV.
- ⁴⁸ ABAZOV 05N use $p\overline{p}$ collisions at $\sqrt{s}=1.96$ TeV to search for KK gravitons in warped extra dimensions. They search for graviton resonances decaying to muons, electrons or photons, using 260 pb⁻¹ of data. For warp parameter values of $k/\overline{M}_P=0.1, 0.05$, and 0.01, the bounds on the graviton mass are 785, 650 and 250 GeV respectively. See their Fig. 3 for more details.
- ⁴⁹ ABULENCIA 05A use $p\overline{p}$ collisions at $\sqrt{s}=1.96$ TeV to search for KK gravitons in warped extra dimensions. They search for graviton resonances decaying to muons or electrons, using 200 pb⁻¹ of data. For warp parameter values of $k/\overline{M}_P=0.1$, 0.05, and 0.01, the bounds on the graviton mass are 710, 510 and 170 GeV respectively.

Limits on Kaluza-Klein Gluons in Warped Extra Dimensions

This section places limits on the mass of the first Kaluza-Klein (KK) excitation of the gluon in warped extra dimension models with Standard Model fields propagating in the bulk. Bounds are given for a specific benchmark model with $\Gamma/m=15.3\%$ where Γ is the width and m the mass of the KK gluon. See the "Extra Dimensions" review for more discussion.

VALUE (TeV)	CL%	DOCUMENT ID		TECN	COMMENT
>3.8	95	¹ AABOUD	18 BI	ATLS	$g_{KK} ightarrow t \overline{t} ightarrow \ell j$

https://pdg.lbl.gov Page 15 Created: 5/30/2025 07:50

• • • We do not use the following data for averages, fits, limits, etc. • • •

		² HAYRAPETY	24G CMS	$g_{KK} o \; R j o \; j j j$
		³ AABOUD	19AS ATLS	$g_{KK} o \ t \overline{t} o \ j j$
		⁴ SIRUNYAN		$g_{KK} o \ t T$
>2.5	95	⁵ CHATRCHYA	N 13BM CMS	$g_{KK} o t\overline{t}$
		⁶ CHEN	13A	$\overline{B} \rightarrow X_{S} \gamma$
>1.5	95	⁷ AAD	12BV ATLS	$g_{KK} \rightarrow t \overline{t} \rightarrow \ell i$

- ¹ AABOUD 18BI use 36.1 fb⁻¹ of data from pp collisions at $\sqrt{s}=13$ TeV. This result updates AAD 13AQ.
- 2 HAYRAPETYAN 24G use 138 fb $^{-1}$ of data from $p\,p$ collisions at $\sqrt{s}=13$ TeV to place limits on a KK gluon decaying to gluons via a spin-0 radion, R. See their Figure 3 for limits on the cross section times branching fraction as a function of the KK gluon mass and various values of the radion mass. This updates the results of TUMASYAN 22C.
- 3 AABOUD 19AS use 36.1 fb $^{-1}$ of data from $p\,p$ collisions at $\sqrt{s}=$ 13 TeV. An upper bound of 3.4 TeV is placed on the KK gluon mass for $\Gamma/m=$ 30%.
- 4 SIRUNYAN 19AL use 35.9 fb $^{-1}$ of data from pp collisions at $\sqrt{s}=13$ TeV to place limits on a KK gluon decaying to a top quark and a heavy vector-like fermion, T. KK gluon masses between 1.5 and 2.3 TeV and between 2.0 and 2.4 TeV are excluded for T masses of 1.2 and 1.5 TeV, respectively.
- 5 CHATRCHYAN 13BM use 19.7 fb $^{-1}$ of data from $p\,p$ collisions at $\sqrt{s}=8$ TeV. Bound is for a width of approximately 15–20% of the KK gluon mass.
- ⁶ CHEN 13A place limits on the KK mass scale for a specific warped model with custodial symmetry and bulk fermions. See their Figures 4 and 5.
- ⁷ AAD 12BV use 2.05 fb⁻¹ of data from pp collisions at $\sqrt{s} = 7$ TeV.

Black Hole Production Limits

Semiclassical Black Holes

VALUE (GeV)	DOCUMENT ID	TECN	COMMENT	

• • • We do not use the following data for averages, fits, limits, etc. • • •

¹ SIRUNYAN	18DA CMS	pp o multijet
² AAD	16N ATLS	$pp o {\sf multijet}$
³ AAD	160 ATLS	$pp \rightarrow \ell + (\ell\ell/\ell j/jj)$
⁴ AAD	13AW ATLS	$pp \rightarrow \mu \mu$

- 1 SIRUNYAN 18DA use 35.9 fb $^{-1}$ of data from $p\,p$ collisions at $\sqrt{s}=13$ TeV to search for semiclassical black holes decaying to multijet final states. No excess of events above the expected level of standard model background was observed. Exclusions at 95% CL are set on the mass threshold for black hole production as a function of the higher-dimensional Planck scale for rotating and nonrotating black holes under several model assumptions (ADD, 2, 4, 6 extra dimensions model) in the 7.1–10.3 TeV range. These limits supersede those in SIRUNYAN 17CP.
- 2 AAD 16N use 3.6 fb $^{-1}$ of data from pp collisions at $\sqrt{s}=13$ TeV to search for semiclassical black hole decays to multijet final states. No excess of events above the expected level of Standard Model background was observed. Exclusion contours at 95% C.L. are set on the mass threshold for black hole production versus higher-dimensional Planck scale for rotating black holes (ADD, 6 extra dimensions model).
- ³AAD 160 use 3.2 fb⁻¹ of data from pp collisions at $\sqrt{s}=13$ TeV to search for semiclassical black hole decays to high-mass final states with leptons and jets. No excess of events above the expected level of Standard Model background was observed. Exclusion contours at 95% C.L. are set on the mass threshold for black hole production versus higher-dimensional Planck scale for rotating black holes (ADD, 2 to 6 extra dimensions).

⁴ AAD 13AW use 20.3 fb⁻¹ of data from pp collisions at $\sqrt{s}=8$ TeV to search for semiclassical black hole decays to like-sign dimuon final states using large track multiplicity. No excess of events above the expected level of Standard Model background was observed. Exclusion contours at 95% C.L. are set on the mass threshold for black hole production versus higher-dimensional Planck scale in various extra dimensions, rotating and non-rotating models.

Quantum Black Holes

VALUE (GeV) DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, fits, limits, etc. • • •

```
<sup>1</sup> AAD
                        24S ATLS
 ^2 AAD
                        23CB ATLS
 <sup>3</sup> TUMASYAN
                        23AW CMS
 <sup>4</sup> TUMASYAN
                        23BC CMS
 <sup>5</sup> TUMASYAN
                        23H CMS
                                          pp \rightarrow e\mu, e\tau, \mu\tau
 <sup>6</sup> AAD
                        20T ATLS
 <sup>7</sup> AABOUD
                        18BA ATLS
 <sup>8</sup> SIRUNYAN
                        18AT CMS
                                          pp \rightarrow e\mu
 <sup>9</sup> SIRUNYAN
                        18DD CMS
                                          pp \rightarrow \text{ dijet, ang. distrib.}
<sup>10</sup> SIRUNYAN
                        17CP CMS
<sup>11</sup> KHACHATRY...16BE CMS
<sup>12</sup> KHACHATRY...15V CMS
                                          pp \rightarrow jj
<sup>13</sup> AAD
                        14V ATLS
                                          pp \rightarrow ee, \mu\mu
<sup>14</sup> CHATRCHYAN 13A CMS
```

- 1 AAD 24S use $140~{\rm fb}^{-1}$ of data from pp collisions at $\sqrt{s}=13~{\rm TeV}$ to search for quantum black hole decays to final states with high-invariant-mass lepton + jet. No excess of events above the expected level of Standard Model background was observed. Exclusion limits at 95% C.L. are set on mass thresholds for black hole production in an ADD (6 extra dimensions) model and the Randall-Sundrum (one extra dimension) model. The resulting lower mass threshold limits in the ADD (RS) models are 9.2 (6.8) TeV. The ADD limit supersedes that in AAD 14AL.
- 2 AAD 23 CB use 139 fb $^{-1}$ of data from pp collisions at $\sqrt{s}=13$ TeV to search for quantum black hole decays with different-flavor high-mass dilepton final states. No excess of events above the expected level of Standard Model background was observed. Exclusion limits at 95% C.L. are set on mass thresholds for black hole production in ADD (6 extra dimensions) and RS1 models. Assuming the black hole mass threshold is equal to the higher-dimensional Planck scale, mass thresholds below 5.9 (3.8), 5.2 (3.0), and 5.1 (3.0) TeV are excluded in the $e\mu$, $e\tau$ and $\mu\tau$ channels for the ADD (RS1) models, respectively. These limits supersede those in AABOUD 18CM.
- ³ TUMASYAN 23AW use 138 fb⁻¹ of data from pp collisions at $\sqrt{s}=13$ TeV to search for quantum black hole decays in the tau lepton plus missing transverse momentum final state. Assuming the black hole mass threshold is equal to the higher-dimensional Planck scale, threshold masses below 6.6 TeV are excluded in the ADD model with four extra dimensions (see their Figure 8).
- 4 TUMASYAN 23BC use 138 fb $^{-1}$ of data from $p\,p$ collisions at $\sqrt{s}=13$ TeV to search for quantum black hole decays to final states with a photon and a jet. No excess of events above the expected level of Standard Model background was observed. Exclusion limits at 95% C.L. are set on mass thresholds for black hole production in ADD (6 extra dimensions) and RS1 models. Assuming the black hole mass threshold is equal to the higher-dimensional Planck scale, mass thresholds below 7.5 TeV and 5.2 TeV are excluded for the ADD and RS1 models, respectively (see their Figure 9).
- 5 TUMASYAN 23H use 138 fb $^{-1}$ of data from $p\,p$ collisions at $\sqrt{s}=13$ TeV to search for quantum black hole decays with different-flavor high-mass dilepton final states. No excess of events above the expected level of Standard Model background was observed. Exclusion limits at 95% C.L. are set on mass thresholds for black hole production in the

- ADD model (with 4 extra dimensions). Assuming the black hole mass threshold is equal to the higher-dimensional Planck scale, mass thresholds below 5.6, 5.2, and 5.0 TeV are excluded in the $e\mu$, $e\tau$ and $\mu\tau$ channels, respectively.
- ⁶ AAD 20T use 139 fb⁻¹ of data from pp collisions at $\sqrt{s}=13$ TeV to search for quantum black hole decays to final states with dijets. No excess of events above the expected level of Standard Model background was observed. Exclusion limits at 95% C.L. are set on mass thresholds for black hole production in an ADD (6 extra dimensions) model. Assuming the black hole mass threshold is equal to the higher-dimensional Planck scale, mass thresholds below 9.4 TeV are excluded. This limit supersedes AABOUD 17AK.
- ⁷ AABOUD 18BA use 36.7 fb⁻¹ of data from pp collisions at $\sqrt{s}=13$ TeV to search for quantum black hole decays to final states with a photon and a jet. No excess of events above the expected level of Standard Model background was observed. Exclusion limits at 95% C.L. are set on mass thresholds for black hole production in ADD (6 extra dimensions) and RS1 models. Assuming the black hole mass threshold is equal to the Planck scale, mass thresholds below 7.1 TeV and 4.4 TeV are excluded for the ADD and RS1 models, respectively. These limits supersede those in AAD 16AI.
- ⁸ SIRUNYAN 18AT use 35.9 fb⁻¹ of data from pp collisions at $\sqrt{s}=13$ TeV to search for quantum black hole decays to $e\mu$ final states. In Figure 4, lower mass limits of 5.3, 5.5 and 5.6 TeV are placed in a model with 4, 5 and 6 extra dimensions, respectively, and a lower mass limit of 3.6 TeV is found for a single warped dimension.
- ⁹ SIRUNYAN 18DD use 35.9 fb⁻¹ of data from pp collisions at $\sqrt{s} = 13$ TeV to search for quantum black hole decays in dijet angular distributions. A lower mass limit of 5.9 (8.2) TeV is placed in the RS (ADD) model with one (six) extra dimension(s).
- $^{10}\,\text{SIRUNYAN}\,\,17\text{CP}$ use $2.3\,\,\text{fb}^{-1}$ of data from $p\,p$ collisions at $\sqrt{s}=13\,\,\text{TeV}$ to search for quantum black holes decaying to dijet final states. No excess of events above the expected level of standard model background was observed. Limits on the quantum black hole mass threshold are set as a function of the higher-dimensional Planck scale, under the assumption that the mass threshold must exceed the above Planck scale. Depending on the model, mass thresholds in the range up to 5.1–9.0 TeV are excluded.
- ¹¹ KHACHATRYAN 16BE use 19.7 fb⁻¹ of data from pp collisions at $\sqrt{s}=8$ TeV to search for quantum black holes undergoing lepton flavor violating decay to the $e\mu$ final state. No excess of events above the expected level of standard model background was observed. Exclusion limits at 95% CL are set on mass thresholds for black hole production in the ADD (2–6 flat extra dimensions), RS1 (1 warped extra dimension), and a model with a Planck scale at the TeV scale from a renormalization of the gravitational constant (no extra dimensions). Limits on the black hole mass threshold are set assuming that it is equal to the higher-dimensional Planck scale. Mass thresholds for quantum black holes in the range up to 3.15–3.63 TeV are excluded in the ADD model. In the RS1 model, mass thresholds below 2.81 TeV are excluded in the PDG convention for the Schwarzschild radius. In the model with no extra dimensions, mass thresholds below 1.99 TeV are excluded.
- 12 KHACHATRYAN $15\mathrm{V}$ use $19.7~\mathrm{fb}^{-1}$ of data from pp collisions at $\sqrt{s}=8~\mathrm{TeV}$ to search for quantum black holes decaying to dijet final states. No excess of events above the expected level of standard model background was observed. Exclusion limits at 95% CL are set on mass thresholds for black hole production in the ADD (2–6 flat extra dimensions) and RS1 (1 warped extra dimension) model. Limits on the black hole mass threshold are set as a function of the higher-dimensional Planck scale, under the assumption that the mass threshold must exceed the above Planck scale. Depending on the model, mass thresholds in the range up to 5.0–6.3 TeV are excluded. This paper supersedes CHATRCHYAN 13AD.
- 13 AAD 14 V use 20.3 (20.5) fb $^{-1}$ of data in the dielectron (dimuon) channels from pp collisions at $\sqrt{s}=8$ TeV to search for quantum black hole decays involving high-mass dilepton resonances. No excess of events above the expected level of Standard Model background was observed. Exclusion limits at 95% C.L. are set on mass thresholds for black hole production in ADD (6 extra dimensions) and RS1 models. Assuming the black hole mass threshold is equal to the higher-dimensional Planck scale, mass thresholds below 3.65 TeV and 2.24 TeV are excluded for the ADD and RS1 models, respectively.

 14 CHATRCHYAN 13A use 5 fb $^{-1}$ of data from $p\,p$ collisions at $\sqrt{s}=7$ TeV to search for quantum black holes decaying to dijet final states. No excess of events above the expected level of standard model background was observed. Exclusion limits at 95% CL are set on mass thresholds for black hole production in the ADD (2–6 flat extra dimensions) and RS (1 warped extra dimension) model. Limits on the black hole mass threshold are set as a function of the higher-dimensional Planck scale, under assumption that the mass threshold must exceed the above Planck scale. Depending on the model, mass thresholds in the range up to 4.0–5.3 TeV are excluded.

REFERENCES FOR Extra Dimensions

AAD	24S	PR D109 032010	G. Aad <i>et al.</i>	(ATLAS Collab.)
HAYRAPETY	24AE	JHEP 2407 293	A. Hayrapetyan et al.	(CMS Collab.)
HAYRAPETY	24A.J	JHEP 2408 215	A. Hayrapetyan et al.	(CMS Collab.)
HAYRAPETY		PRL 133 011801	A. Hayrapetyan <i>et al.</i>	(CMS Collab.)
TUMASYAN	24B	JHEP 2405 316	A. Tumasyan <i>et al.</i>	(CMS Collab.)
AAD		JHEP 2310 082	G. Aad et al.	(ATLAS Collab.)
FLORES	23	IJMP A38 2350002	M.M. Flores <i>et al.</i>	(WITS, WARS, NIP-UPD+)
TUMASYAN		PL B844 137813	A. Tumasyan <i>et al.</i>	(CMS Collab.)
TUMASYAN	23AW	JHEP 2309 051	A. Tumasyan <i>et al.</i>	(CMS Collab.)
TUMASYAN	23BC	JHEP 2312 189	A. Tumasyan <i>et al.</i>	(CMS Collab.)
TUMASYAN	23H	JHEP 2305 227	A. Tumasyan et al.	(CMS Collab.)
AAD	22F	PR D105 092002	G. Aad et al.	(ATLAS Collab.)
TUMASYAN	22C	PL B832 137263	A. Tumasyan <i>et al.</i>	(CMS Collab.)
TUMASYAN	22D	PR D105 032008	A. Tumasyan <i>et al.</i>	(CMS Collab.)
	22J	PR D106 012004	3	` · · · · · · · · · · · · · · · · · · ·
TUMASYAN			A. Tumasyan <i>et al.</i>	(CMS Collab.)
TUMASYAN	22R	JHEP 2204 087	A. Tumasyan et al.	(CMS Collab.)
TUMASYAN	22U	JHEP 2205 005	A. Tumasyan <i>et al.</i>	(CMS Collab.)
AAD		EPJ C81 332	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	21AY	PL B822 136651	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	21F	PR D103 112006	G. Aad et al.	(ATLAS Collab.)
AVNISH	21	PR D103 115011	Avnish et al.	,
BLAKEMORE	21	PR D104 L061101	C.P. Blakemore et al.	(STAN)
HEACOCK	21	SCI 373 1239	B. Heacock <i>et al.</i>	(NIST, RIKEN, NAGO+)
SIRUNYAN	21A	EPJ C81 13	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
Also	21/1	EPJ C81 333 (errat.)	A.M. Sirunyan et al.	
	01 N			(CMS Collab.)
SIRUNYAN	21N	JHEP 2107 208	A.M. Sirunyan et al.	(CMS Collab.)
TUMASYAN	21D	JHEP 2111 153	A. Tumasyan et al.	(CMS Collab.)
AAD		EPJ C80 1165	G. Aad et al.	(ATLAS Collab.)
AAD	20C	PL B800 135103	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	20T	JHEP 2003 145	G. Aad <i>et al.</i>	(ATLAS Collab.)
LEE	20	PRL 124 101101	J.G. Lee <i>et al.</i>	(WASH)
SIRUNYAN	20AI	JHEP 2005 033	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN	20F	PR D102 032003	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	20Q	EPJ C80 237	A.M. Sirunyan et al.	(CMS Collab.)
TAN	20A	PRL 124 051301	WH. Tan et al.	,
AABOUD	19A	JHEP 1901 030	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD		PR D99 092004	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD	190	JHEP 1904 092	M. Aaboud et al.	(ATLAS Collab.)
AADOOD	19D			,
	190	JHEP 1909 091	G. Aad et al.	(ATLAS Collab.)
Also	4.0	JHEP 2006 042 (errat.)	G. Aad et al.	(ATLAS Collab.)
SIRUNYAN	19	PL B788 7	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN		JHEP 1904 114	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN	19AL	EPJ C79 208	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN	19BE	PRL 122 121803	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN	19CF	JHEP 1910 125	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
AABOUD	18AK	JHEP 1803 042	M. Aaboud et al.	(ATLAS Collab.)
AABOUD	18AL	JHEP 1803 009	M. Aaboud et al.	(ATLAS Collab.)
AABOUD		JHEP 1807 089	M. Aaboud et al.	(ATLAS Collab.)
AABOUD		EPJ C78 102	M. Aaboud et al.	(ATLAS Collab.)
AABOUD		EPJ C78 293	M. Aaboud et al.	(ATLAS Collab.)
AABOUD	18BI	EPJ C78 565	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
				,
AABOUD		JHEP 1812 039	M. Aaboud et al.	(ATLAS Collab.)
AABOUD		PR D98 052008	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD		PR D98 092008	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD	•	PRL 121 191801	M. Aaboud et al.	(ATLAS Collab.)
AABOUD		JHEP 1811 040	M. Aaboud et al.	(ATLAS Collab.)
AABOUD	18F	PL B777 91	M. Aaboud <i>et al.</i>	(ATLAS Collab.)

AABOUD	18I	JHEP 1801 126	M. Aaboud et al.	(ATLAS Collab	
BERGE	18	PRL 120 141101	J. Berge et al.	(MICROSCOPE Collab	
FAYET	18	PR D97 055039	P. Fayet	(EPOL	
FAYET HADDOCK	18A 18	PR D99 055043 PR D97 062002	P. Fayet C. Haddock <i>et al.</i>	(ENSP, EPOL (NAGO, KEK, OSAK+	
SIRUNYAN		PL B781 244	A.M. Sirunyan <i>et al.</i>	(CMS Collab	
SIRUNYAN		JHEP 1803 003	A.M. Sirunyan <i>et al.</i>	(CMS Collab	
SIRUNYAN		JHEP 1804 073	A.M. Sirunyan et al.	(CMS Collab	
SIRUNYAN	18AX	JHEP 1805 088	A.M. Sirunyan et al.	(CMS Collab	
SIRUNYAN		JHEP 1806 120	A.M. Sirunyan <i>et al.</i>	(CMS Collab	
SIRUNYAN		JHEP 1807 075	A.M. Sirunyan <i>et al.</i>	(CMS Collab	
SIRUNYAN SIRUNYAN		JHEP 1808 130 EPJ C78 291	A.M. Sirunyan <i>et al.</i> A.M. Sirunyan <i>et al.</i>	(CMS Collab (CMS Collab	
SIRUNYAN		JHEP 1808 152	A.M. Sirunyan <i>et al.</i>	(CMS Collab	
SIRUNYAN		JHEP 1811 042	A.M. Sirunyan et al.	(CMS Collab	
SIRUNYAN		EPJ C78 789	A.M. Sirunyan et al.	(CMS Collab	
SIRUNYAN	18DJ	JHEP 1809 101	A.M. Sirunyan et al.	(CMS Collab	.)
SIRUNYAN		PR D98 092001	A.M. Sirunyan et al.	(CMS Collab	.)
SIRUNYAN	18F	JHEP 1801 054	A.M. Sirunyan et al.	(CMS Collab	
SIRUNYAN	18I	PRL 120 201801	A.M. Sirunyan <i>et al.</i>	(CMS Collab	
SIRUNYAN AABOUD	18S	PR D97 092005 PR D96 052004	A.M. Sirunyan <i>et al.</i> M. Aaboud <i>et al.</i>	(CMS Collab (ATLAS Collab	.)
AABOUD		PL B775 105	M. Aaboud <i>et al.</i>	(ATLAS Collab	
KLIMCHITSK		PR D95 123013	G.L. Klimchitskaya, V.M.	`	.)
SIRUNYAN		JHEP 1710 073	A.M. Sirunyan <i>et al.</i>	(CMS Collab	.)
SIRUNYAN	-	PL B774 279	A.M. Sirunyan et al.	(CMS Collab	
SIRUNYAN	17F	JHEP 1707 013	A.M. Sirunyan et al.	(CMS Collab	
AABOUD	16F	JHEP 1606 059	M. Aaboud et al.	(ATLAS Collab	
AAD	16AI	JHEP 1603 041	G. Aad et al.	(ATLAS Collab	
AAD	16N	JHEP 1603 026	G. Aad et al.	(ATLAS Collab	
AAD	160	PL B760 520	G. Aad et al.	(ATLAS Collab	
AAD KHACHATRY	16R	PL B755 285	G. Aad <i>et al.</i> V. Khachatryan <i>et al.</i>	(ATLAS Collab (CMS Collab	
KHACHATRY		PL B755 102	V. Khachatryan <i>et al.</i>	(CMS Collab	
AAD		EPJ C75 69	G. Aad et al.	(ATLAS Collab	
AAD		EPJ C75 209	G. Aad <i>et al.</i>	(ATLAS Collab	
Also		EPJ C75 370 (errat.)	G. Aad et al.	(ATLAS Collab	
AAD		JHEP 1512 055	G. Aad et al.	(ATLAS Collab	
AAD	15CS	PR D91 012008	G. Aad et al.	(ATLAS Collab	
Also	1.5	PR D92 059903 (errat.)		(ATLAS Collab	
ACCOMANDO		MPL A30 1540010 JHEP 1504 025	E. Accomando	(SHMF)	
KHACHATRY		PL B749 560	V. Khachatryan <i>et al.</i> V. Khachatryan <i>et al.</i>	(CMS Collab (CMS Collab	
KHACHATRY		PR D91 092005	V. Khachatryan <i>et al.</i>	(CMS Collab	
KHACHATRY	-	PR D91 052009	V. Khachatryan <i>et al.</i>	(CMS Collab	
AAD	14AL	PRL 112 091804	G. Aad et al.	(ATLAS Collab	.)
AAD	14BE	EPJ C74 3134	G. Aad et al.	(ATLAS Collab	.)
AAD	14V	PR D90 052005	G. Aad et al.	(ATLAS Collab	
AAD	13A	PL B718 860	G. Aad et al.	(ATLAS Collab	
AAD		PR D87 112006	G. Aad et al.	(ATLAS Collab	
AAD AAD		PR D88 012004 NJP 15 043007	G. Aad <i>et al.</i> G. Aad <i>et al.</i>	(ATLAS Collab (ATLAS Collab	
AAD		PR D88 072001	G. Aad et al.	(ATLAS Collab	
AAD	13C	PRL 110 011802	G. Aad et al.	(ATLAS Collab	(
AAD	13D	JHEP 1301 029	G. Aad et al.	(ATLAS Collab	
AAD	13E	PR D87 015010	G. Aad et al.	(ATLAS Collab	.)
CHATRCHYAN		JHEP 1301 013	S. Chatrchyan et al.	(CMS Collab	
		JHEP 1307 178	S. Chatrchyan et al.	(CMS Collab	
		PR D87 072005	S. Chatrchyan <i>et al.</i>	(CMS Collab	
Also	13BIM	PRL 111 211804 PRL 112 119903 (errat.)	S. Chatrohyan et al.	(CMS Collab	
CHATRCHYAN	13\//	JHEP 1303 111	S. Chatrchyan <i>et al.</i>	(CMS Collab (CMS Collab	
CHEN	13A	CP C37 063102	J-B. Chen <i>et al.</i>	(DAL	
EDELHAUSER		JHEP 1308 091	L. Edelhauser, T. Flacke,		
XU	13	JP G40 035107	J. Xu et al.	,	,
AAD	12AD	PL B712 331	G. Aad et al.	(ATLAS Collab	.)
AAD		JHEP 1209 041	G. Aad et al.	(ATLAS Collab	
AAD		JHEP 1211 138	G. Aad et al.	(ATLAS Collab	
AAD		PL B718 411	G. Aad <i>et al.</i> G. Aad <i>et al.</i>	(ATLAS Collab	
AAD AAD	12X 12Y	PL B710 519 PL B710 538	G. Aad et al.	(ATLAS Collab (ATLAS Collab	
, v7D	141	I E DI 10 330	G. Mau Et al.	(ATEAS COILAD	٠,

AALTONEN ABAZOV AJELLO BAAK FLACKE NISHIWAKI AAD AAD AALTONEN AALTONEN AALTONEN AALTONEN AARON ABAZOV BEZERRA	12V 12M 12 12 12 12 11F 11X 11G 11R 11U 11C 11H	PR D85 012008 PRL 108 131802 JCAP 1202 012 EPJ C72 2003 PR D85 126007 PL B707 506 PRL 106 121803 EPJ C71 1744 PR D83 112008 PRL 107 051801 PR D83 011102 PL B705 52 PRL 107 011801 PR D83 075004	T. Aaltonen et al. V.M. Abazov et al. M. Ajello et al. M. Baak et al. T. Flacke, C. Pasold K. Nishiwaki et al. G. Aad et al. T. Aaltonen et al. T. Aaltonen et al. T. Aaltonen et al. F. D. Aaron et al. V.M. Abazov et al.	(CDF Collab.) (D0 Collab.) (Fermi-LAT Collab.) (Gfitter Group) (WURZ) (KOBE, OSAK) (ATLAS Collab.) (ATLAS Collab.) (CDF Collab.) (CDF Collab.) (CDF Collab.) (H1 Collab.) (D0 Collab.)
SUSHKOV AALTONEN ABAZOV ABAZOV BEZERRA	11 10N 10F 10P 10	PRL 107 171101 PRL 104 241801 PRL 104 241802 PRL 105 221802 PR D81 055003	A.O. Sushkov et al. T. Aaltonen et al. V.M. Abazov et al. V.M. Abazov et al. V.B. Bezerra et al.	(CDF Collab.) (D0 Collab.) (D0 Collab.)
ABAZOV ABAZOV MASUDA AALTONEN AALTONEN ABAZOV ABAZOV	09D 09 08AC 08S 08J 08S	PRL 103 191803 PRL 102 051601 PRL 102 171101 PRL 101 181602 PR D78 012008 PRL 100 091802 PRL 101 011601	V.M. Abazov et al. V.M. Abazov et al. M. Masuda, M. Sasaki T. Aaltonen et al. T. Aaltonen et al. V.M. Abazov et al. V.M. Abazov et al.	(D0 Collab.) (D0 Collab.) (ICRR) (CDF Collab.) (CDF Collab.) (D0 Collab.) (D0 Collab.)
DAS GERACI	08 08	PR D78 063011 PR D78 022002	P.K. Das, V.H.S. Kumar, P.K. A.A. Geraci <i>et al.</i>	Suresh (STAN)
TRENKEL AALTONEN AALTONEN DECCA HAISCH	08 07G 07H 07A 07	PR D77 122001 PRL 99 171801 PRL 99 171802 EPJ C51 963 PR D76 034014	C. Trenkel T. Aaltonen et al. T. Aaltonen et al. R.S. Decca et al. U. Haisch, A. Weiler	(CDF Collab.) (CDF Collab.)
KAPNER SCHAEL	07 07A	PRL 98 021101 EPJ C49 411	D.J. Kapner <i>et al.</i> S. Schael <i>et al.</i> LC. Tu <i>et al.</i>	(ALEPH Collab.)
TU ABDALLAH ABULENCIA,A GERDES	07 06C 06 06	PRL 98 201101 EPJ C45 589 PRL 97 171802 PR D73 112008	J. Abdallah <i>et al.</i> A. Abulencia <i>et al.</i> D. Gerdes <i>et al.</i>	(DELPHI Collab.) (CDF Collab.)
GOGOLADZE ABAZOV ABAZOV ABDALLAH ABULENCIA SMULLIN	06 05N 05V 05B 05A 05	PR D74 093012 PRL 95 091801 PRL 95 161602 EPJ C38 395 PRL 95 252001 PR D72 122001	I. Gogoladze, C. Macesanu V.M. Abazov et al. V.M. Abazov et al. J. Abdallah et al. A. Abulencia et al. S.J. Smullin et al.	(D0 Collab.) (D0 Collab.) (DELPHI Collab.) (CDF Collab.)
ACHARD ACOSTA BARBIERI	04E 04C 04	PL B587 16 PRL 92 121802 NP B703 127	P. Achard <i>et al.</i> D. Acosta <i>et al.</i> R. Barbieri <i>et al.</i>	(L3 Collab.) (CDF Collab.)
CASSE CHEKANOV HOYLE ABAZOV ABBIENDI ACHARD ADLOFF CHIAVERINI GIUDICE HANNESTAD Also	04 04B 04 03 03D 03D 03 03 03	PRL 92 111102 PL B591 23 PR D70 042004 PRL 90 251802 EPJ C26 331 PL B572 133 PL B568 35 PRL 90 151101 NP B663 377 PR D67 125008 PR D69 029901(errat.)	M. Casse et al. S. Chekanov et al. C.D. Hoyle et al. V.M. Abazov et al. G. Abbiendi et al. P. Achard et al. C. Adloff et al. J. Chiaverini et al. G.F. Giudice, A. Strumia S. Hannestad, G.G. Raffelt S. Hannestad, G.G. Raffelt	(ZEUS Collab.) (WASH) (D0 Collab.) (OPAL Collab.) (L3 Collab.) (H1 Collab.)
HEISTER LONG	03C 03	EPJ C28 1 NAT 421 922	A. Heister <i>et al.</i> J.C. Long <i>et al.</i>	(ALEPH Collab.)
ACHARD ACHARD	02 02D	PL B524 65 PL B531 28	P. Achard <i>et al.</i> P. Achard <i>et al.</i>	(L3 Collab.) (L3 Collab.)
HANNESTAD ABBOTT FAIRBAIRN HANHART	02 01 01 01	PRL 88 071301 PRL 86 1156 PL B508 335 PL B509 1	S. Hannestad, G. Raffelt B. Abbott <i>et al.</i> M. Fairbairn C. Hanhart <i>et al.</i>	(D0 Collab.)
HOYLE ABBIENDI ABREU ABREU	01 00R 00A 00S	PRL 86 1418 EPJ C13 553 PL B491 67 PL B485 45	C.D. Hoyle <i>et al.</i> G. Abbiendi <i>et al.</i> P. Abreu <i>et al.</i> P. Abreu <i>et al.</i>	(OPAL Collab.) (DELPHI Collab.) (DELPHI Collab.)

ABREU CASSISI CHANG CHEUNG CORNET GRAESSER HAN MATHEWS MELE RIZZO ABBIENDI ACCIARRI ACCIARRI BOURILKOV	00Z 00 00B 00 00 00 00 00 00 99P 99M 99S 99S	EPJ C17 53 PL B481 323 PRL 85 3765 PR D61 015005 PR D61 037701 PR D61 074019 PR D62 125018 JHEP 0007 008 PR D61 117901 PR D61 016007 PL B465 303 PL B464 135 PL B470 268 PL B470 281 JHEP 9908 006	P. Abreu et al. S. Cassisi et al. L.N. Chang et al. K. Cheung F. Cornet, M. Relano, J. Rico M.L. Graesser T. Han, D. Marfatia, RJ. Zhang P. Mathews, S. Raychaudhuri, K. Sridha S. Mele, E. Sanchez T.G. Rizzo, J.D. Wells G. Abbiendi et al. M. Acciarri et al. M. Acciarri et al. D. Bourilkov	(OPAL (L3 (L3	Collab.) Collab.) Collab.) Collab.) Collab.)
BOURILKOV HOSKINS	99 85	JHEP 9908 006 PR D32 3084	D. Bourilkov J.K. Hoskins <i>et al.</i>		