Heavy Charged Lepton Searches

Charged Heavy Lepton MASS LIMITS

Sequential Charged Heavy Lepton (L[±]) MASS LIMITS

These experiments assumed that a fourth generation L^\pm decayed to a fourth generation ν_L (or L^0) where ν_L was stable, or that L^\pm decays to a light ν_ℓ via mixing.

See the "Quark and Lepton Compositeness, Searches for" Listings for limits on radiatively decaying excited leptons, i.e. $\ell^* \to \ell \gamma$. See the "WIMPs and other Particle Searches" section for heavy charged particle search limits in which the charged particle could be a lepton.

VALUE (GeV)	CL%	DOCUMENT ID		TECN	COMMENT
>100.8	95	ACHARD	01 B	L3	Decay to νW
>101.9	95	ACHARD	01 B	L3	$m_L - m_{I0} > 15 \text{ GeV}$
• • • We do no	t use the	following data for	avera	ges, fits,	_
> 81.5	95	ACKERSTAFF	98 C	OPAL	Assumed $m_{L^{\pm}} - m_{L^{0}} > 8.4$ GeV
> 80.2	95	ACKERSTAFF	98C	OPAL	$m_{L^0}^{\rm GeV} > m_{L^\pm}^{\rm and} L^\pm \rightarrow \nu W$
< 48 or $>$ 61	95	¹ ACCIARRI	96G	L3	
> 63.9	95	ALEXANDER	96 P	OPAL	Decay to massless $ u$'s
> 63.5	95	BUSKULIC	96 S	ALEP	$m_L - m_{I0} > 7 \text{ GeV}$
> 65	95	BUSKULIC	96s	ALEP	Decay to massless ν 's
none 10-225		² AHMED	94	CNTR	H1 Collab. at HERA
none 12.6-29.6	95	KIM	91 B	AMY	Massless $ u$ assumed
> 44.3	95	AKRAWY	90 G	OPAL	
none 0.5–10	95	³ RILES	90	MRK2	For $(m_{10} - m_{10}) > 0.25 - 0.4 \text{GeV}$
> 8		⁴ STOKER	89	MRK2	For $(m_{I^+} - m_{I^0}) = 0.4 \text{ GeV}$
> 12		⁴ STOKER	89		For $m_{10} = 0.9 \text{ GeV}$
none 18.4-27.6	95	⁵ ABE	88	VNS	L
> 25.5	95	⁶ ADACHI	88B	TOPZ	
none 1.5-22.0	95	BEHREND	88C	CELL	
> 41	90	⁷ ALBAJAR	87 B	UA1	
> 22.5	95	⁸ ADEVA	85	MRKJ	
> 18.0	95	⁹ BARTEL	83	JADE	
none 4–14.5	95	¹⁰ BERGER	81 B	PLUT	
> 15.5	95	¹¹ BRANDELIK	81	TASS	
> 13.		12 AZIMOV	80		
> 16.	95	¹³ BARBER	80 B	CNTR	
> 0.490		¹⁴ ROTHE	69	RVUE	

 $^{^1}$ ACCIARRI 96G assumes LEP result that the associated neutral heavy lepton mass > 40 GeV.

Created: 5/30/2025 07:49

² The AHMED 94 limits are from a search for neutral and charged sequential heavy leptons at HERA via the decay channels $L^- \to e \gamma$, $L^- \to \nu W^-$, $L^- \to e Z$; and $L^0 \to \nu \gamma$, $L^0 \to e^- W^+$, $L^- \to \nu Z$, where the W decays to $\ell \nu_\ell$, or to jets, and Z decays to $\ell^+ \ell^-$ or jets.

³ RILES 90 limits were the result of a special analysis of the data in the case where the mass difference $m_{L^-} - m_{L^0}$ was allowed to be quite small, where L^0 denotes the neutrino

into which the sequential charged lepton decays. With a slightly reduced m_{L^\pm} range, the mass difference extends to about 4 GeV.

- ⁴ STOKER 89 (Mark II at PEP) gives bounds on charged heavy lepton (L^+) mass for the generalized case in which the corresponding neutral heavy lepton (L^0) in the SU(2) doublet is not of negligible mass.
- ⁵ ABE 88 search for L^+ and $L^- \to {\rm hadrons}$ looking for acoplanar jets. The bound is valid for $m_{\nu} < 10$ GeV.
- 6 ADACHI 88B search for hadronic decays giving acoplanar events with large missing energy. ${\sf E_{cm}}^{ee}=$ 52 GeV.
- ⁷ Assumes associated neutrino is approximately massless.
- 8 ADEVA 85 analyze one-isolated-muon data and sensitive to τ $\,<\!10$ nanosec. Assume B(lepton) = 0.30. $E_{\rm cm}$ = 40–47 GeV.
- ⁹BARTEL 83 limit is from PETRA e^+e^- experiment with average $E_{\rm cm}=34.2$ GeV.
- 10 BERGER 81B is DESY DORIS and PETRA experiment. Looking for $e^+e^- \rightarrow L^+L^-$.
- ¹¹ BRANDELIK 81 is DESY-PETRA experiment. Looking for $e^+e^- \rightarrow L^+L^-$.
- ¹² AZIMOV 80 estimated probabilities for M+N type events in $e^+e^- \rightarrow L^+L^-$ deducing semi-hadronic decay multiplicities of L from e^+e^- annihilation data at $E_{\rm cm}=(2/3)m_L$. Obtained above limit comparing these with e^+e^- data (BRANDELIK 80).
- 13 BARBER 80B looked for $e^+e^-
 ightarrow ~L^+L^-$, $L
 ightarrow ~\nu_L^+$ X with MARK-J at DESY-PETRA.

Stable Charged Heavy Lepton (L^{\pm}) MASS LIMITS

VALUE (GeV)	CL%	DOCUMENT ID	TECN				
>102.6	95	ACHARD	01 B	L3			
ullet $ullet$ We do not use the following data for averages, fits, limits, etc. $ullet$ $ullet$							
> 28.2	95 1	⁵ ADACHI	90 C	TOPZ			
none 18.5-42.8	95	AKRAWY	900	OPAL			
> 26.5	95	DECAMP	90F	ALEP			
none m_{μ} -36.3	95	SODERSTROM	M 90	MRK2			

 $^{^{15}}$ ADACHI 90C put lower limits on the mass of stable charged particles with electric charge Q satisfying 2/3 < Q/e < 4/3 and with spin 0 or 1/2. We list here the special case for a stable charged heavy lepton.

Charged Long-Lived Heavy Lepton MASS LIMITS

<i>VALUE</i> (GeV)	CL%	DOCUMENT ID		TECN	CHG	COMMENT	
ullet $ullet$ We do not use the following data for averages, fits, limits, etc. $ullet$ $ullet$							
>574	95	CHATRCHYAN	13 AB	CMS		Leptons singlet model	
>102.0	95	ABBIENDI	03L	OPAL		pair produced in e^+e^-	
> 0.1		¹⁶ ANSORGE	73 B	HBC	_	Long-lived	
none 0.55-4.5		¹⁷ BUSHNIN	73	CNTR	_	Long-lived	
none 0.2-0.92		¹⁸ BARNA	68	CNTR	_	Long-lived	
none 0.97-1.03		¹⁸ BARNA	68	CNTR	_	Long-lived	

¹⁶ ANSORGE 73B looks for electron pair production and electron-like Bremsstrahlung.

Created: 5/30/2025 07:49

 $^{^{14}\,\}mathrm{ROTHE}$ 69 examines previous data on μ pair production and π and K decays.

 $^{^{17}}$ BUSHNIN 73 is SERPUKHOV 70 GeV p experiment. Masses assume mean life above 7×10^{-10} and 3×10^{-8} respectively. Calculated from cross section (see "Charged Quasi-Stable Lepton Production Differential Cross Section" below) and 30 GeV muon pair production data.

¹⁸BARNA 68 is SLAC photoproduction experiment.

Doubly-Charged Heavy Lepton MASS LIMITS

<u>VALUE (GeV)</u> <u>CL%</u> <u>DOCUMENT ID</u> <u>TECN</u> <u>CHG</u>

• • • We do not use the following data for averages, fits, limits, etc. • • • none 1–9 GeV 90 19 CLARK 81 SPEC ++

Doubly-Charged Lepton Production Cross Section $(\mu N \text{ Scattering})$

<u>VALUE (cm²)</u> <u>EVTS</u> <u>DOCUMENT ID</u> <u>TECN</u> <u>CHG</u>

• • • We do not use the following data for averages, fits, limits, etc. • • • $<6. \times 10^{-38}$ 0 ²⁰ CLARK 81 SPEC ++

 20 CLARK 81 is FNAL experiment with 209 GeV muon. Looked for μ^+ nucleon $\to \overline{\mu}_P^0$ X, $\overline{\mu}_P^0 \to \ \mu^+ \mu^- \overline{\nu}_\mu$ and $\mu^+ \ n \to \ \mu_P^{++}$ X, $\mu_P^{++} \to \ 2\mu^+ \nu_\mu$. Above limits are for $\sigma \times BR$ taken from their mass-dependence plot figure 2.

REFERENCES FOR Heavy Charged Lepton Searches

CHATDOUNAN	12 A D	HIED 1207 100	C CI . I		(CNC	C
	13AB	JHEP 1307 122		nyan <i>et al.</i>		Collab.)
Also	001	JHEP 2211 149 (errat.		nyan <i>et al.</i>		Collab.)
	03L	PL B572 8	G. Abbien			Collab.)
	01B	PL B517 75	P. Achard			Collab.)
	98C	EPJ C1 45	K. Ackers			Collab.)
	96G	PL B377 304	M. Acciar			Collab.)
	96P	PL B385 433	G. Alexan			Collab.)
	96S	PL B384 439	D. Buskul		(ALEPH	
	94	PL B340 205	T. Ahmed	et al.		Collab.)
KIM	91B	IJMP A6 2583	G.N. Kim	et al.	(AMY	Collab.)
ADACHI	90C	PL B244 352	 Adachi 	et al.	(TOPAZ	
AKRAWY	90G	PL B240 250	M.Z. Akra	iwy et al.	(OPAL	Collab.)
AKRAWY	900	PL B252 290	M.Z. Akra	iwy et al.	(OPAL	Collab.)
DECAMP	90F	PL B236 511	D. Decam	p et al.	(ÀLEPH	
RILES	90	PR D42 1	K. Riles e	t al.	(Mark II	Collab.)
SODERSTROM	90	PRL 64 2980	E. Soders	trom <i>et al</i> .	(Mark II	Collab.)
STOKER	89	PR D39 1811	D.P. Stok	er <i>et al</i> .	(Mark II	
ABE	88	PRL 61 915	K. Abe e	: al.	(VENUS	
	88B	PR D37 1339	I. Adachi	et al.	(TOPAZ	,
BEHREND	88C	ZPHY C41 7	H.J. Behr	end <i>et al.</i>	(CELLO	
ALBAJAR	87B	PL B185 241	C. Albajar		`	Collab.)
ADEVA	85	PL 152B 439	B. Adeva		(Mark-J	
Also		PRPL 109 131	B. Adeva	et al.	(Mark-J	
	83	PL 123B 353	W. Bartel			Collab.)
	81B	PL 99B 489	C. Berger		(PLUTO	
	81	PL 99B 163	R. Brande		(TASSO	
	81	PRL 46 299	A.R. Clark		(UCB, LBL,	
Also	01	PR D25 2762	W.H. Smi		(LBL, FNAL	
	80	JETPL 32 664	_	ov, V.A. Khoze	(LDL, TIVIL	(PNPI)
/ ZIIVIOV	00	Translated from ZETFP	32 677.	7V, V.71. TITOZC		(1 141 1)
BARBER	80B	PRL 45 1904	D.P. Barb	er <i>et al.</i>	(Mark-J	Collab.)
BRANDELIK	80	PL 92B 199	R. Brande	lik <i>et al.</i>	(TASSO	Collab.)
ANSORGE	73B	PR D7 26	R.E. Anso	rge <i>et al</i> .	`	(CAVE)
BUSHNIN	73	NP B58 476	Y.B. Bush	nin <i>et al.</i>		(SERP)
Also		PL 42B 136	S.V. Golo	√kin <i>et al.</i>		(SERP)
ROTHE	69	NP B10 241	K.W. Rot	he, A.M. Wolsky		(PENN)
BARNA	68	PR 173 1391	A. Barna		(SLAC	`STAN)
					,	,

OTHER RELATED PAPERS -

Created: 5/30/2025 07:49

PERL 81 SLAC-PUB-2752 M.L. Perl (SLAC) Physics in Collision Conference.

 $^{^{19}}$ CLARK 81 is FNAL experiment with 209 GeV muons. Bounds apply to μ_P which couples with full weak strength to muon. See also section on "Doubly-Charged Lepton Production Cross Section."