Charged Higgs Bosons (H^{\pm} and $H^{\pm\pm}$), Searches for

CONTENTS:

 H^{\pm} (charged Higgs) mass limits for m $_{H^+}$ < m(top)

 H^{\pm} (charged Higgs) mass limits for $m_{H^{+}}^{-} > m(top)$

 $H^{\pm\pm}$ (doubly-charged Higgs boson) mass limits

- Limits for $H^{\pm\pm}$ with $T_3 = \pm 1$

- Limits for $H^{\pm\pm}$ with $T_3 = 0$

- H^{\pm} (charged Higgs) mass limits for $m_{H^{+}} < m(top)$ ·

Unless otherwise stated, LEP limits assume $B(H^+ \rightarrow \tau^+ \nu)+B(H^+ \rightarrow c\overline{s})=1$, and hold for all values of $B(H^+ \rightarrow \tau^+ \nu_{\tau})$, and assume H^+ weak isospin of $T_3=+1/2$. In the following, $\tan\beta$ is the ratio of the two vacuum expectation values in two-doublet models (2HDM).

The limits are also applicable to point-like technipions. For a discussion of techniparticles, see the Review of Dynamical Electroweak Symmetry Breaking in this Review.

Limits obtained at the LHC are given in the ${\rm m}_h^{mod-}$ benchmark scenario, see CARENA 13, and hold for all $\tan\!\beta$ values.

For limits obtained in hadronic collisions before the observation of the top quark, and based on the top mass values inconsistent with the current measurements, see the 1996 (Physical Review **D54** 1 (1996)) Edition of this Review.

Searches in e^+e^- collisions at and above the Z pole have conclusively ruled out the existence of a charged Higgs in the region $m_{H^+} \lesssim 45$ GeV, and are meanwhile superseded by the searches in higher energy e^+e^- collisions at LEP. Results that are by now obsolete are therefore not included in this compilation, and can be found in a previous Edition (The European Physical Journal **C15** 1 (2000)) of this Review.

In the following, and unless otherwise stated, results from the LEP experiments (ALEPH, DELPHI, L3, and OPAL) are assumed to derive from the study of the $e^+e^- \rightarrow H^+H^-$ process. Limits from $b \rightarrow s\gamma$ decays are usually stronger in generic 2HDM models than in Supersymmetric models.

VALUE (GeV)	CL%	DOCUMENT ID		TECN	COMMENT
none 80–140	95	¹ AAD	15AF	ATLS	$t \rightarrow bH^+$
none 90–155	95	² KHACHATRY.			$t ightarrow ~b H^+$, $H^+ ightarrow ~ au^+ u$
> 80	95	³ LEP	13	LEP	$e^+e^- \rightarrow H^+H^-, E_{\rm cm} \leq$
> 76.3	95	⁴ ABBIENDI	12	OPAL	$e^+e^- \rightarrow H^+H^-, E_{cm} \le 209 \text{GeV}$
> 74.4	95	ABDALLAH	041	DLPH	$E_{ m cm} \leq$ 209 GeV
> 76.5	95	ACHARD	03E	L3	$E_{\rm cm} \leq 209 {\rm GeV}$
> 79.3	95	HEISTER	0 2P	ALEP	$E_{\rm cm} \leq 209 \; {\rm GeV}$
https://pdg.lbl.g	ov	Page 1		(Created: 5/30/2025 07:50

 \bullet \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet

not use the fol	owing data for ave	rages, fits, lim	nits, etc. ● ● ●
	⁵ AAD	25 ATLS	$H^{\pm} \rightarrow W^{\pm} Z$
	⁶ HAYRAPETY	.24AV CMS	$H^{\pm} \rightarrow W^{\pm} \gamma$
	⁷ AAD	23AH ATLS	$H^{\pm} \rightarrow W^{\pm} Z$
	^{8,9} AAD	23BB ATLS	$t \rightarrow bH^+, H^+ \rightarrow c\overline{b}$
9	^{,10} AAD	23BWATLS	$t \rightarrow bH^+ H^+ \rightarrow$
			$W^+ A^0, A^0 \rightarrow \mu^+ \mu^-$
	¹¹ TUMASYAN	23AV CMS	$H^{\pm} \rightarrow H_2^0 W^{\pm}$
	¹² TUMASYAN	22B CMS	$H^{\pm} \rightarrow W^{\pm} \gamma$
	¹³ AAD	21∨ ATLS	$\overline{t}bH^+, H^+ \rightarrow t\overline{b}$
	¹⁴ SIRUNYAN	21w CMS	$H^+ \rightarrow W^+ Z$
	¹⁵ AAD	20w ATLS	$H^+ \rightarrow t \overline{b}$
	¹⁶ SIRUNYAN	20AO CMS	$H^+ \rightarrow t \overline{b}$
	¹⁷ SIRUNYAN	20AV CMS	$H^+ \rightarrow t \overline{b}$
	¹⁸ SIRUNYAN	20BE CMS	$t \rightarrow bH^+, H^+ \rightarrow c\overline{s}$
	¹⁹ SIRUNYAN	19AH CMS	$H^+ \rightarrow \tau^+ \nu$
	²⁰ SIRUNYAN	19BP CMS	$H^+ \rightarrow W^+ Z$
	²¹ SIRUNYAN	19CC CMS	$t \rightarrow bH^+, H^+ \rightarrow$
			$W^+ A^0, A^0 \rightarrow \mu^+ \mu^-$
	²² SIRUNYAN	19cq CMS	$H^+ \rightarrow W^+ Z$
	²³ AABOUD	18BWATLS	$\overline{t}bH^+$ or $t \rightarrow bH^+$,
			$\frac{H^+}{t b H^+}, \frac{\tau^+ \nu}{H^+} \rightarrow t \overline{b}$
	²⁴ AABOUD	18cd ATLS	
	²⁵ AABOUD	18сн ATLS	$H^{\pm} \rightarrow W^{\pm} Z$
	²⁶ HALLER	18 RVUE	$b ightarrow s \gamma$
	²⁷ SIRUNYAN	18D0 CMS	$t ightarrow ~ b H^+$, $H^+ ightarrow ~ c \overline{b}$
	²⁸ MISIAK	17 RVUE	$b \rightarrow s(d)\gamma$
	²⁹ SIRUNYAN	17AE CMS	$H^{\pm} \rightarrow W^{\pm}Z$
	³⁰ AABOUD	16A ATLS	$t(b) H^+, H^+ \rightarrow \tau^+ \nu$
	³¹ AAD	16aj ATLS	$t(b) H^+, H^+ \rightarrow t \overline{b}$
	³² AAD	16aj ATLS	$q q \rightarrow H^+, H^+ \rightarrow t \overline{b}$
	³³ AAD	15af ATLS	t H [±]
	³⁴ AAD	15M ATLS	$H^{\pm} \rightarrow W^{\pm} Z$
	³⁵ KHACHATRY	.15AX CMS	$tH^+, H^+ \rightarrow t\overline{b}$
	³⁶ KHACHATRY		t H^\pm , $H^\pm o ~ au^\pm u$
			$t \rightarrow bH^+, H^+ \rightarrow c\overline{s}$
	³⁸ AAD	14M ATLS	$H_2^0 \rightarrow H^{\pm} W^{\mp} \rightarrow$
			$H^0 W^{\pm} W^{\mp}, H^0 \rightarrow b \overline{b}$
	³⁹ AALTONEN	14A CDF	t ightarrow b au u
	⁴⁰ AAD	13AC ATLS	$t \rightarrow bH^+$
	⁴¹ AAD	13V ATLS	$t ightarrow ~ b H^+$, lepton non-
	12		universality
	⁴² AAD	12BH ATLS	
	⁴³ CHATRCHYAN		
_			$t \rightarrow bH^+, H^+ \rightarrow W^+ A^0$
95			Type II, flavor physics data
		09AJ CDF	
		09AC D0	$t \rightarrow bH^+$
	⁴⁸ ABAZOV	09AG D0	$t \rightarrow bH^+$

https://pdg.lbl.gov

>316

		⁴⁹ ABAZOV		D0	$t \rightarrow bH^+$
		⁵⁰ ABAZOV		D0	$H^+ \rightarrow t \overline{b}$
		⁵¹ ABULENCIA			$t \rightarrow b H^+$
> 92.0	95		04		$B(\tau\nu)=1$
> 76.7	95	⁵² ABDALLAH	041		
		⁵³ ABBIENDI	03		· · · · · · · · · · · · · · · · · · ·
		⁵⁴ ABAZOV	0 2B	D0	$t ightarrow b H^+$, $H ightarrow au u$
		⁵⁵ BORZUMATI	02	RVUE	
		⁵⁶ ABBIENDI	01Q	OPAL	$B \rightarrow \tau \nu_{\tau} X$
		⁵⁷ BARATE	01E	ALEP	$B \rightarrow \tau \nu_{\tau}$
>315	99		01		$b \rightarrow s\gamma$
		⁵⁹ AFFOLDER	001	CDF	$t \rightarrow b H^+, H \rightarrow \tau \nu$
> 59.5	95	ABBIENDI	99E	OPAL	$E_{ m cm} \le 183 \; m GeV$
		⁶⁰ ABBOTT			$t \rightarrow bH^+$
		⁶¹ ACKERSTAFF	99 D	OPAL	$ au ightarrow e u u$, $\mu u u$
		⁶² ACCIARRI			$B \rightarrow \tau \nu_{\tau}$
		⁶³ AMMAR	97 B	CLEO	$\tau \rightarrow \mu \nu \nu$
		⁶⁴ COARASA	97		$B \rightarrow \tau \nu_{\tau} X$
		⁶⁵ GUCHAIT	97	RVUE	$t \rightarrow bH^{+}, H \rightarrow \tau \nu$
		⁶⁶ MANGANO	97		$B_{u(c)} \rightarrow \tau \nu_{\tau}$
		⁶⁷ STAHL	97		$\tau \rightarrow \mu \nu \nu$
>244	95	⁶⁸ ALAM	95	CLE2	$b ightarrow s \gamma$
		⁶⁹ BUSKULIC	95	ALEP	$b \rightarrow \tau \nu_{\tau} X$

- ¹ AAD 15AF search for $t\overline{t}$ production followed by $t \to bH^+$, $H^+ \to \tau^+ \nu$ in 19.5 fb⁻¹ of pp collisions at $E_{\rm cm} = 8$ TeV. Upper limits on B($t \to bH^+$) B($H^+ \to \tau \nu$) between 2.3×10^{-3} and 1.3×10^{-2} (95% CL) are given for $m_{H^+} = 80$ -160 GeV. See their Fig. 8 for the excluded regions in different benchmark scenarios of the MSSM. The region $m_{H^+} < 140$ GeV is excluded for $\tan\beta > 1$ in the considered scenarios.
- ² KHACHATRYAN 15AX search for $t\bar{t}$ production followed by $t \rightarrow bH^+$, $H^+ \rightarrow \tau^+ \nu$ in 19.7 fb⁻¹ of pp collisions at $E_{\rm cm} = 8$ TeV. Upper limits on B($t \rightarrow bH^+$) B($H^+ \rightarrow \tau \nu$) between 1.2×10^{-2} and 1.5×10^{-3} (95% CL) are given for $m_{H^+} = 80$ -160 GeV. See their Fig. 11 for the excluded regions in different benchmark scenarios of the MSSM. The region $m_{H^+} < 155$ GeV is excluded for tan $\beta > 1$ in the considered scenarios.
- ³ LEP 13 give a limit that refers to the Type II scenario. The limit for $B(H^+ \rightarrow \tau \nu) =$ 1 is 94 GeV (95% CL), and for $B(H^+ \rightarrow cs) = 1$ the region below 80.5 as well as the region 83–88 GeV is excluded (95% CL). LEP 13 also search for the decay mode $H^+ \rightarrow A^0 W^*$ with $A^0 \rightarrow b\overline{b}$, which is not negligible in Type I models. The limit in Type I models is 72.5 GeV (95% CL) if $m_{A^0} > 12$ GeV.

⁴ABBIENDI 12 also search for the decay mode $H^+ \rightarrow A^0 W^*$ with $A^0 \rightarrow b \overline{b}$.

⁵ AAD 25 combine AAD 23AH and AAD 24AD and derive limits on the isotriplet contribution to the gauge boson masses in the Georgi-Machacek model. See their Fig. 5(c).

- ⁶ HAYRAPETYAN 24AV search for production of scalar resonance decaying to $W^{\pm}\gamma$ with $W \rightarrow \ell\nu$ in 138 fb⁻¹ of pp collisions at $E_{\rm cm} = 13$ TeV. See their Fig. 7 for limits on cross section times branching ratio for the mass range 0.3–2.0 TeV for a narrow and a broad width. Combined limits with TUMASYAN 22B are shown in Fig. 8. ⁷ AAD 23AH search for vector boson fusion production of H^{\pm} decaying to $H^{\pm} \rightarrow W^{\pm}Z \rightarrow$
- ⁷ AAD 23AH search for vector boson fusion production of H^{\pm} decaying to $H^{\pm} \rightarrow W^{\pm} Z \rightarrow \ell^{\pm} \nu \ell^{+} \ell^{-}$ in 139 fb⁻¹ of pp collisions at $E_{\rm cm} = 13$ TeV. See their Fig. 9 for limits on cross section times branching ratio in the Georgi-Machacek model for $m_{H^{\pm}} = 0.2$ –1.0 TeV, and also for limits on the triplet vacuum expectation value fraction.

- ⁸ AAD 23BB search for $t\bar{t}$ production followed by $t \rightarrow bH^+$, $H^+ \rightarrow c\bar{b}$ in 139 fb⁻¹ of pp collisions at $E_{\rm cm} = 13$ TeV. See their Fig. 8 for limits on the product of branching ratios for $m_{H^+} = 60-160$ GeV.
- ⁹ Charge conjugated states are also implied.
- ¹⁰ AAD 23BW search for $t \rightarrow bH^+$ from pair produced top quarks, with the decay chain $H^+ \rightarrow W^+ A^0$, $A^0 \rightarrow \mu^+ \mu^-$ using 139 fb⁻¹ of *pp* collisions at $E_{\rm cm} = 13$ TeV. See their Fig. 5(b)-(d) for limits on the product of branching ratios for $m_{H^+} = 120$, 140, 160 GeV, and $m_{\Delta 0} = 15-72$ GeV.
- ¹¹ TUMASYAN 23AV search for production of H^{\pm} in association with a top quark, decaying to $H_2^0 W^{\pm}$, $H_2^0 \rightarrow \tau^+ \tau^-$, using 138 fb⁻¹ of pp collisions at $E_{\rm cm} = 13$ TeV. See their Fig. 9 for limits on production cross section times branching ratios for $m_{H^{\pm}} = 0.3$ –0.7 TeV and $m_{H_2^0}^0 = 0.2$ TeV.
- ¹² TUMASYAN 22B search for production of scalar resonance decaying to $W^{\pm}\gamma \rightarrow qq\gamma$ in 137 fb⁻¹ of pp collisions at $E_{\rm cm} = 13$ TeV. See their Fig. 5 for limits on cross section times branching ratio for the mass range 0.7–6.0 TeV, assuming narrow width or $\Gamma/M = 0.05$.
- ¹³ AAD 21v search for $\overline{t}bH^+$ associated production followed by $H^+ \rightarrow t\overline{b}$ in 139 fb⁻¹ of pp collisions at $E_{\rm cm} = 13$ TeV. See their Fig. 6 for upper limits on cross section times branching ratio for $m_{H^+} = 0.2$ -2 TeV. See also their Fig. 7 for the excluded region in the parameter space of the hMSSM and the following MSSM benchmark scenarios: M_h^{125} , $M_h^{125}(\tilde{\chi})$, $M_h^{125}(\tilde{\tau})$, $M_h^{125}({\rm alignment})$, $M_{h_1}^{125}({\rm CPV})$.
- ¹⁴ SIRUNYAN 21W search for vector boson fusion production of H^+ decaying to $H^+ \rightarrow W^+ Z \rightarrow \ell^+ \nu \ell^+ \ell^-$ in 137 fb⁻¹ of pp collisions at $E_{\rm cm} = 13$ TeV. See their Fig. 8 for limits on cross section times branching ratio for $m_{H^+} = 0.2$ -3.0 TeV, and also for limits on the fraction of the triplet vev contribution to the W mass in the Georgi-Machacek model.
- ¹⁵ AAD 20W search for dijet resonances in events with isolated leptons using 139 fb⁻¹ of pp collisions at $E_{\rm cm} = 13$ TeV. As a byproduct, $H^+ \rightarrow t \overline{b}$ produced in association with $\overline{t}b$ is searched for. Limits on the product of cross section times branching ratio for $m_{H^+} = 0.6-2$ TeV are given in their Fig. 5(c).
- ¹⁶ SIRUNYAN 20AO search for $H^+ \rightarrow t \overline{b}$ produced in association with t(b) in all jet final states in 35.9 fb⁻¹ of pp collisions at $E_{\rm cm} = 13$ TeV. See their Fig. 6 for limits on the product of cross section times branching ratio for $m_{H^+} = 0.2-3$ TeV. Limits for s-channel production are also given for $m_{H^+} = 0.8-3$ TeV. See also Fig. 7 for the corresponding limits in scenarios in the minimal supersymmetric standard model. Cross section limits from combined results with SIRUNYAN 20AV are given in Fig. 8.
- ¹⁷ SIRUNYAN 20AV search for $H^+ \rightarrow t \overline{b}$ produced in association with t(b) in final states with one or two leptons, in 35.9 fb⁻¹ of pp collisions at $E_{\rm cm} = 13$ TeV. See their Fig. 5 for limits on the product of cross section times branching ratio for $m_{H^+} = 0.2-3$ TeV, and their Fig. 6 for the corresponding limits in scenarios in the minimal supersymmetric standard model.
- ¹⁸ SIRUNYAN 20BE search for $t \rightarrow bH^+$ followed by the decay $H^+ \rightarrow c\overline{s}$ in pair produced top quark events using 35.9 fb⁻¹ of *pp* collisions at $E_{\rm cm} = 13$ TeV. Limits on the branching ratio in the range 1.68–0.25% (95%CL) are given for $m_{H^+} = 80$ –160 GeV, see their Fig. 4.
- ¹⁹ SIRUNYAN 19AH search for H^+ in the decay of a pair-produced t quark, or in associated tbH^+ or nonresonant $b\overline{b}H^+W^-$ production, followed by $H^+ \rightarrow \tau^+\nu$, in 35.9 fb⁻¹ of pp collisions at $E_{\rm cm} = 13$ TeV. Upper limits on cross section times branching ratio between 6 pb and 5 fb (95% CL) are given for $m_{H^+} = 80\text{--}3000$ GeV (including the non-resonant production near the top quark mass), see their Fig. 6 (left). See their Fig. 6 (right) for the excluded regions in the $m_h^{\rm mod}$ scenario of the MSSM.

- ²⁰ SIRUNYAN 19BP search for vector boson fusion production of H^+ decaying to $H^+ \rightarrow W^+ Z \rightarrow \ell^+ \nu \ell^+ \ell^-$ in 35.9 fb⁻¹ of pp collisions at $E_{\rm cm} = 13$ TeV. See their Fig. 7 for limits on cross section times branching ratio for $m_{H^+} = 0.3-2.0$ TeV, and also for limits on the fraction of the triplet vev contribution to the W mass in the Georgi-Machacek model.
- ²¹ SIRUNYAN 19CC search for $t \rightarrow bH^+$ from pair produced top quarks, with the decay chain $H^+ \rightarrow W^+A^0$, $A^0 \rightarrow \mu^+\mu^-$ in 35.9 fb⁻¹ of pp collisions at $E_{\rm cm} = 13$ TeV. See their Fig. 2 for limits on the product of branching ratios for $m_{A^0} = 15$ -75 GeV.
- ²² SIRUNYAN 19CQ search for vector boson fusion production of H^+ decaying to $H^+ \rightarrow W^+ Z \rightarrow \ell^+ \nu q \overline{q}$ or $q \overline{q} \ell^+ \ell^-$ in 35.9 fb⁻¹ of p p collisions at $E_{\rm cm} = 13$ TeV. See their Fig. 5 for limits on cross section times branching ratio for $m_{H^+} = 0.6-2.0$ TeV, and also for limits on the triplet vacuum expectation value fraction in the Georgi-Machacek model.
- ²³ AABOUD 18BW search for $\overline{t}bH^+$ associated production or the decay $t \to bH^+$, followed by $H^+ \to \tau^+ \nu$, in 36.1 fb⁻¹ of pp collisions at $E_{\rm cm} = 13$ TeV. See their Fig. 8(a) for upper limits on cross section times branching ratio for $m_{H^+} = 90-2000$ GeV, and Fig. 8(b) for limits on B($t \to bH^+$) B($H^+ \to \tau^+ \nu$) for $m_{H^+} = 90-160$ GeV. See also their Fig. 9 for the excluded region in the hMSSM parameter space.
- ²⁴ AABOUD 18CD search for $\overline{t}bH^+$ associated production followed by $H^+ \rightarrow t\overline{b}$ in 36.1 fb⁻¹ of pp collisions at $E_{\rm cm} = 13$ TeV. See their Fig. 8 for upper limits on cross section times branching ratio for $m_{H^+} = 0.2$ -2 TeV. See also their Fig. 9 for the excluded region in the parameter space of the $m_h^{\rm mod-}$ and hMSSM scenarios of the MSSM. The theory predictions overlaid to the experimental limits to determine the excluded m_{H^+} range are shown without their respective uncertainty band.
- ²⁵ AABOUD 18CH search for vector boson fusion production of H^{\pm} decaying to $H^{\pm} \rightarrow W^{\pm}Z \rightarrow \ell^{\pm}\nu\ell^{+}\ell^{-}$ in 36.1 fb⁻¹ of pp collisions at $E_{\rm cm} = 13$ TeV. See their Fig. 7 for limits on cross section times branching ratio for $m_{H^{\pm}} = 0.2$ –0.9 TeV, and also for limits on the triplet vacuum expectation value fraction in the Georgi-Machacek model.
- ²⁶ HALLER 18 give 95% CL lower limits on m_{H^+} of 590 GeV in type II two Higgs doublet model from combined data (including an unpublished BELLE result) for B($b \rightarrow s\gamma$).
- ²⁷ SIRUNYAN 18DO search for $t\overline{t}$ production followed by $t \rightarrow bH^+$, $H^+ \rightarrow c\overline{b}$ in 19.7 fb⁻¹ of pp collisions at $E_{\rm cm} = 8$ TeV. See their Fig. 3 for upper limits on B($t \rightarrow bH^+$) for $m_{H^+} = 90$ -150 GeV assuming that B($H^+ \rightarrow c\overline{b}$) = 1 and B($t \rightarrow bH^+$) + B($t \rightarrow bW^+$) = 1.
- ²⁸ MISIAK 17 give 95% CL lower limits on m_{H^+} between 570 and 800 GeV in type II two Higgs doublet model from combined data (including an unpublished BELLE result) for $B(b \rightarrow s(d)\gamma)$.
- ²⁹ SIRUNYAN 17AE search for vector boson fusion production of H^{\pm} decaying to $H^{\pm} \rightarrow W^{\pm}Z \rightarrow \ell^{\pm}\nu\ell^{+}\ell^{-}$ in 15.2 fb⁻¹ of pp collisions at $E_{\rm cm} = 13$ TeV. See their Fig. 3 for limits on cross section times branching ratio for $m_{H^{\pm}} = 0.2$ -2.0 TeV, and also for limits on the triplet vacuum expectation value fraction in the Georgi-Machacek model.
- ³⁰ AABOUD 16A search for $t(b) H^{\pm}$ associated production followed by $H^{+} \rightarrow \tau^{+} \nu$ in 3.2 fb⁻¹ of pp collisions at $E_{\rm cm} = 13$ TeV. Upper limits on $\sigma(t(b) H^{\pm}) B(H^{+} \rightarrow \tau \nu)$ between 1.9 pb and 15 fb (95% CL) are given for $m_{H^{+}} = 200-2000$ GeV, see their Fig. 6. See their Fig. 7 for the excluded regions in the hMSSM scenario.
- ³¹AAD 16AJ search for $t(b) H^{\pm}$ associated production followed by $H^{\pm} \rightarrow tb$ in 20.3 fb⁻¹ of pp collisions at $E_{cm} = 8$ TeV. See their Fig. 6 for upper limits on $\sigma(t(b) H^{\pm})$ B($H^{+} \rightarrow tb$) for $m_{\mu+} = 200$ -600 GeV.

- ³² AAD 16AJ search for H^{\pm} production from quark-antiquark annihilation, followed by $H^{\pm} \rightarrow tb$, in 20.3 fb⁻¹ of pp collisions at $E_{\rm cm} = 8$ TeV. See their Fig. 10 for upper limits on $\sigma(H^{\pm}) B(H^{+} \rightarrow tb)$ for $m_{H^{+}} = 400$ –3000 GeV.
- ³³ AAD 15AF search for $t H^{\pm}$ associated production followed by $H^{\pm} \rightarrow \tau^{\pm} \nu$ in 19.5 fb⁻¹ of pp collisions at $E_{\rm cm} = 8$ TeV. Upper limits on $\sigma(tH^{\pm}) \ {\rm B}(H^+ \rightarrow \tau\nu)$ between 760 and 4.5 fb (95% CL) are given for $m_{H^+} = 180\text{-}1000$ GeV. See their Fig. 8 for the excluded regions in different benchmark scenarios of the MSSM.
- ³⁴ AAD 15M search for vector boson fusion production of H^{\pm} decaying to $H^{\pm} \rightarrow W^{\pm} Z \rightarrow q \overline{q} \ell^{+} \ell^{-}$ in 20.3 fb⁻¹ of pp collisions at $E_{\rm cm} = 8$ TeV. See their Fig. 2 for limits on cross section times branching ratio for $m_{H^{\pm}} = 200$ –1000 GeV, and Fig. 3 for limits on thetriplet vacuum expectation value fraction in the Georgi-Machacek model.
- ³⁵ KHACHATRYAN 15AX search for tH^{\pm} associated production followed by $H^{\pm} \rightarrow tb$ in 19.7 fb⁻¹ of pp collisions at $E_{\rm cm} = 8$ TeV. Upper limits on $\sigma(tH^{\pm}) \ {\rm B}(H^+ \rightarrow t\overline{b})$ between 2.0 and 0.13 pb (95% CL) are given for $m_{H^+} = 180$ -600 GeV. See their Fig. 11 for the excluded regions in different benchmark scenarios of the MSSM.
- ³⁶ KHACHATRYAN 15AX search for tH^{\pm} associated production followed by $H^{\pm} \rightarrow \tau^{\pm}\nu$ in 19.7 fb⁻¹ of *pp* collisions at $E_{\rm cm} = 8$ TeV. Upper limits on $\sigma(tH^{\pm}) \ {\rm B}(H^+ \rightarrow \tau\nu)$ between 380 and 25 fb (95% CL) are given for $m_{H^+} = 180-600$ GeV. See their Fig. 11 for the excluded regions in different benchmark scenarios of the MSSM.
- ³⁷ KHACHATRYAN 15BF search for $t\overline{t}$ production followed by $t \rightarrow bH^+$, $H^+ \rightarrow c\overline{s}$ in 19.7 fb⁻¹ of pp collisions at $E_{\rm cm} = 8$ TeV. Upper limits on B($t \rightarrow bH^+$) B($H^+ \rightarrow c\overline{s}$) between 1.2×10^{-2} and 6.5×10^{-2} (95% CL) are given for $m_{H^+} = 90$ -160 GeV.
- ³⁸ AAD 14M search for the decay cascade $H_2^0 \rightarrow H^{\pm} W^{\mp} \rightarrow H^0 W^{\pm} W^{\mp}$, H^0 decaying to $b\overline{b}$ in 20.3 fb⁻¹ of pp collisions at $E_{\rm cm} = 8$ TeV. See their Table III for limits on cross section times branching ratio for $m_{H_2^0}^{0}$ = 325–1025 GeV and m_{H^+} = 225–925 GeV.
- ³⁹ AALTONEN 14A measure B($t \rightarrow b\tau\nu$) = 0.096 ± 0.028 using 9 fb⁻¹ of $p\overline{p}$ collisions at $E_{\rm cm}$ = 1.96 TeV. For m_{H^+} = 80–140 GeV, this measured value is translated to a limit B($t \rightarrow bH^+$) < 0.059 at 95% CL assuming B($H^+ \rightarrow \tau^+\nu$) = 1.
- ⁴⁰ AAD 13AC search for $t\bar{t}$ production followed by $t \rightarrow bH^+$, $H^+ \rightarrow c\bar{s}$ (flavor unidentified) in 4.7 fb⁻¹ of pp collisions at $E_{cm} = 7$ TeV. Upper limits on B($t \rightarrow bH^+$) between 0.05 and 0.01 (95%CL) are given for $m_{H^+}=90-150$ GeV and B($H^+ \rightarrow c\bar{s}$)=1.
- ⁴¹ AAD 13∨ search for t t production followed by t → bH⁺, H⁺ → τ⁺ν through violation of lepton universality with 4.6 fb⁻¹ of pp collisions at E_{cm} = 7 TeV. Upper limits on B(t → bH⁺) between 0.032 and 0.044 (95% CL) are given for m_{H⁺} = 90–140 GeV and B(H⁺ → τ⁺ν) = 1. By combining with AAD 12BH, the limits improve to 0.008 to 0.034 for m_{H⁺} = 90–160 GeV. See their Fig. 7 for the excluded region in the m_h^{max} scenario of the MSSM.
- ⁴² AAD 12BH search for $t\bar{t}$ production followed by $t \to bH^+$, $H^+ \to \tau^+ \nu$ with 4.6 fb⁻¹ of pp collisions at $E_{\rm cm} = 7$ TeV. Upper limits on B($t \to bH^+$) between 0.01 and 0.05 (95% CL) are given for $m_{H^+} = 90$ -160 GeV and B($H^+ \to \tau^+ \nu$) = 1. See their Fig. 8 for the excluded region in the $m_h^{\rm max}$ scenario of the MSSM.
- ⁴³ CHATRCHYAN 12AA search for tt production followed by t → bH⁺, H⁺ → τ⁺ν with 2 fb⁻¹ of pp collisions at E_{cm} = 7 TeV. Upper limits on B(t → bH⁺) between 0.019 and 0.041 (95% CL) are given for m_{H⁺} = 80–160 GeV and B(H⁺ → τ⁺ν)=1.
 ⁴⁴ AALTONEN 11P search in 2.7 fb⁻¹ of pp collisions at E_{cm} = 1.96 TeV for the decay
- chain $t \to bH^+$, $H^+ \to W^+ A^0$, $A^0 \to \tau^+ \tau^-$ with $m_{A^0}^0$ between 4 and 9 GeV. See their Fig. 4 for limits on B($t \to bH^+$) for 90 $< m_{H^+}^+ < 160$ GeV.

- ⁴⁵ DESCHAMPS 10 make Type II two Higgs doublet model fits to weak leptonic and semileptonic decays, $b \rightarrow s\gamma$, B, B_s mixings, and $Z \rightarrow b\overline{b}$. The limit holds irrespective of tan β .
- ⁴⁶ AALTONEN 09AJ search for $t \rightarrow bH^+$, $H^+ \rightarrow c\overline{s}$ in $t\overline{t}$ events in 2.2 fb⁻¹ of $p\overline{p}$ collisions at $E_{\rm cm} = 1.96$ TeV. Upper limits on B($t \rightarrow bH^+$) between 0.08 and 0.32 (95% CL) are given for $m_{H^+} = 60$ –150 GeV and B($H^+ \rightarrow c\overline{s}$) = 1.
- ⁴⁷ ABAZOV 09AC search for $t \rightarrow bH^+$, $H^+ \rightarrow \tau^+ \nu$ in $t\bar{t}$ events in 0.9 fb⁻¹ of $p\bar{p}$ collisions at $E_{\rm cm} = 1.96$ TeV. Upper limits on B($t \rightarrow bH^+$) between 0.19 and 0.25 (95% CL) are given for $m_{H^+} = 80$ -155 GeV and B($H^+ \rightarrow \tau^+ \nu$) = 1. See their Fig. 4 for an excluded region in a MSSM scenario.
- ⁴⁸ ABAZOV 09AG measure $t\bar{t}$ cross sections in final states with ℓ + jets ($\ell = e, \mu$), $\ell\ell$, and $\tau\ell$ in 1 fb⁻¹ of $p\bar{p}$ collisions at $E_{\rm cm} = 1.96$ TeV, which constrains possible $t \rightarrow bH^+$ branching fractions. Upper limits (95% CL) on B($t \rightarrow bH^+$) between 0.15 and 0.40 (0.48 and 0.57) are given for B($H^+ \rightarrow \tau^+ \nu$) = 1 (B($H^+ \rightarrow c\bar{s}$) = 1) for $m_{H^+} = 80-155$ GeV.
- ⁴⁹ ABAZOV 09AI search for $t \rightarrow bH^+$ in $t\overline{t}$ events in 1 fb⁻¹ of $p\overline{p}$ collisions at $E_{\rm cm} = 1.96$ TeV. Final states with $\ell + {\rm jets}$ ($\ell = e, \mu$), $\ell\ell$, and $\tau\ell$ are examined. Upper limits on B($t \rightarrow bH^+$) (95% CL) between 0.15 and 0.19 (0.19 and 0.22) are given for B($H^+ \rightarrow \tau^+ \nu$) = 1 (B($H^+ \rightarrow c\overline{s}$) = 1) for $m_{H^+} = 80$ -155 GeV. For B($H^+ \rightarrow \tau^+ \nu$) = 1 also a simultaneous extraction of B($t \rightarrow bH^+$) and the $t\overline{t}$ cross section is performed, yielding a limit on B($t \rightarrow bH^+$) between 0.12 and 0.26 for $m_{H^+} = 80$ -155 GeV. See their Figs. 5–8 for excluded regions in several MSSM scenarios.
- ⁵⁰ ABAZOV 09P search for H^+ production by $q \overline{q}'$ annihilation followed by $H^+ \rightarrow t \overline{b}$ decay in 0.9 fb⁻¹ of $p \overline{p}$ collisions at $E_{\rm cm} = 1.96$ TeV. Cross section limits in several two-doublet models are given for $m_{H^+} = 180-300$ GeV. A region with 20 $\lesssim \tan\beta \lesssim$ 70 is excluded (95% CL) for 180 GeV $\lesssim m_{H^+} \lesssim 184$ GeV in type-I models.
- ⁵¹ ABULENCIA 06E search for associated $H^0 W$ production in $p\overline{p}$ collisions at $E_{\rm cm} = 1.96$ TeV. A fit is made for $t\overline{t}$ production processes in dilepton, lepton + jets, and lepton + τ final states, with the decays $t \to W^+ b$ and $t \to H^+ b$ followed by $H^+ \to \tau^+ \nu$, $c\overline{s}$, $t^*\overline{b}$, or $W^+ H^0$. Within the MSSM the search is sensitive to the region $\tan\beta < 1$ or > 30 in the mass range $m_{H^+} = 80-160$ GeV. See Fig. 2 for the excluded region in a certain MSSM scenario.
- ⁵² ABDALLAH 04I search for $e^+e^- \rightarrow H^+H^-$ with H^{\pm} decaying to $\tau\nu$, *cs*, or W^*A^0 in Type-I two-Higgs-doublet models.
- $^{53}\,{\rm ABBIENDI}$ 03 give a limit $m_{H^+}>1.28{\rm tan}\beta$ GeV (95%CL) in Type II two-doublet models.
- ⁵⁴ ABAZOV 02B search for a charged Higgs boson in top decays with $H^+ \rightarrow \tau^+ \nu$ at $E_{\rm cm}$ =1.8 TeV. For m_{H^+} =75 GeV, the region tan β > 32.0 is excluded at 95%CL. The excluded mass region extends to over 140 GeV for tan β values above 100.
- ⁵⁵ BORZUMATI 02 point out that the decay modes such as $b\overline{b}W$, A^0W , and supersymmetric ones can have substantial branching fractions in the mass range explored at LEP II and Tevatron.
- ⁵⁶ ABBIENDI 01Q give a limit $\tan\beta/m_{H^+} < 0.53 \text{ GeV}^{-1}$ (95%CL) in Type II two-doublet models.
- ⁵⁷ BARATE 01E give a limit $\tan\beta/m_{H^+} < 0.40 \text{ GeV}^{-1}$ (90% CL) in Type II two-doublet models. An independent measurement of $B \rightarrow \tau \nu_{\tau} X$ gives $\tan\beta/m_{H^+} < 0.49 \text{ GeV}^{-1}$ (90% CL).
- ⁵⁸ GAMBINO 01 use the world average data in the summer of 2001 B($b \rightarrow s\gamma$) = (3.23 ± 0.42) × 10⁻⁴. The limit applies for Type-II two-doublet models.

- ⁵⁹ AFFOLDER 001 search for a charged Higgs boson in top decays with $H^+ \rightarrow \tau^+ \nu$ in $p\overline{p}$ collisions at $E_{\rm cm}$ =1.8 TeV. The excluded mass region extends to over 120 GeV for tan β values above 100 and B($\tau \nu$) = 1. If B($t \rightarrow bH^+$) \gtrsim 0.6, m_{H^+} up to 160 GeV is excluded. Updates ABE 97L.
- ⁶⁰ ABBOTT 99E search for a charged Higgs boson in top decays in $p\overline{p}$ collisions at $E_{\rm cm}$ =1.8 TeV, by comparing the observed $t\overline{t}$ cross section (extracted from the data assuming the dominant decay $t \rightarrow bW^+$) with theoretical expectation. The search is sensitive to regions of the domains $\tan\beta \lesssim 1$, 50 $< m_{H^+}$ (GeV) $\lesssim 120$ and $\tan\beta \gtrsim 40$, 50 $< m_{H^+}$

(GeV) \lesssim 160. See Fig. 3 for the details of the excluded region.

- ⁶¹ ACKERSTAFF 99D measure the Michel parameters ρ , ξ , η , and $\xi\delta$ in leptonic τ decays from $Z \rightarrow \tau \tau$. Assuming $e_{-\mu}$ universality, the limit $m_{H^+} > 0.97 \tan\beta$ GeV (95%CL) is obtained for two-doublet models in which only one doublet couples to leptons.
- 62 ACCIARRI 97F give a limit $m_{H^+}>$ 2.6 tan β GeV (90% CL) from their limit on the exclusive $B \rightarrow ~\tau \nu_{\tau}$ branching ratio.
- ⁶³ AMMAR 97B measure the Michel parameter ρ from $\tau \rightarrow e\nu\nu$ decays and assumes e/μ universality to extract the Michel η parameter from $\tau \rightarrow \mu\nu\nu$ decays. The measurement is translated to a lower limit on m_{H^+} in a two-doublet model $m_{H^+} > 0.97 \tan\beta$ GeV (90% CL).
- ⁶⁴COARASA 97 reanalyzed the constraint on the $(m_{H^{\pm}}, \tan\beta)$ plane derived from the inclusive $B \rightarrow \tau \nu_{\tau} X$ branching ratio in GROSSMAN 95B and BUSKULIC 95. They show that the constraint is quite sensitive to supersymmetric one-loop effects.
- ⁶⁵ GUCHAIT 97 studies the constraints on m_{H^+} set by Tevatron data on $\ell \tau$ final states in $t\bar{t} \rightarrow (Wb)(Hb), W \rightarrow \ell \nu, H \rightarrow \tau \nu_{\tau}$. See Fig. 2 for the excluded region.
- ⁶⁶ MANGANO 97 reconsiders the limit in ACCIARRI 97F including the effect of the potentially large $B_c \rightarrow \tau \nu_{\tau}$ background to $B_u \rightarrow \tau \nu_{\tau}$ decays. Stronger limits are obtained.
- ⁶⁷ STAHL 97 fit τ lifetime, leptonic branching ratios, and the Michel parameters and derive limit $m_{H^+} > 1.5 \tan\beta$ GeV (90% CL) for a two-doublet model. See also STAHL 94.
- 68 ALAM 95 measure the inclusive $b \rightarrow s\gamma$ branching ratio at $\Upsilon(4S)$ and give B($b \rightarrow s\gamma) < 4.2 \times 10^{-4}$ (95% CL), which translates to the limit $m_{H^+} > [244 + 63/(\tan\beta)^{1.3}]$ GeV in the Type II two-doublet model. Light supersymmetric particles can invalidate this 60 bound.
- ⁶⁹ BUSKULIC 95 give a limit $m_{H^+} > 1.9 \tan\beta$ GeV (90% CL) for Type-II models from $b \rightarrow \tau \nu_{\tau} X$ branching ratio, as proposed in GROSSMAN 94.

- H^{\pm} (charged Higgs) mass limits for $\mathsf{m}_{H^+} > \mathsf{m}(\mathsf{top})$ ------

Limits obtained at the LHC are given in the m_h^{mod-} benchmark scenario, see CARENA 13, and depend on the tan β values.

000 0/111			rana oo.	
VALUE (GeV)	CL%	DOCUMENT ID	TECN	COMMENT
> 181	95	¹ AABOUD	18BWATLS	aneta=10
> 249	95	¹ AABOUD	18BWATLS	aneta=20
> 390	95	¹ AABOUD	18BWATLS	aneta= 30
> 894	95	¹ AABOUD	18BWATLS	aneta=40
>1017	95	¹ AABOUD	18BWATLS	aneta=50
>1103	95	¹ AABOUD	18BWATLS	aneta=60

 $^1\,\rm AABOUD$ 18BW search for $\overline{t}\,b\,H^+$ associated production in 36.1 fb $^{-1}$ of $p\,p$ collisions at $E_{\rm CM}=$ 13 TeV. See also their Fig. 9 for the excluded region in the hMSSM parameter space.

– $H^{\pm\pm}$ (doubly-charged Higgs boson) mass limits -

This section covers searches for a doubly-charged Higgs boson with couplings to lepton pairs. Its weak isospin T_3 is thus restricted to two possibilities depending on lepton chiralities: $T_3(H^{\pm\pm}) = \pm 1$, with the coupling $g_{\ell\ell}$ to $\ell_L^- \ell_L^{\prime-}$ and $\ell_R^+ \ell_R^{\prime+}$ ("left-handed") and $T_3(H^{\pm\pm}) = 0$, with the coupling to $\ell_R^- \ell_R^{\prime-}$ and $\ell_L^+ \ell_L^{\prime+}$ ("right-handed"). These Higgs bosons appear in some left-right symmetric models based on the gauge group $SU(2)_L \times SU(2)_R \times U(1)$, the type-II seesaw model, and the Zee-Babu model. The two cases are listed separately in the following. Unless noted, one of the lepton flavor combinations is assumed to be dominant in the decay.

	MILII 13	—				
VALUE (GeV)	CL%		DOCUMENT ID		TECN	COMMENT
>1020	95	1	AAD	23AI	ATLS	$\ell \ell$
> 220	95	2	AABOUD	19ĸ	ATLS	$W^{\pm}W^{\pm}$
> 768	95	3	AABOUD	18BC	ATLS	ee
> 846	95		AABOUD	18BC	ATLS	$\mu\mu$
> 468	95		AAD	15 AG	ATLS	eμ
> 400	95		AAD	15 AP	ATLS	eτ
> 400	95		AAD		ATLS	μau
> 169	95		CHATRCHYAN			au au
> 300	95		CHATRCHYAN			μau
> 293	95		CHATRCHYAN			eτ
> 395	95		CHATRCHYAN			$\mu \mu$
> 391	95		CHATRCHYAN			$e\mu$
> 382	95		CHATRCHYAN		CMS	ee
> 98.1	95		ABDALLAH	03	DLPH	ττ
> 99.0	95	8	ABBIENDI	02C	OPAL	au au
• • • We do not us	se the foll	owi	ng data for aver	ages,	fits, lim	its, etc. • • •
		9	AAD	25	ATLS	$W^{\pm}W^{\pm}$
			AAD		ATLS	$W^{\pm}W^{\pm}$
> 350	95		AAD		ATLS	$W^{\pm}W^{\pm}$
> 230	95 95		AAD		ATLS	$H^{\pm\pm}H^{\mp}$ associated produc-
/ 230	90		AAD	210	AILS	tion. $H^{\pm\pm} \rightarrow W^{\pm}W^{\pm}$.
						$H^{\pm} \rightarrow W^{\pm} Z$
		13	SIRUNYAN	21W	CMS	$W^{\pm}W^{\pm}$
			SIRUNYAN		CMS	$W^{\pm}W^{\pm}$
			SIRUNYAN		CMS	$W^{\pm}W^{\pm}$
> 551	95		AAD		ATLS	ee
> 516	95 95		AAD		ATLS	μμ
> 010	50		KANEMURA	15	RVUE	$W^{\mu\nu}(*) \pm W^{(*)} \pm$
			KHACHATRY		CMS	$W^{\pm}W^{\pm}$
			KANEMURA			$W^{(*)\pm}W^{(*)\pm}$
> 220	05		AAD	14 12)	RVUE	
> 330	95 05		AAD AAD	13Y	ATLS	$\mu\mu$
> 237	95 05	20	AAD AAD	13Y	-	μau
> 355	95 05	21	AAD AAD		ATLS	$\mu\mu$
> 398	95 05	21	AAD AAD		ATLS	$\mu\mu$
> 375	95		AAD	12CQ	ATLS	eμ

Limits for $H^{\pm\pm}$ with $T_3 = \pm 1$

> 409 > 128	95 95	²¹ AAD ²² ABAZOV	12cq ATLS 12A D0	ее т т
> 144	95	²² ABAZOV	12A D0	μau
> 245	95	²³ AALTONEN	11AF CDF	$\mu\mu$
> 210	95	²³ AALTONEN	11AF CDF	$e\mu$
> 225	95	²³ AALTONEN	11AF CDF	ee
> 114	95	²⁴ AALTONEN	08AA CDF	eτ
> 112	95	²⁴ AALTONEN	08AA CDF	μau
> 168	95	²⁵ ABAZOV	08v D0	$\mu\mu$
		²⁶ AKTAS	06A H1	single $H^{\pm\pm}$
> 133	95	²⁷ ACOSTA	05L CDF	stable
> 118.4	95	²⁸ ABAZOV	04E D0	$\mu\mu$
		²⁹ ABBIENDI	03Q OPAL	$E_{\rm cm} \leq 209$ GeV, single
		³⁰ GORDEEV		$H^{\pm\pm}$
		³¹ ASAKA	97 SPEC	muonium conversion
	05	³² ACTON	95 THEO	
> 45.6	95		92м OPAL	
> 30.4	95	³³ ACTON	92м OPAL	
none 6.5–36.6	95	³⁴ SWARTZ	90 MRK2	
-				-

¹AAD 23AI search for $H^{++}H^{--}$ production using 139 fb⁻¹ of pp collisions at $E_{cm} =$ 13 TeV. Decay branching ratios B($H^{++} \rightarrow \ell^+ \ell'^+$) for the six flavor combinations are assumed to be equal, adding up to unity. If the T₃ = 0 states are degenerate with the T₃ = ±1 states, the limit becomes 1080 GeV. ²AABOUD 19K search for pair production of $H^{++}H^{--}$ followed by the decay $H^{\pm\pm} \rightarrow$

- ² AABOUD 19K search for pair production of $H^{++}H^{--}$ followed by the decay $H^{\pm\pm} \rightarrow W^{\pm}W^{\pm}$ in 36.1 fb⁻¹ of pp collisions at $E_{\rm cm} = 13$ TeV. The search is interpreted in a doublet-triplet extension of the scalar sector with a vev of 0.1 GeV, leading to B($H^{\pm\pm} \rightarrow W^{\pm}W^{\pm}$) = 1. See their Fig. 5 for limits on the cross section for $m_{H^{++}}$ between 200 and 700 GeV.
- 3 See their Figs. 11(b) and 13 for limits with smaller branching ratios.
- ⁴ AAD 15AG search for $H^{++}H^{--}$ production in 20.3 fb⁻¹ of *pp* collisions at $E_{cm} = 8$ TeV. The limit assumes 100% branching ratio to the specified final state. See their Fig. 5 for limits for arbitrary branching ratios.
- ⁵ AAD 15AP search for $H^{++}H^{--}$ production in 20.3 fb⁻¹ of *pp* collisions at $E_{cm} = 8$ TeV. The limit assumes 100% branching ratio to the specified final state.
- ⁶ CHATRCHYAN 12AU search for $H^{++}H^{--}$ production with 4.9 fb⁻¹ of *pp* collisions at $E_{\rm cm} = 7$ TeV. The limit assumes 100% branching ratio to the specified final state. See their Table 6 for limits including associated $H^{++}H^{-}$ production or assuming different scenarios.
- ⁷ABDALLAH 03 search for $H^{++}H^{--}$ pair production either followed by $H^{++} \rightarrow \tau^+ \tau^+$, or decaying outside the detector.
- ⁸ABBIENDI 02C searches for pair production of $H^{++}H^{--}$, with $H^{\pm\pm} \rightarrow \ell^{\pm}\ell^{\pm}$ ($\ell,\ell' = e,\mu,\tau$). The limit holds for $\ell = \ell' = \tau$, and becomes stronger for other combinations of leptonic final states. To ensure the decay within the detector, the limit only applies for $g(H\ell\ell) \gtrsim 10^{-7}$.

⁹AAD 25 combine AAD 23AH and AAD 24AD and derive limits on the isotriplet contribution to the gauge boson masses in the Georgi-Machacek model. See their Fig. 5(c).

¹⁰ AAD 24AD search for production of $H^{\pm\pm}$ by $W^{\pm} W^{\pm}$ fusion, in the decay to $W^{\pm} W^{\pm}$, using 139 fb⁻¹ of pp collisions at $E_{\rm cm} = 13$ TeV. See their Fig. 12 for limits on cross section times branching ratio for $m_{H^{\pm\pm}}$ between 0.2 and 3.0 TeV. Limits on the isotriplet contribution to the gauge-boson masses in the Georgi-Machacek model are also shown.

- ¹¹ AAD 21U search for pair production of $H^{++}H^{--}$ followed by the decay $H^{\pm\pm} \rightarrow W^{\pm}W^{\pm}$ in 139 fb⁻¹ of *pp* collisions at $E_{\rm cm} = 13$ TeV. The search is interpreted in a triplet extension of the SM Higgs sector with a triplet vev of 0.1 GeV, leading to $B(H^{\pm\pm} \rightarrow W^{\pm}W^{\pm}) = 1$. See their Fig. 9(a) for limits on the cross section for $m_{H^{++}}$, between 200 and 600 GeV.
- ¹² AAD 21U search for associated production of $H^{\pm\pm} H^{\mp}$ followed by the decays $H^{\pm\pm} \rightarrow W^{\pm}W^{\pm}$, $H^{\pm} \rightarrow W^{\pm}Z$ in 139 fb⁻¹ of pp collisions at $E_{\rm cm} = 13$ TeV. $H^{\pm\pm}$ and H^{\pm} are assumed to be degenerate in mass within 5 GeV. The search is interpreted in a triplet extension of the SM Higgs sector with a triplet vev of 0.1 GeV, leading to B($H^{\pm\pm} \rightarrow W^{\pm}W^{\pm}$) = 1. See their Fig. 9(b) for limits on the cross section for $m_{H^{++}}$ between 200 and 600 GeV.
- ¹³ SIRUNYAN 21W search for vector boson fusion production of $H^{\pm\pm}$ decaying to $H^{\pm\pm} \rightarrow W^{\pm}W^{\pm} \rightarrow \ell^{\pm}\nu \ell^{\pm}\nu$ in 137 fb⁻¹ of pp collisions at $E_{\rm cm} = 13$ TeV. See their Fig. 8 for limits on cross section times branching ratio for $m_{H^{++}} = 0.2$ -3.0 TeV.
- ¹⁴ SIRUNYAN 19CQ search for $H^{\pm\pm}$ production by vector boson fusion followed by the decay $H^{\pm\pm} \rightarrow W^{\pm}W^{\pm} \rightarrow qq\ell\nu$ in 35.9 fb⁻¹ of pp collisions at $E_{\rm cm} = 13$ TeV. See their Fig. 5 for limits on cross section times branching ratio for $m_{H^{\pm\pm}}$ between 0.6 and 2 TeV.
- and 2 TeV. 15 SIRUNYAN 18CC search for $H^{\pm\pm}$ production by vector boson fusion followed by the decay $H^{\pm\pm} \rightarrow W^{\pm}W^{\pm}$ in 35.9 fb⁻¹ of pp collisions at $E_{\rm cm} = 13$ TeV. See their Fig. 3 for limits on cross section times branching ratio for $m_{H^{\pm\pm}}$ between 200 and 1000 GeV.
- ¹⁶ KANEMURA 15 examine the case where H^{++} decays preferentially to $W^{(*)}W^{(*)}$ and estimate that a lower mass limit of ~ 84 GeV can be derived from the same-sign dilepton data of AAD 15AG if H^{++} decays with 100% branching ratio to $W^{(*)}W^{(*)}$.
- ¹⁷ KHACHATRYAN 15D search for $H^{\pm\pm}$ production by vector boson fusion followed by the decay $H^{\pm\pm} \rightarrow W^{\pm}W^{\pm}$ in 19.4 fb⁻¹ of *pp* collisions at $E_{\rm cm} = 8$ TeV. See their Fig. 4 for limits on cross section times branching ratio for $m_{H^{++}}$ between 160 and 800 GeV.
- ¹⁸ KANEMURA 14 examine the case where H^{++} decays preferentially to $W^{(*)}W^{(*)}$ and estimate that a lower mass limit of ~ 60 GeV can be derived from the same-sign dilepton data of AAD 12CY.
- ¹⁹ AAD 13Y search for $H^{++}H^{--}$ production in a generic search of events with three charged leptons in 4.6 fb⁻¹ of pp collisions at $E_{cm} = 7$ TeV. The limit assumes 100% branching ratio to the specified final state.
- ²⁰AAD 12AY search for $H^{++}H^{--}$ production with 1.6 fb⁻¹ of pp collisions at $E_{cm} = 7$ TeV. The limit assumes 100% branching ratio to the specified final state.
- ²¹AAD 12CQ search for $H^{++}H^{--}$ production with 4.7 fb⁻¹ of *pp* collisions at $E_{cm} =$ 7 TeV. The limit assumes 100% branching ratio to the specified final state. See their Table 1 for limits assuming smaller branching ratios.
- ²²ABAZOV 12A search for $H^{++}H^{--}$ production in 7.0 fb⁻¹ of $p\overline{p}$ collisions at $E_{\rm cm} = 1.96$ TeV.
- ²³ AALTONEN 11AF search for $H^{++}H^{--}$ production in 6.1 fb⁻¹ of $p\overline{p}$ collisions at E_{cm} a = 1.96 TeV.
- ²⁴ AALTONEN 08AA search for $H^{++}H^{--}$ production in $p\overline{p}$ collisions at $E_{cm} = 1.96$ TeV. The limit assumes 100% branching ratio to the specified final state.
- ²⁵ABAZOV 08V search for $H^{++}H^{--}$ production in $p\overline{p}$ collisions at E_{cm} = 1.96 TeV. The limit is for B($H \rightarrow \mu\mu$) = 1. The limit is updated in ABAZOV 12A.
- ²⁶ AKTAS 06A search for single $H^{\pm\pm}$ production in ep collisions at HERA. Assuming that H^{++} only couples to $e^+\mu^+$ with $g_{e\mu} = 0.3$ (electromagnetic strength), a limit $m_{H^{++}} > 141$ GeV (95% CL) is derived. For the case where H^{++} couples to $e\tau$ only the limit is 112 GeV
- the limit is 112 GeV. 27 ACOSTA 05L search for $H^{++}H^{--}$ pair production in $p\overline{p}$ collisions. The limit is valid for $g_{\ell \ell'} < 10^{-8}$ so that the Higgs decays outside the detector.

- ²⁸ABAZOV 04E search for $H^{++}H^{--}$ pair production in $H^{\pm\pm} \rightarrow \mu^{\pm}\mu^{\pm}$. The limit is valid for $g_{\mu\mu} \gtrsim 10^{-7}$.
- ²⁹ ABBIENDI 03Q searches for single $H^{\pm\pm}$ via direct production in $e^+e^- \rightarrow e^\mp e^\mp H^{\pm\pm}$, and via *t*-channel exchange in $e^+e^- \rightarrow e^+e^-$. In the direct case, and assuming $B(H^{\pm\pm} \rightarrow \ell^{\pm}\ell^{\pm}) = 1$, a 95% CL limit on $h_{ee} < 0.071$ is set for $m_{H^{\pm\pm}} < 160$ GeV (see Fig. 6). In the second case, indirect limits on h_{ee} are set for $m_{H^{\pm\pm}} < 2$ TeV (see Fig. 8).

³⁰ GORDEEV 97 search for muonium-antimuonium conversion and find $G_{M\overline{M}}/G_F < 0.14$ (90% CL), where $G_{M\overline{M}}$ is the lepton-flavor violating effective four-fermion coupling. This limit may be converted to $m_{H^{++}} > 210$ GeV if the Yukawa couplings of H^{++} to *ee* and $\mu\mu$ are as large as the weak gauge coupling. For similar limits on muonium-antimuonium conversion, see the muon Particle Listings.

- ³¹ASAKA 95 point out that H^{++} decays dominantly to four fermions in a large region of parameter space where the limit of ACTON 92M from the search of dilepton modes does not apply.
- ³² ACTON 92M limit assumes $H^{\pm\pm} \rightarrow \ell^{\pm}\ell^{\pm}$ or $H^{\pm\pm}$ does not decay in the detector. Thus the region $g_{\ell\ell} \approx 10^{-7}$ is not excluded.
- ³³ACTON 92M from $\Delta\Gamma_7$ <40 MeV.
- ³⁴SWARTZ 90 assume $H^{\pm\pm} \rightarrow \ell^{\pm}\ell^{\pm}$ (any flavor). The limits are valid for the Higgslepton coupling g($H\ell\ell$) $\gtrsim 7.4 \times 10^{-7} / [m_H/\text{GeV}]^{1/2}$. The limits improve somewhat for ee and $\mu\mu$ decay modes.

Limits for H ⁺⁺ with	$I_{3} = 0$				
VALUE (GeV)	CL%	DOCUMENT ID		TECN	COMMENT
>900	95	¹ AAD	23AI	ATLS	$\ell\ell$
> 58	95	² AABOUD	18BC	ATLS	ee
>723	95	² AABOUD	18BC	ATLS	$\mu\mu$
>402	95	³ AAD	15 AG	ATLS	$e\mu$
>290	95	⁴ AAD	15 AP	ATLS	eτ
>290	95	⁴ AAD	15 AP	ATLS	μau
> 97.3	95	⁵ ABDALLAH	03	DLPH	au au
> 97.3	95	⁶ ACHARD		L3	au au
> 98.5	95	⁷ ABBIENDI	02C	OPAL	au au
$\bullet \bullet \bullet$ We do not use the	following	data for averages	, fits,	limits, e	tc. ● ● ●
>374	95	³ AAD	15AG	ATLS	ee
>438	95	³ AAD	15AG	ATLS	$\mu\mu$
>251	95	⁸ AAD	12AY	ATLS	$\mu\mu$
>306	95	⁹ AAD	12cq	ATLS	$\mu\mu$
>310	95	⁹ AAD	12cq	ATLS	$e\mu$
>322	95	⁹ AAD	12cq	ATLS	e e
>113		¹⁰ ABAZOV	12A	D0	μau
>205		¹¹ AALTONEN	11 AF	CDF	$\mu\mu$
>190		¹¹ AALTONEN	11 AF	CDF	$e\mu$
>205		¹¹ AALTONEN	11 AF	CDF	e e
>145	95	¹² ABAZOV	08V	D0	$\mu\mu$
		¹³ AKTAS	06A	H1	single $H^{\pm\pm}$
>109	95	¹⁴ ACOSTA	05L	CDF	stable
> 98.2		¹⁵ ABAZOV	04E	D0	$\mu\mu$
		¹⁶ ABBIENDI	03Q	OPAL	$E_{\rm cm} \leq$ 209 GeV, single
					$H^{\pm\pm}$

Limits for $H^{\pm\pm}$ with $T_3 = 0$

		¹⁷ GORDEEV	97	SPEC	muonium conversion
> 45.6	95	¹⁸ ACTON	92M	OPAL	
> 25.5	95	¹⁹ ACTON	92M	OPAL	
none 7.3-34.3	95	²⁰ SWARTZ	90	MRK2	
4				-	

 $^1\,{\rm AAD}$ 23AI search for $H^{++}\,H^{--}$ production using 139 fb $^{-1}$ of $p\,p$ collisions at $E_{\rm cm}=$ 13 TeV. Decay branching ratios $B(H^{++} \rightarrow \ell^+ \ell'^+)$ for the six flavor combinations are assumed to be equal, adding up to unity.

 2 See their Figs. 12(b) and 14 for limits with smaller branching ratios.

³AAD 15AG search for $H^{++}H^{--}$ production in 20.3 fb⁻¹ of pp collisions at $E_{cm} = 8$ TeV. The limit assumes 100% branching ratio to the specified final state. See their Fig. 5 for limits for arbitrary branching ratios.

⁴AAD 15AP search for $H^{++}H^{--}$ production in 20.3 fb⁻¹ of pp collisions at $E_{cm} = 8$ TeV. The limit assumes 100% branching ratio to the specified final state.

⁵ABDALLAH 03 search for $H^{++}H^{--}$ pair production either followed by $H^{++} \rightarrow$ $\tau^+ \tau^+$, or decaying outside the detector.

⁶ ACHARD 03F search for $e^+e^- \rightarrow H^{++}H^{--}$ with $H^{\pm\pm} \rightarrow \ell^{\pm}\ell'^{\pm}$. The limit holds for $\ell = \ell' = \tau$, and slightly different limits apply for other flavor combinations. The limit is valid for $g_{\ell \ell'} \gtrsim 10^{-7}$.

⁷ABBIENDI 02C searches for pair production of $H^{++}H^{--}$, with $H^{\pm\pm} \rightarrow \ell^{\pm}\ell^{\pm}$ (ℓ,ℓ' $= e, \mu, \tau$). the limit holds for $\ell = \ell' = \tau$, and becomes stronger for other combinations of leptonic final states. To ensure the decay within the detector, the limit only applies for $g(H\ell\ell) \gtrsim 10^{-7}$.

⁸AAD 12AY search for $H^{++}H^{--}$ production with 1.6 fb⁻¹ of pp collisions at $E_{cm} =$ 7 TeV. The limit assumes 100% branching ratio to the specified final state.

⁹AAD 12CQ search for $H^{++}H^{--}$ production with 4.7 fb⁻¹ of pp collisions at $E_{cm} =$ 7 TeV. The limit assumes 100% branching ratio to the specified final state. See their Table 1 for limits assuming smaller branching ratios.

¹⁰ABAZOV 12A search for $H^{++}H^{--}$ production in 7.0 fb⁻¹ of $p\overline{p}$ collisions at $E_{cm} =$ 1.96 TeV.

¹¹AALTONEN 11AF search for $H^{++}H^{--}$ production in 6.1 fb⁻¹ of $p\overline{p}$ collisions at E_{cm}

= 1.96 TeV. ¹² ABAZOV 08V search for $H^{++}H^{--}$ production in $p\overline{p}$ collisions at E_{cm} = 1.96 TeV. The limit is for B($H \rightarrow \mu\mu$) = 1. The limit is updated in ABAZOV 12A.

¹³AKTAS 06A search for single $H^{\pm\pm}$ production in *ep* collisions at HERA. Assuming that H^{++} only couples to $e^+\mu^+$ with $g_{e\,\mu}=$ 0.3 (electromagnetic strength), a limit $m_{H^{++}}~>$ 141 GeV (95% CL) is derived. For the case where H^{++} couples to e au only

the limit is 112 GeV. ¹⁴ ACOSTA 05L search for $H^{++}H^{--}$ pair production in $p\overline{p}$ collisions. The limit is valid for $g_{\ell \, \ell'} \, < \, 10^{-8}$ so that the Higgs decays outside the detector.

¹⁵ABAZOV 04E search for $H^{++}H^{--}$ pair production in $H^{\pm\pm} \rightarrow \mu^{\pm}\mu^{\pm}$. The limit is valid for $g_{\mu\mu} \gtrsim 10^{-7}$.

¹⁶ ABBIENDI 03Q searches for single $H^{\pm\pm}$ via direct production in $e^+e^- o e^\mp e^\mp H^{\pm\pm}$, and via t-channel exchange in $e^+e^- \rightarrow e^+e^-$. In the direct case, and assuming $B(H^{\pm\pm} \rightarrow \ell^{\pm}\ell^{\pm}) =$ 1, a 95% CL limit on $h_{ee}~<$ 0.071 is set for $m_{H^{\pm\pm}}~<$ 160 GeV (see Fig. 6). In the second case, indirect limits on h_{ee} are set for $m_{H^{\pm\pm}}$ < 2 TeV (see Fig. 8).

 17 GORDEEV 97 search for muonium-antimuonium conversion and find $G_{M\overline{M}}/G_F < 0.14$ (90% CL), where $G_{M\overline{M}}$ is the lepton-flavor violating effective four-fermion coupling. This limit may be converted to $m_{H^{++}}$ > 210 GeV if the Yukawa couplings of H^{++}

to ee and $\mu\mu$ are as large as the weak gauge coupling. For similar limits on muonium-

antimuonium conversion, see the muon Particle Listings. ¹⁸ ACTON 92M limit assumes $H^{\pm\pm} \rightarrow \ell^{\pm}\ell^{\pm}$ or $H^{\pm\pm}$ does not decay in the detector. Thus the region $g_{\ell\ell} \approx 10^{-7}$ is not excluded.

¹⁹ ACTON 92M from $\Delta\Gamma_Z <$ 40 MeV. ²⁰ SWARTZ 90 assume $H^{\pm\pm} \rightarrow \ell^{\pm}\ell^{\pm}$ (any flavor). The limits are valid for the Higgs-lepton coupling g($H\ell\ell$) $\gtrsim 7.4 \times 10^{-7} / [m_H/\text{GeV}]^{1/2}$. The limits improve somewhat for *ee* and $\mu\mu$ decay modes.

H^{\pm} and $H^{\pm\pm}$ REFERENCES

AAD 25 PL B800 139137 G. Aad et al. (ATLAS Collab.) HAYRAPETY 24AV JHEP 2409 126 G. Aad et al. (ATLAS Collab.) AAD 23AH EPJ C83 633 G. Aad et al. (ATLAS Collab.) AAD 23AH EPJ C83 605 G. Aad et al. (ATLAS Collab.) AAD 23BH JHEP 2309 004 G. Aad et al. (ATLAS Collab.) AAD 23BW PR D106 092007 G. Aad et al. (ATLAS Collab.) AAD 23BW JHEP 2309 004 G. Aad et al. (ATLAS Collab.) AAD 22BW JHEP 2309 012 A. Tumasyan et al. (CMS Collab.) AAD 21U JHEP 2106 145 G. Aad et al. (ATLAS Collab.) AAD 21V JHEP 2001 151 G. Aad et al. (ATLAS Collab.) SIRUNYAN 20AU JHEP 2001 126 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 20AU JHEP 2001 126 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 20AU JHEP 2001 126 A.M. Sirunyan et al. (CMS Collab.) <					
HAYRAPETY 24AV JHEP 2409 186 A. Hayrapetyan et al. (CMS Collab.) AAD 23AH EPJ C83 605 G. Aad et al. (ATLAS Collab.) AAD 23BB JHEP 2309 004 G. Aad et al. (ATLAS Collab.) AAD 23BB JHEP 2309 007 G. Aad et al. (ATLAS Collab.) TUMASYAN 23AV JHEP 2309 032 A. Tumasyan et al. (CMS Collab.) AAD 21BV PHP 2106 145 G. Aad et al. (ATLAS Collab.) AAD 21V JHEP 2006 151 G. Aad et al. (ATLAS Collab.) AAD 20W JHEP 2001 126 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 20AV JHEP 2001 126 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 20AV JHEP 107 142 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 19AV EPJ C79 58 M. Aaboud et al. (ATLAS Collab.) SIRUNYAN 19AV EPJ C78 199 M. Aaboud et al. (ATLAS Collab.) SIRUNYAN 19CP RL123 131802 A.M. Sirunyan et al. (CMS Collab.)	AAD	25	PL B860 139137	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD 23AH EPJ CB3 GS Aad et al. (ATLAS Collab.) AAD 23BE JHEP 2309 004 G. Aad et al. (ATLAS Collab.) AAD 23BW PR D108 002007 G. Aad et al. (ATLAS Collab.) TUMASYAN 23AV JHEP 2309 032 A. Tumasyan et al. (CMS Collab.) AAD 21AV JHEP 2106 146 G. Aad et al. (ATLAS Collab.) AAD 21V JHEP 2106 146 G. Aad et al. (CMS Collab.) AAD 21V JHEP 2006 151 G. Aad et al. (CMS Collab.) SIRUNYAN 20AV JHEP 2001 26 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 20AV JHEP 2001 26 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 20AV JHEP 1007 758 M. Aboud et al. (ATLAS Collab.) SIRUNYAN 19AP JHEP 1007 142 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 19CP CPR 123	AAD	24AD	JHEP 2404 026	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD 23AH EPJ CB3 GS Aad et al. (ATLAS Collab.) AAD 23BE JHEP 2309 004 G. Aad et al. (ATLAS Collab.) AAD 23BW PR D108 002007 G. Aad et al. (ATLAS Collab.) TUMASYAN 23AV JHEP 2309 032 A. Tumasyan et al. (CMS Collab.) AAD 21AV JHEP 2106 146 G. Aad et al. (ATLAS Collab.) AAD 21V JHEP 2106 146 G. Aad et al. (CMS Collab.) AAD 21V JHEP 2006 151 G. Aad et al. (CMS Collab.) SIRUNYAN 20AV JHEP 2001 26 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 20AV JHEP 2001 26 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 20AV JHEP 1007 758 M. Aboud et al. (ATLAS Collab.) SIRUNYAN 19AP JHEP 1007 142 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 19CP CPR 123	HAYRAPETY	. 24AV	JHEP 2409 186	A. Hayrapetyan <i>et al.</i>	(CMS Collab.)
AAD 23BB JHEP 2309 004 G. Aad et al. (ATLAS Collab.) AAD 23BW PR D108 092007 G. Aad et al. (CMS Collab.) TUMASYAN 23AV JHEP 2309 002 A. Turmasyan et al. (CMS Collab.) AAD 21U JHEP 2106 145 G. Aad et al. (ATLAS Collab.) AAD 21V JHEP 2106 145 G. Aad et al. (ATLAS Collab.) SIRUNYAN 20W JHEP 2001 126 A. Ad et al. (ATLAS Collab.) SIRUNYAN 20AV JHEP 2001 126 A. M. Sirunyan et al. (CMS Collab.) SIRUNYAN 20AV JHEP 2001 126 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 20AV JHEP 2001 126 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 20AV JHEP 2001 126 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 20AV JHEP 1010 42 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 19AP H-JE 725 58 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 19CP PH 131 1085 M. Aaboud et al. (ATLAS Colla	AAD	23AH	EPJ C83 633		(ATLAS Collab.)
AAD 23BB JHEP 2309 004 G. Aad et al. (ATLAS Collab.) TUMASYAN 23AV JHEP 2309 032 A. Tumasyan et al. (CMS Collab.) TUMASYAN 23AV JHEP 2306 146 G. Aad et al. (ATLAS Collab.) AAD 21U JHEP 2106 145 G. Aad et al. (ATLAS Collab.) AAD 21V JHEP 2106 145 G. Aad et al. (ATLAS Collab.) SIRUNYAN 20AV JHEP 2001 126 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 20AV JHEP 2001 126 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 20AV JHEP 2001 126 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 20AV JHEP 2001 126 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 20AV JHEP 2001 026 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 19AH JHEP 107 142 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 19GC PRL 123 131802 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 19GC PRL 123 131802 A.M. Sirunya	AAD	23AI	EPJ C83 605	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD 23BW PR D108 092007 G. Aad et al. (ATLAS Collab.) TUMASYAN 22A JHEP 2309 032 A. Tumasyan et al. (CMS Collab.) AAD 21U JHEP 2106 146 G. Aad et al. (ATLAS Collab.) AAD 21U JHEP 2106 145 G. Aad et al. (ATLAS Collab.) SIRUNYAN 21W FPJ C81 723 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 20W JHEP 2007 126 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 20AU JHEP 2007 126 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 20AU JHEP 2007 126 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 20AU JHEP 2072010 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 19AP FPJ C79 58 M. Aboud et al. (CMS Collab.) SIRUNYAN 19AP FPJ C78 281 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 19CP PL 123 131802 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 19CQ PL 1378 134985 A.M. Sirunyan et al. (AAD			G Aad et al	
TUMASYAN 23AV JHEP 200 032 A. Tumasyan et al. (CMS Collab.) AAD 21U JHEP 2106 146 G. Aad et al. (ATLAS Collab.) AAD 21V JHEP 2106 145 G. Aad et al. (ATLAS Collab.) SIRUNYAN 20W JHEP 2006 151 G. Aad et al. (CMS Collab.) SIRUNYAN 20AV JHEP 2001 026 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 20AV JHEP 2001 026 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 20AV JHEP 2001 026 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 20AV JHEP 2001 026 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 19AH JHEP 107 142 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 19BP PL 1879 581 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 19CP PL 179 58 A.A.M. Sirunyan et al. (CMS Collab.) ABOUD 18BC FPJ C78 199 M. Aaboud et al. (ATLAS Collab.) AABOUD 18C FPL 781 010 M. Aaboud et al. (ATLAS Collab.)					()
TUMASYAN 22B PL B826 136888 A. Tumaçon et al. (CMS Collab.) AAD 21U JHEP 2106 146 G. Aad et al. (ATLAS Collab.) AAD 21V JHEP 2106 145 G. Aad et al. (ATLAS Collab.) SIRUNYAN 20W JHEP 206 151 G. Aad et al. (ATLAS Collab.) SIRUNYAN 20A0 JHEP 2007 126 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 20A0 JHEP 207201 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 19AK FPJ C79 58 M. Aaboud et al. (CMS Collab.) SIRUNYAN 19AK FPJ C78 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 19CP PL8795 281 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 19CP PL879 138 13692 A.M. Sirunyan et al. (CMS Collab.) AABOUD 18CP JHEP 1810 85 M. Aaboud et al. (ATLAS Colab.)	=				()
AAD 21U JHEP 2106 146 G. Aad et al. (ATLAS Collab.) SIRUNYAN 21W EPJ C81 723 A.M. Sirunyan et al. (CMS Collab.) AAD 20W JHEP 2006 151 G. Aad et al. (CMS Collab.) SIRUNYAN 20AV JHEP 2001 126 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 20AV JHEP 2001 2060 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 20AV JHEP 2001 2060 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 19AH JHEP 1007 142 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 19AH JHEP 1807 521 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 19CC PRL 123 131802 A.M. Sirunyan et al. (CMS Collab.) AABOUD 18BC EPJ C78 199 M. Aaboud et al. (ATLAS Collab.) AABOUD 18BC HPE 1811 085 M. Aaboud et al. (ATLAS Collab.) AABOUD 18CC PRL 120 081801 A.M. Sirunyan et al. (CMS Collab.) AABOUD 18CC PRL 120 081801 A.M. Sirunyan et al. (CMS Collab.) <					
AAD 21V JHEP 2106 145 G. Aad et al. (ATLAS Collab.) SIRUNYAN 21W EPJ C81 723 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 20W JHEP 2006 151 G. Aad et al. (ATLAS Collab.) SIRUNYAN 20AO JHEP 2007 126 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 20AO JHEP 2010 96 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 20BE PR D102 072001 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 19K EPJ C79 58 M. Aboud et al. (ATLAS Collab.) SIRUNYAN 19K EPJ C79 58 M. Aboud et al. (CMS Collab.) SIRUNYAN 19K PL B795 281 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 19C PL B798 134985 A.M. Sirunyan et al. (CMS Collab.) AABOUD 18BC PJ C78 199 M. Aboud et al. (ATLAS Collab.) AABOUD 18BC PJ C78 675 J. Hailer et al. (Gfitter Group) SIRUNYAN 18CC PRL 120 081801 A.M. Sirunyan et al. (CMS Collab.) AABOUD					
SIRUNYAN 21W EPJ C81 723 A.M. Sirunyan et al. (CMS Collab.) AAD 20W JHEP 2006 151 G. Aad et al. (ATLAS Collab.) SIRUNYAN 20A0 JHEP 2001 126 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 20AV JHEP 2001 126 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 20AV JHEP 2001 126 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 20AV JHEP 2001 126 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 20AV JHEP 2012 126 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 19AH JHEP 1807 128 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 19AC PRL 1278 131802 A.M. Sirunyan et al. (CMS Collab.) AABOUD 18BW JHEP 1809 139 M. Aaboud et al. (ATLAS Collab.) AABOUD 18CD JHEP 1811 1085 M. Aaboud et al. (ATLAS Collab.) AABOUD 18CD JHEP 1811 1085 M. Aaboud et al. (ATLAS Collab.) AABOUD 18CD JHEP 1809 139 M. Aaboud et al. (ATLAS Collab.)		-			()
AAD 20W JHEP 2006 151 G. Aad et al. (ATLAS Collab.) SIRUNYAN 20A0 JHEP 2007 126 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 20A0 JHEP 2001 096 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 20AV JHEP 2007 162 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 20AV JHEP 107 7858 M. Aboud et al. (CMS Collab.) SIRUNYAN 19AH JHEP 107 742 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 19CP PL 123 13802 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 19CP PL 133 13802 A.M. Sirunyan et al. (CMS Collab.) AABOUD 18BC FJ C78 199 M. Aaboud et al. (ATLAS Collab.) AABOUD 18CD JHEP 1811 085 M. Aaboud et al. (ATLAS Collab.) AABOUD 18CD JHEP 1811 085 M. Aaboud et al. (ATLAS Collab.) AABOUD 18CD FRL 133 14385 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 18CD FRL 130 41802 A.M. Sirunyan et al. (CMS Collab.) AABOUD<	=				()
SIRUNYAN 20AO JHEP 2007 126 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 20AV JHEP 2001 096 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 20BE PP D102 OP2001 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 198H PLE 79 S8 M. Aboud et al. (ATLAS Collab.) SIRUNYAN 198P PL 8795 281 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 199C PRL 173 131802 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 199C PRL 879 8134985 A.M. Sirunyan et al. (CMS Collab.) ABOUD 188C EPJ C78 199 M. Aaboud et al. (ATLAS Collab.) AABOUD 188D JHEP 1810 05 M. Aaboud et al. (ATLAS Collab.) ABBOUD 188D JHEP 1811 105 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 180C PRL 120 081801 A.M. Sirunyan et al. (CMS Collab.)				-	
SIRUNYAN 20AV JHEP 2001 96 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 20BE PR D102 072001 A.M. Sirunyan et al. (CMS Collab.) AABOUD 19K EPJ C79 S6 M. Abboud et al. (ATLAS Collab.) SIRUNYAN 194H JHEP 1907 142 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 192C PR. B795 281 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 192C PR. B798 134985 A.M. Sirunyan et al. (CMS Collab.) ABOUD 188C EPJ C78 199 M. Aaboud et al. (ATLAS Collab.) AABOUD 188W JHEP 1810 085 M. Aaboud et al. (ATLAS Collab.) AABOUD 18CH PL B787 68 M. Aaboud et al. (ATLAS Collab.) AABOUD 18CH PL 1978 156 J. Haller et al. (GMS Collab.) SIRUNYAN 18CO PRL 110 115 A.M. Sirunyan et al. (CMS Collab.) <td></td> <td>-</td> <td></td> <td></td> <td>()</td>		-			()
SIRUNYAN 20BE PR D102 072001 A.M. Sirunyan et al. (CMS Collab.) AABOUD 19K EPJ C79 58 M. Aaboud et al. (ATLAS Collab.) SIRUNYAN 19AH JHEP 1907 142 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 19BP PL B795 281 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 19CC PRL 123 131802 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 19CC PL B796 134985 A.M. Sirunyan et al. (CMS Collab.) AABOUD 18BC EPJ C78 199 M. Aaboud et al. (ATLAS Collab.) AABOUD 18CD JHEP 1801 195 M. Aaboud et al. (ATLAS Collab.) AABOUD 18CH PL B787 68 M. Aaboud et al. (ATLAS Collab.) AABOUD 18CH PL B77 701 M. Misiak, M. Steinhauser (Gfitter Group) SIRUNYAN 18DC PL B77 701 M. Maboud et al. (ATLAS Collab.) AABOUD 16A J HEP 1603 127 G. Aad et al. (ATLAS Collab.) AAD 15AF JHEP 1503					
AABOUD 19K EPJ C79 58 M. Aaboud et al. (ATLAS Collab.) SIRUNYAN 19AH JHEP 1907 142 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 19BP P595 281 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 19CQ PL B798 134985 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 19CQ PL B798 134985 A.M. Sirunyan et al. (ATLAS Collab.) AABOUD 18BW JHEP 1809 M. Aaboud et al. (ATLAS Collab.) AABOUD 18CU JHEP 1811 085 M. Aaboud et al. (ATLAS Collab.) AABOUD 18CU PL B787 68 M. Aaboud et al. (ATLAS Collab.) AABOUD 18CU PL B787 68 M. Aaboud et al. (CMS Collab.) SIRUNYAN 18CC PRL 120 081801 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 18CC PRL 119 141802 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 18DO JHEP 1811 115 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 18DO JHEP 1811 115 A.M. Sirunyan et al. (ATLAS Collab.) AAD				5	()
SIRUNYAN 19AH JHEP 1907 142 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 19BP PL B795 281 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 19CC PL B795 281 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 19CQ PL B798 134985 A.M. Sirunyan et al. (CMS Collab.) AABOUD 18BC EPJ C78 199 M. Aaboud et al. (ATLAS Collab.) AABOUD 18BC JHEP 1809 199 M. Aaboud et al. (ATLAS Collab.) AABOUD 18CH PL B787 68 M. Aaboud et al. (ATLAS Collab.) AABOUD 18CH PL B787 675 J. Haller et al. (CMS Collab.) SIRUNYAN 18DC JHEP 1811 115 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 18DO JHEP 1803 A.M. Sirunyan et al. (CMS Collab.) AAD 15AF PPL 277 C01 M. Misiak, M. Steinhauser Sirunyan et al. (ATLAS Collab.) AAD 15AG JHEP 1503 088 G. Aad et al. (ATLAS Colla					
SIRUNYAN 19BP PL B795 281 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 19CC PRL 123 131802 A.M. Sirunyan et al. (CMS Collab.) ABOUD 18BC EPJ C78 199 M. Aaboud et al. (ATLAS Collab.) AABOUD 18BC JHEP 1810 085 M. Aaboud et al. (ATLAS Collab.) AABOUD 18CH PL B787 68 M. Aaboud et al. (ATLAS Collab.) AABOUD 18CH PL B787 68 M. Aaboud et al. (ATLAS Collab.) AABOUD 18CH PL B787 675 J. Haller et al. (CMS Collab.) SIRUNYAN 18CC PRL 120 081801 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 18CO PRL 191 141802 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 18CO PRL 192 081801 A.M. Sirunyan et al. (CMS Collab.) ABDUD 16A PL B759 555 M. Aaboud et al. (ATLAS Collab.) AAD 16AJ JHEP 1503 088 G. Aad et al. (ATLAS Collab.) AAD 16AJ		-			()
SIRUNYAN 19CC PRL 123 131802 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 19CQ PL B798 134985 A.M. Sirunyan et al. (ATLAS Collab.) AABOUD 18BC EPJ C78 199 M. Aaboud et al. (ATLAS Collab.) AABOUD 18CD JHEP 1810 085 M. Aaboud et al. (ATLAS Collab.) AABOUD 18CH PL B787 68 M. Aaboud et al. (ATLAS Collab.) AABOUN 18CD JHEP 120 08101 A.M. Sirunyan et al. (CMS Collab.) AABOUN 18CD JHEP 181 155 M. Misiak, M. Steinhauser SIRUNYAN 18CO PL B759 555 M. Aaboud et al. (ATLAS Collab.) AAD 16A JHEP 1030 081 G. Aad et al. (ATLAS Collab.) AAD 15AF JHEP 10503<088				5	
SIRUNYAN 19CQ PL B798 134985 A.M. Sirunyan et al. (CMS Collab.) AABOUD 18BC EPJ C78 199 M. Aaboud et al. (ATLAS Collab.) AABOUD 18BC JHEP 1809 139 M. Aaboud et al. (ATLAS Collab.) AABOUD 18CD JHEP 1811 085 M. Aaboud et al. (ATLAS Collab.) AABOUD 18CH PL B787 68 M. Aaboud et al. (ATLAS Collab.) AABOUD 18CH PL B787 68 M. Aaboud et al. (ATLAS Collab.) AABUNYAN 18CC PRL 120 081801 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 18DO JHEP 1801 115 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 17AE PRL 119 141802 A.M. Sirunyan et al. (ATLAS Collab.) AABOUD 16A PL B759 555 M. Aaboud et al. (ATLAS Collab.) AAD 16AJ JHEP 1503 088 G. Aad et al. (ATLAS Collab.) AAD 15AF JHEP 1503 081 G. Aad et al. (ATLAS Collab.) A				5	```
AABOUD 18BC EPJ C78 199 M. Aaboud et al. (ATLAS Collab.) AABOUD 18BW JHEP 1809 139 M. Aaboud et al. (ATLAS Collab.) AABOUD 18CD JHEP 1811 085 M. Aaboud et al. (ATLAS Collab.) AABOUD 18CH PL B787 68 M. Aaboud et al. (ATLAS Collab.) HALLER 18 EPJ C78 675 J. Haller et al. (Gfitter Group) SIRUNYAN 18CC PRL 120 081801 A.M. Sirunyan et al. (CMS Collab.) MISIAK 17 EPJ C77 201 M. Misiak, M. Steinhauser (CMS Collab.) SIRUNYAN 17AE PRL 119 141802 A.M. Sirunyan et al. (CMS Collab.) AAD 16AJ JHEP 1503 127 G. Aad et al. (ATLAS Collab.) AAD 16AJ JHEP 1503 041 G. Aad et al. (ATLAS Collab.) AAD 15AF JHEP 1508 138 G. Aad et al. (ATLAS Collab.) AAD 15AF JHEP 1503 041 G. Aad et al. (ATLAS Collab.) AAD 15AF JHEP 1503 041 G. Aad et al. (ATLAS Collab.) AAD 15AF JHEP 1503 041 G. Aad et al.<					
AABOUD 18BW JHEP 1809 139 M. Aaboud et al. (ATLAS Collab.) AABOUD 18CD JHEP 1811 085 M. Aaboud et al. (ATLAS Collab.) AABOUD 18CH PL B787 68 M. Aaboud et al. (ATLAS Collab.) HALLER 18 EPJ C78 675 J. Haller et al. (Gfitter Group) SIRUNYAN 18CC PRL 120 081801 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 18DO JHEP 1811 115 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 18DO JHEP 1603 127 G. Aad et al. (ATLAS Collab.) AAD 16AJ JHEP 1503 088 G. Aad et al. (ATLAS Collab.) AAD 15AF JHEP 1503 088 G. Aad et al. (ATLAS Collab.) AAD 15AF JHEP 1503 088 G. Aad et al. (ATLAS Collab.) AAD 15AF JHEP 1503 041 G. Aad et al. (ATLAS Collab.) AAD 15AF JHEP 1508 138 G. Aad et al. (ATLAS Collab.) AAD 15AF JHEP 1510 118 V. Khachatryan et al. (CMS Collab.) KHACHATRY 15BF JHEP 1511 018 V. Khac		•		5	
AABOUD 18CD JHEP 1811 085 M. Aaboud et al. (ATLAS Collab.) AABOUD 18CH PL B787 68 M. Aaboud et al. (ATLAS Collab.) HALLER 18 EPJ C78 675 J. Haller et al. (Gfitter Group) SIRUNYAN 18CC PRL 120 081801 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 18DO JHEP 1811 115 A.M. Sirunyan et al. (CMS Collab.) MISIAK 17 EPJ C77 201 M. Misiak, M. Steinhauser (CMS Collab.) SIRUNYAN 18DO JHEP 1801 127 G. Aad et al. (ATLAS Collab.) AAD 16A J HEP 1503 088 G. Aad et al. (ATLAS Collab.) AAD 15AF JHEP 1503 081 G. Aad et al. (ATLAS Collab.) AAD 15AF JHEP 1503 041 G. Aad et al. (ATLAS Collab.) AAD 15AF JHEP 1503 041 G. Aad et al. (ATLAS Collab.) AAD 15AF JHEP 1503 041 G. Aad et al. (ATLAS Collab.) AAD 15AF JHEP 1503 041 G. Aad et al. (ATLAS Collab.) AAD 15AF JHEP 1503 041					
AABOUD 18CH PL B787 68 M. Aaboud et al. (ATLAS Collab.) HALLER 18 EPJ C78 675 J. Haller et al. (Gfitter Group) SIRUNYAN 18CC PRL 120 081801 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 18DO JHEP 1811 115 A.M. Sirunyan et al. (CMS Collab.) MISIAK 17 EPJ C77 201 M. Misiak, M. Steinhauser SIRUNYAN 17AE PRL 119 141802 A.M. Sirunyan et al. (CMS Collab.) AABOUD 16A PL B759 555 M. Aaboud et al. (ATLAS Collab.) AAD 16AJ JHEP 1603 127 G. Aad et al. (ATLAS Collab.) AAD 15AF JHEP 1503 088 G. Aad et al. (ATLAS Collab.) AAD 15AF JHEP 1503 041 G. Aad et al. (ATLAS Collab.) AAD 15AF JHEP 1508 138 G. Aad et al. (ATLAS Collab.) AAD 15M PTEP 2015 051B02 S. Kanemura et al. (CMS Collab.) KHACHATRY 15BF JHEP 1512 178 V. Khachatryan et al. (CMS Collab.) KHACHATRY 15BF JHEP 1503 076 G.					()
HALLER 18 EPJ C78 675 J. Haller et al. (Gfitter Group) SIRUNYAN 18CC PRL 120 081801 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 18D0 JHEP 1811 115 A.M. Sirunyan et al. (CMS Collab.) MISIAK 17 EPJ C77 201 M. Misiak, M. Steinhauser (CMS Collab.) SIRUNYAN 17AE PRL 119 141802 A.M. Sirunyan et al. (CMS Collab.) AAD 16AJ JHEP 1503 088 G. Aad et al. (ATLAS Collab.) AAD 15AF JHEP 1503 088 G. Aad et al. (ATLAS Collab.) AAD 15AG JHEP 1503 041 G. Aad et al. (ATLAS Collab.) AAD 15AF JHEP 1503 041 G. Aad et al. (ATLAS Collab.) AAD 15M PRL 114 231801 G. Aad et al. (ATLAS Collab.) AAD 15M PRL 114 231801 G. Aad et al. (CMS Collab.) KHACHATRY 15D PRL 151 1018 V. Khachatryan et al. (CMS Collab.) KHACHATRY 15D PRL 140 51801 V. Khachatryan et al. (CMS Collab.) KHACHATRY 15P	AABOUD				(ATLAS Collab.)
SIRUNYAN 18CC PRL 120 081801 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 18DO JHEP 1811 115 A.M. Sirunyan et al. (CMS Collab.) MISIAK 17 EPJ C77 201 M. Misiak, M. Steinhauser SIRUNYAN 17AE PRL 119 141802 A.M. Sirunyan et al. (CMS Collab.) AAD 16AJ JHEP 1603 127 G. Aad et al. (ATLAS Collab.) AAD 15AF JHEP 1503 088 G. Aad et al. (ATLAS Collab.) AAD 15AG JHEP 1503 081 G. Aad et al. (ATLAS Collab.) AAD 15AG JHEP 1503 081 G. Aad et al. (ATLAS Collab.) AAD 15AF PLP 1510 018 V. Khachatryan et al. (CMS Collab.) KHACHATRY 15AX JHEP 1511 018 V. Khachatryan et al.	AABOUD	18CH	PL B787 68	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
SIRUNYAN 18DO JHEP 1811 115 A.M. Sirunyan et al. (CMS Collab.) MISIAK 17 EPJ C77 201 M. Misiak, M. Steinhauser SIRUNYAN 17AE PRL 119 141802 A.M. Sirunyan et al. (CMS Collab.) AABOUD 16A PL B759 555 M. Aboud et al. (ATLAS Collab.) AAD 16AJ JHEP 1603 127 G. Aad et al. (ATLAS Collab.) AAD 15AF JHEP 1503 088 G. Aad et al. (ATLAS Collab.) AAD 15AF JHEP 1503 041 G. Aad et al. (ATLAS Collab.) AAD 15M PLP 1508 138 G. Aad et al. (ATLAS Collab.) KANEMURA 15 PTEP 2015 051B02 S. Kanemura et al. (CMS Collab.) KHACHATRY 15AJ JHEP 1512 178 V. Khachatryan et al. (CMS Collab.) KHACHATRY 15D PRL 14 051801 V. Khachatryan et al. (CMS Collab.) AAD 14M	HALLER	18	EPJ C78 675	J. Haller <i>et al.</i>	(Gfitter Group)
MISIAK 17 EPJ C77 201 M. Misiak, M. Steinhauser SIRUNYAN 17AE PRL 119 141802 A.M. Sirunyan et al. (CMS Collab.) AABOUD 16A PL B759 555 M. Aboud et al. (ATLAS Collab.) AAD 16A J HEP 1603 127 G. Aad et al. (ATLAS Collab.) AAD 15AF JHEP 1503 088 G. Aad et al. (ATLAS Collab.) AAD 15AF JHEP 1503 041 G. Aad et al. (ATLAS Collab.) AAD 15AF JHEP 1508 138 G. Aad et al. (ATLAS Collab.) AAD 15AF JHEP 1508 138 G. Aad et al. (ATLAS Collab.) AAD 15AF JHEP 1508 138 G. Aad et al. (ATLAS Collab.) AAD 15AF JHEP 1510 051B02 S. Kanemura et al. (CMS Collab.) KHACHATRY 15BF JHEP 1511 018 V. Khachatryan et al. (CMS Collab.) KHACHATRY 15D PRL 114 051801 V. Khachatryan et al. (CMS Collab.) AAD 14M PR D89 09101 T. Aaltonen et al. (CMS Collab.) AAD 13AC EPJ C73 2465 G. Aad	SIRUNYAN	18CC	PRL 120 081801	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN 17AE PRL 119 141802 A.M. Sirunyan et al. (CMS Collab.) AABOUD 16A PL B759 555 M. Aaboud et al. (ATLAS Collab.) AAD 16AJ JHEP 1603 127 G. Aad et al. (ATLAS Collab.) AAD 15AG JHEP 1503 088 G. Aad et al. (ATLAS Collab.) AAD 15AG JHEP 1503 041 G. Aad et al. (ATLAS Collab.) AAD 15AP JHEP 1508 138 G. Aad et al. (ATLAS Collab.) AAD 15AP JHEP 1508 138 G. Aad et al. (ATLAS Collab.) AAD 15AP JHEP 1510 818 G. Aad et al. (ATLAS Collab.) AAD 15AP PTEP 2015 051B02 S. Kanemura et al. (CMS Collab.) KHACHATRY 15BF JHEP 1512 178 V. Khachatryan et al. (CMS Collab.) KHACHATRY 15D PRL 114 051801 V. Khachatryan et al. (CMS Collab.) KANEMURA 14 PR D89 09101 T. Aaltonen et al. (CMS Collab.) AAD 13AC EPJ C73 2465 G. Aad et al. (ATLAS Collab.) AAD 13V JHEP 1303 07	SIRUNYAN	18DO	JHEP 1811 115	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
AABOUD 16A PL B759 555 M. Aaboud et al. (ATLAS Collab.) AAD 16AJ JHEP 1603 127 G. Aad et al. (ATLAS Collab.) AAD 15AF JHEP 1503 088 G. Aad et al. (ATLAS Collab.) AAD 15AG JHEP 1503 041 G. Aad et al. (ATLAS Collab.) AAD 15AG JHEP 1508 138 G. Aad et al. (ATLAS Collab.) AAD 15AF JHEP 1508 138 G. Aad et al. (ATLAS Collab.) AAD 15M PRL 114 231801 G. Aad et al. (ATLAS Collab.) KANEMURA 15 PTEP 2015 051B02 S. Kanemura et al. (CMS Collab.) KHACHATRY 15AF JHEP 1512 178 V. Khachatryan et al. (CMS Collab.) KHACHATRY 15D PRL 114 051801 V. Khachatryan et al. (CMS Collab.) KHACHATRY 15D PRL 189 0910101 T. Aaltonen et al. (CMS Collab.) AAD 14M PR D89 032002 G. Aad et al. (ATLAS Collab.) AAD 13AC EPJ C73 2465 G. Aad et al. (ATLAS Collab.) AAD 13V JHEP 1303 076	MISIAK	17	EPJ C77 201	M. Misiak, M. Steinhauser	
AABOUD 16A PL B759 555 M. Aaboud et al. (ATLAS Collab.) AAD 16AJ JHEP 1603 127 G. Aad et al. (ATLAS Collab.) AAD 15AF JHEP 1503 088 G. Aad et al. (ATLAS Collab.) AAD 15AG JHEP 1503 041 G. Aad et al. (ATLAS Collab.) AAD 15AG JHEP 1508 138 G. Aad et al. (ATLAS Collab.) AAD 15AF JHEP 1508 138 G. Aad et al. (ATLAS Collab.) AAD 15M PRL 114 231801 G. Aad et al. (ATLAS Collab.) KANEMURA 15 PTEP 2015 051B02 S. Kanemura et al. (CMS Collab.) KHACHATRY 15AF JHEP 1512 178 V. Khachatryan et al. (CMS Collab.) KHACHATRY 15D PRL 114 051801 V. Khachatryan et al. (CMS Collab.) KHACHATRY 15D PRL 189 0910101 T. Aaltonen et al. (CMS Collab.) AAD 14M PR D89 032002 G. Aad et al. (ATLAS Collab.) AAD 13AC EPJ C73 2465 G. Aad et al. (ATLAS Collab.) AAD 13V JHEP 1303 076	SIRUNYAN	17AE	PRL 119 141802	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
AAD 15AF JHEP 1503 088 G. Aad et al. (ATLAS Collab.) AAD 15AG JHEP 1503 041 G. Aad et al. (ATLAS Collab.) AAD 15AP JHEP 1508 138 G. Aad et al. (ATLAS Collab.) AAD 15M PRL 114 231801 G. Aad et al. (ATLAS Collab.) KANEMURA 15 PTEP 2015 051B02 S. Kanemura et al. (CMS Collab.) KHACHATRY 15AX JHEP 1510 18 V. Khachatryan et al. (CMS Collab.) KHACHATRY 15D PRL 114 051801 V. Khachatryan et al. (CMS Collab.) KHACHATRY 15D PRL 114 051801 V. Khachatryan et al. (CMS Collab.) KHACHATRY 15D PRL 114 051801 V. Khachatryan et al. (CMS Collab.) AAD 14M PR D89 032002 G. Aad et al. (ATLAS Collab.) AAD 13AC EPJ C73 2465 G. Aad et al. (ATLAS Collab.) AAD 13V JHEP	AABOUD	16A	PL B759 555	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AAD 15AF JHEP 1503 088 G. Aad et al. (ATLAS Collab.) AAD 15AG JHEP 1503 041 G. Aad et al. (ATLAS Collab.) AAD 15AP JHEP 1508 138 G. Aad et al. (ATLAS Collab.) AAD 15M PRL 114 231801 G. Aad et al. (ATLAS Collab.) KANEMURA 15 PTEP 2015 051B02 S. Kanemura et al. (CMS Collab.) KHACHATRY 15AX JHEP 1510 18 V. Khachatryan et al. (CMS Collab.) KHACHATRY 15D PRL 114 051801 V. Khachatryan et al. (CMS Collab.) KHACHATRY 15D PRL 114 051801 V. Khachatryan et al. (CMS Collab.) KHACHATRY 15D PRL 114 051801 V. Khachatryan et al. (CMS Collab.) AAD 14M PR D89 032002 G. Aad et al. (ATLAS Collab.) AAD 13AC EPJ C73 2465 G. Aad et al. (ATLAS Collab.) AAD 13V JHEP	AAD	16AJ	JHEP 1603 127	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD 15AG JHEP 1503 041 G. Aad et al. (ATLAS Collab.) AAD 15AP JHEP 1508 138 G. Aad et al. (ATLAS Collab.) AAD 15M PRL 114 231801 G. Aad et al. (ATLAS Collab.) KANEMURA 15 PTEP 2015 051B02 S. Kanemura et al. (CMS Collab.) KHACHATRY 15BF JHEP 1511 018 V. Khachatryan et al. (CMS Collab.) KHACHATRY 15D PRL 114 051801 V. Khachatryan et al. (CMS Collab.) KHACHATRY 15D PRL 114 051801 V. Khachatryan et al. (CMS Collab.) KHACHATRY 15D PRL 114 051801 V. Khachatryan et al. (CMS Collab.) AAD 14M PR D89 032002 G. Aad et al. (ATLAS Collab.) AAD 14A PR D89 091101 T. Aaltonen et al. (CDF Collab.) KANEMURA 14 PR D90 115018 S. Kanemura et al. (ATLAS Collab.)	AAD				()
AAD 15AP JHEP 1508 138 G. Aad et al. (ATLAS Collab.) AAD 15M PRL 114 231801 G. Aad et al. (ATLAS Collab.) KANEMURA 15 PTEP 2015 051B02 S. Kanemura et al. (CMS Collab.) KHACHATRY 15AX JHEP 1511 018 V. Khachatryan et al. (CMS Collab.) KHACHATRY 15BF JHEP 1512 178 V. Khachatryan et al. (CMS Collab.) KHACHATRY 15D PRL 114 051801 V. Khachatryan et al. (CMS Collab.) KHACHATRY 15D PRL 114 051801 V. Khachatryan et al. (CMS Collab.) AAD 14M PR D89 032002 G. Aad et al. (ATLAS Collab.) AALTONEN 14A PR D89 091101 T. Aaltonen et al. (CDF Collab.) KANEMURA 14 PR D90 15018 S. Kanemura et al. (ATLAS Collab.) AAD 13AC EPJ C73 2465 G. Aad et al. (ATLAS Collab.) AA	AAD	15AG	JHEP 1503 041	G. Aad <i>et al.</i>	
AAD15MPRL 114 231801G. Aad et al.(ATLAS Collab.)KANEMURA15PTEP 2015 051B02S. Kanemura et al.(CMS Collab.)KHACHATRY 15AXJHEP 1511 018V. Khachatryan et al.(CMS Collab.)KHACHATRY 15BFJHEP 1512 178V. Khachatryan et al.(CMS Collab.)KHACHATRY 15DPRL 114 051801V. Khachatryan et al.(CMS Collab.)AAD14MPR D89 032002G. Aad et al.(ATLAS Collab.)AAD14MPR D89 09101T. Aaltonen et al.(CDF Collab.)AALTONEN14APR D90 115018S. Kanemura et al.(CDF Collab.)AAD13ACEPJ C73 2465G. Aad et al.(ATLAS Collab.)AAD13VJHEP 1303 076G. Aad et al.(ATLAS Collab.)AAD13YPR D87 052002G. Aad et al.(ATLAS Collab.)CARENA13EPJ C73 2463LEP Collabs(ALEPH, DELPHI, L3, OPAL, LEP)AAD12AYPR D85 032004G. Aad et al.(ATLAS Collab.)AAD12AYPR D85 032004G. Aad et al.(ATLAS Collab.)AAD12CQEPJ C72 2244G. Aad et al.(ATLAS Collab.)AAD12CYJHEP 1212 007G. Aad et al.(ATLAS Collab.)ABZOV12APRL 108 021801V.M. Abazov et al.(D0 Collab.)ABBIENDI12EPJ C72 2076G. Abbiendi et al.(D4L Collab.)	AAD				()
KANEMURA 15 PTEP 2015 051B02 S. Kanemura et al. (CMS Collab.) KHACHATRY 15AX JHEP 1511 018 V. Khachatryan et al. (CMS Collab.) KHACHATRY 15BF JHEP 1512 178 V. Khachatryan et al. (CMS Collab.) KHACHATRY 15D PRL 114 051801 V. Khachatryan et al. (CMS Collab.) AAD 14M PR D89 032002 G. Aad et al. (ATLAS Collab.) AALTONEN 14A PR D89 091101 T. Aaltonen et al. (CDF Collab.) KANEMURA 14 PR D90 15018 S. Kanemura et al. (ATLAS Collab.) AAD 13AC EPJ C73 2465 G. Aad et al. (ATLAS Collab.) AAD 13V JHEP 130 076 G. Aad et al. (ATLAS Collab.) AAD 13Y PR D87 052002 G. Aad et al. (ATLAS Collab.) CARENA 13 EPJ C73 2552 M. Carena et al. (ATLAS Collab.) AAD 12AY PR D85 0					
KHACHATRY 15AX JHEP 1511 018 V. Khachatryan et al. (CMS Collab.) KHACHATRY 15BF JHEP 1512 178 V. Khachatryan et al. (CMS Collab.) KHACHATRY 15D PRL 114 051801 V. Khachatryan et al. (CMS Collab.) AAD 14M PR D89 032002 G. Aad et al. (ATLAS Collab.) AAD 14M PR D89 091101 T. Aaltonen et al. (CDF Collab.) KANEMURA 14 PR D90 115018 S. Kanemura et al. (ATLAS Collab.) AAD 13V JHEP 1303 076 G. Aad et al. (ATLAS Collab.) AAD 13V JHEP 1303 076 G. Aad et al. (ATLAS Collab.) AAD 13Y PR D87 052002 G. Aad et al. (ATLAS Collab.) CARENA 13 EPJ C73 2552 M. Carena et al. (ATLAS Collab.) LEP 13 EPJ C73 2463 LEP Collabs (ATLAS Collab.) AAD 12AY PR D85 032004 G. Aad et al. (ATLAS Collab.) AAD 12AY PR D85 032004 G. Aad et al. (ATLAS Collab.) AAD 12CQ EPJ C72 2244 G. Aad et al. (ATLAS Collab.) <td></td> <td></td> <td></td> <td></td> <td>(/ ב/</td>					(/ ב/
KHACHATRY 15BF JHEP 1512 178 V. Khachatryan et al. (CMS Collab.) KHACHATRY 15D PRL 114 051801 V. Khachatryan et al. (CMS Collab.) AAD 14M PR D89 032002 G. Aad et al. (ATLAS Collab.) AALTONEN 14A PR D89 091101 T. Aaltonen et al. (CDF Collab.) KANEMURA 14 PR D90 115018 S. Kanemura et al. (ATLAS Collab.) AAD 13AC EPJ C73 2465 G. Aad et al. (ATLAS Collab.) AAD 13V JHEP 1303 076 G. Aad et al. (ATLAS Collab.) AAD 13Y PR D87 052002 G. Aad et al. (ATLAS Collab.) CARENA 13 EPJ C73 2552 M. Carena et al. (ATLAS Collab.) LEP 13 EPJ C73 2463 LEP Collabs (ATLAS Collab.) AAD 12AY PR D85 032004 G. Aad et al. (ATLAS Collab.) AAD 12AY PR D85 032004 G. Aad et al. (ATLAS Collab.) AAD 12AY PR D85 032004 G. Aad et al. (ATLAS Collab.) AAD 12CQ EPJ C72 244 G. Aad et al. (ATLAS Collab.)		-			(CMS_Collab_)
KHACHATRY 15D PRL 114 051801 V. Khachatryan et al. (CMS Collab.) AAD 14M PR D89 032002 G. Aad et al. (ATLAS Collab.) AALTONEN 14A PR D89 091101 T. Aaltonen et al. (CDF Collab.) KANEMURA 14 PR D90 115018 S. Kanemura et al. (CDF Collab.) AAD 13AC EPJ C73 2465 G. Aad et al. (ATLAS Collab.) AAD 13V JHEP 1303 076 G. Aad et al. (ATLAS Collab.) AAD 13Y PR D87 052002 G. Aad et al. (ATLAS Collab.) CARENA 13 EPJ C73 2552 M. Carena et al. (ATLAS Collab.) LEP 13 EPJ C73 2463 LEP Collabs (ATLAS Collab.) AAD 12AY PR D85 032004 G. Aad et al. (ATLAS Collab.) AAD 12AY PR D85 032004 G. Aad et al. (ATLAS Collab.) AAD 12CQ EPJ C72 2244 G. Aad et al. (ATLAS Collab.) AAD 12CQ EPJ C72 2244 G. Aad et al. (ATLAS Collab.) AAD 12CY JHEP 1212 007 G. Aad et al. (A					```
AAD 14M PR D89 032002 G. Aad et al. (ATLAS Collab.) AALTONEN 14A PR D89 091101 T. Aaltonen et al. (CDF Collab.) KANEMURA 14 PR D90 115018 S. Kanemura et al. (ATLAS Collab.) AAD 13AC EPJ C73 2465 G. Aad et al. (ATLAS Collab.) AAD 13V JHEP 1303 076 G. Aad et al. (ATLAS Collab.) AAD 13V JHEP 1303 076 G. Aad et al. (ATLAS Collab.) AAD 13Y PR D87 052002 G. Aad et al. (ATLAS Collab.) CARENA 13 EPJ C73 2552 M. Carena et al. (ATLAS Collab.) LEP 13 EPJ C73 2463 LEP Collabs (ALEPH, DELPHI, L3, OPAL, LEP) AAD 12AY PR D85 032004 G. Aad et al. (ATLAS Collab.) AAD 12EH JHEP 1206 039 G. Aad et al. (ATLAS Collab.) AAD 12CQ EPJ C72 2244 G. Aad et al. (ATLAS Collab.) AAD 12CY JHEP 1212 007 G. Aad et al. (ATLAS Collab.) AAD 12CY JHEP 1212 007 G. Aad et al.<		-			()
AALTONEN 14A PR D89 091101 T. Aaltonen et al. (CDF Collab.) KANEMURA 14 PR D90 115018 S. Kanemura et al. (ATLAS Collab.) AAD 13AC EPJ C73 2465 G. Aad et al. (ATLAS Collab.) AAD 13V JHEP 1303 076 G. Aad et al. (ATLAS Collab.) AAD 13Y PR D87 052002 G. Aad et al. (ATLAS Collab.) CARENA 13 EPJ C73 2552 M. Carena et al. (ATLAS Collab.) CARENA 13 EPJ C73 2463 LEP Collabs (ATLAS Collab.) AAD 12AY PR D85 032004 G. Aad et al. (ATLAS Collab.) AAD 12AY PR D85 032004 G. Aad et al. (ATLAS Collab.) AAD 12AY PR D85 032004 G. Aad et al. (ATLAS Collab.) AAD 12AY PR D85 032004 G. Aad et al. (ATLAS Collab.) AAD 12CQ EPJ C72 2244 G. Aad et al. (ATLAS Collab.) AAD 12CY JHEP 1212 007 G. Aad et al. (ATLAS Collab.) ABAZOV 12A PRL 108 021801 V.M. Abazov et al. <td></td> <td></td> <td></td> <td></td> <td></td>					
KANEMURA 14 PR D90 115018 S. Kanemura et al. AAD 13AC EPJ C73 2465 G. Aad et al. (ATLAS Collab.) AAD 13V JHEP 1303 076 G. Aad et al. (ATLAS Collab.) AAD 13V JHEP 1303 076 G. Aad et al. (ATLAS Collab.) AAD 13Y PR D87 052002 G. Aad et al. (ATLAS Collab.) CARENA 13 EPJ C73 2552 M. Carena et al. (ATLAS Collab.) LEP 13 EPJ C73 2463 LEP Collabs (ATLAS Collab.) AAD 12AY PR D85 032004 G. Aad et al. (ATLAS Collab.) AAD 12BH JHEP 1206 039 G. Aad et al. (ATLAS Collab.) AAD 12CQ EPJ C72 2244 G. Aad et al. (ATLAS Collab.) AAD 12CY JHEP 1212 007 G. Aad et al. (ATLAS Collab.) AAD 12CY JHEP 1212 007 G. Aad et al. (D0 Collab.) ABZOV 12A PRL 108 021801 V.M. Abazov et al. (D0 Collab.) ABBIENDI 12 EPJ C72 2076 G. Abbiendi et al. (OPAL Collab.)					
AAD 13AC EPJ C73 2465 G. Aad et al. (ATLAS Collab.) AAD 13V JHEP 1303 076 G. Aad et al. (ATLAS Collab.) AAD 13Y PR D87 052002 G. Aad et al. (ATLAS Collab.) CARENA 13 EPJ C73 2552 M. Carena et al. (ATLAS Collab.) LEP 13 EPJ C73 2463 LEP Collabs (ATLAS Collab.) AAD 12AY PR D85 032004 G. Aad et al. (ATLAS Collab.) AAD 12AY PR D85 032004 G. Aad et al. (ATLAS Collab.) AAD 12AY PR D85 032004 G. Aad et al. (ATLAS Collab.) AAD 12AY PR D85 032004 G. Aad et al. (ATLAS Collab.) AAD 12CQ EPJ C72 2244 G. Aad et al. (ATLAS Collab.) AAD 12CY JHEP 1212 007 G. Aad et al. (ATLAS Collab.) ABAZOV 12A PRL 108 021801 V.M. Abazov et al. (D0 Collab.) ABBIENDI 12 EPJ C72 2076 G. Abbiendi et al. (OPAL Collab.)					
AAD 13V JHEP 1303 076 G. Aad et al. (ATLAS Collab.) AAD 13Y PR D87 052002 G. Aad et al. (ATLAS Collab.) CARENA 13 EPJ C73 2552 M. Carena et al. (ATLAS Collab.) LEP 13 EPJ C73 2463 LEP Collabs (ALEPH, DELPHI, L3, OPAL, LEP) AAD 12AY PR D85 032004 G. Aad et al. (ATLAS Collab.) AAD 12BH JHEP 1206 039 G. Aad et al. (ATLAS Collab.) AAD 12CQ EPJ C72 2244 G. Aad et al. (ATLAS Collab.) AAD 12CY JHEP 1212 007 G. Aad et al. (ATLAS Collab.) ABAZOV 12A PRL 108 021801 V.M. Abazov et al. (D0 Collab.) ABBIENDI 12 EPJ C72 2076 G. Abbiendi et al. (OPAL Collab.)	-				(ATLAS Collab)
AAD 13Y PR D87 052002 G. Aad et al. (ATLAS Collab.) CARENA 13 EPJ C73 2552 M. Carena et al. (ATLAS Collab.) LEP 13 EPJ C73 2463 LEP Collabs (ALEPH, DELPHI, L3, OPAL, LEP) AAD 12AY PR D85 032004 G. Aad et al. (ATLAS Collab.) AAD 12BH JHEP 1206 039 G. Aad et al. (ATLAS Collab.) AAD 12CQ EPJ C72 2244 G. Aad et al. (ATLAS Collab.) AAD 12CY JHEP 1212 007 G. Aad et al. (ATLAS Collab.) ABAZOV 12A PRL 108 021801 V.M. Abazov et al. (D0 Collab.) ABBIENDI 12 EPJ C72 2076 G. Abbiendi et al. (OPAL Collab.)					()
CARENA 13 EPJ C73 2552 M. Carena et al. LEP 13 EPJ C73 2463 LEP Collabs (ALEPH, DELPHI, L3, OPAL, LEP) AAD 12AY PR D85 032004 G. Aad et al. (ATLAS Collab.) AAD 12BH JHEP 1206 039 G. Aad et al. (ATLAS Collab.) AAD 12CQ EPJ C72 2244 G. Aad et al. (ATLAS Collab.) AAD 12CY JHEP 1212 007 G. Aad et al. (ATLAS Collab.) ABAZOV 12A PRL 108 021801 V.M. Abazov et al. (D0 Collab.) ABBIENDI 12 EPJ C72 2076 G. Abbiendi et al. (OPAL Collab.)		-			()
LEP 13 EP J C73 2463 LEP Collabs (ALEPH, DELPHI, L3, OPAL, LEP) AAD 12AY PR D85 032004 G. Aad et al. (ATLAS Collab.) AAD 12BH JHEP 1206 039 G. Aad et al. (ATLAS Collab.) AAD 12CQ EP J C72 2244 G. Aad et al. (ATLAS Collab.) AAD 12CY JHEP 1212 007 G. Aad et al. (ATLAS Collab.) ABAZOV 12A PRL 108 021801 V.M. Abazov et al. (D0 Collab.) ABBIENDI 12 EP J C72 2076 G. Abbiendi et al. (OPAL Collab.)					(ATLAS COND.)
AAD 12AY PR D85 032004 G. Aad et al. (ATLAS Collab.) AAD 12BH JHEP 1206 039 G. Aad et al. (ATLAS Collab.) AAD 12CQ EPJ C72 2244 G. Aad et al. (ATLAS Collab.) AAD 12CQ EPJ C72 2244 G. Aad et al. (ATLAS Collab.) AAD 12CY JHEP 1212 007 G. Aad et al. (ATLAS Collab.) ABAZOV 12A PRL 108 021801 V.M. Abazov et al. (D0 Collab.) ABBIENDI 12 EPJ C72 2076 G. Abbiendi et al. (OPAL Collab.)		-			
AAD 12BH JHEP 1206 039 G. Aad et al. (ATLAS Collab.) AAD 12CQ EPJ C72 2244 G. Aad et al. (ATLAS Collab.) AAD 12CY JHEP 1212 007 G. Aad et al. (ATLAS Collab.) AAD 12CY JHEP 1212 007 G. Aad et al. (ATLAS Collab.) ABAZOV 12A PRL 108 021801 V.M. Abazov et al. (D0 Collab.) ABBIENDI 12 EPJ C72 2076 G. Abbiendi et al. (OPAL Collab.)					
AAD 12CQ EPJ C72 2244 G. Aad et al. (ATLAS Collab.) AAD 12CY JHEP 1212 007 G. Aad et al. (ATLAS Collab.) ABAZOV 12A PRL 108 021801 V.M. Abazov et al. (D0 Collab.) ABBIENDI 12 EPJ C72 2076 G. Abbiendi et al. (OPAL Collab.)					
AAD 12CY JHEP 1212 007 G. Aad et al. (ATLAS Collab.) ABAZOV 12A PRL 108 021801 V.M. Abazov et al. (D0 Collab.) ABBIENDI 12 EPJ C72 2076 G. Abbiendi et al. (OPAL Collab.)	=				
ABAZOV 12A PRL 108 021801 V.M. Abazov et al. (D0 Collab.) ABBIENDI 12 EPJ C72 2076 G. Abbiendi et al. (OPAL Collab.)		•			
ABBIENDI 12 EPJ C72 2076 G. Abbiendi et al. (OPAL Collab.)					
					()
CHAIRCHYAN 12AA JHEP 1207 143 S. Chatrchyan <i>et al.</i> (CMS Collab.)					
	CHAIRCHYAN	12AA	JHEP 1207 143	S. Chatrchyan <i>et al.</i>	(CMS Collab.)

CHATRCHYAN 1	12AU	EPJ C72 2189	S. Chatrchyan <i>et al.</i>	(CMS Collab.)
AALTONEN 1	11AF	PRL 107 181801	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN 1	11P	PRL 107 031801	T. Aaltonen <i>et al.</i>	(CDF Collab.)
DESCHAMPS 1	10	PR D82 073012	O. Deschamps <i>et al.</i>	(CLER, ORSAY, LAPP)
AALTONEN 0	09AJ	PRL 103 101803	T. Aaltonen <i>et al.</i>	CDF Collab.)
ABAZOV 0	09AC	PR D80 051107	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABAZOV 0	09AG	PR D80 071102	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABAZOV 0	09AI	PL B682 278	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABAZOV C	09P	PRL 102 191802	V.M. Abazov <i>et al.</i>	(D0 Collab.)
AALTONEN C	08AA	PRL 101 121801	T. Aaltonen <i>et al.</i>	(CDF Collab.)
ABAZOV C	08V	PRL 101 071803	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABULENCIA C	06E	PRL 96 042003	A. Abulencia <i>et al.</i>	(CDF Collab.)
AKTAS C	06A	PL B638 432	A. Aktas <i>et al.</i>	(H1 Collab.)
ACOSTA 0	05L	PRL 95 071801	D. Acosta <i>et al.</i>	(CDF Collab.)
ABAZOV 0	04E	PRL 93 141801	V.M. Abazov <i>et al.</i>	(D0 Collab.)
	04	EPJ C32 453	G. Abbiendi <i>et al.</i>	(OPAL Collab.)
ABDALLAH C	04I	EPJ C34 399	J. Abdallah <i>et al.</i>	(DELPHI Collab.)
ABBIENDI C	03	PL B551 35	G. Abbiendi <i>et al.</i>	(OPAL Collab.)
ABBIENDI C	03Q	PL B577 93	G. Abbiendi <i>et al.</i>	(OPAL Collab.)
ABDALLAH C	03	PL B552 127	J. Abdallah <i>et al.</i>	(DELPHI Collab.)
	03E	PL B575 208	P. Achard <i>et al.</i>	(L3 Collab.)
	03F	PL B576 18	P. Achard <i>et al.</i>	(L3 Collab.)
ABAZOV C	02B	PRL 88 151803	V.M. Abazov <i>et al.</i>	(D0 Collab.)
	02C	PL B526 221	G. Abbiendi <i>et al.</i>	(OPAL Collab.)
	02	PL B549 170	F.M. Borzumati, A. Djouadi	
	02P	PL B543 1	A. Heister <i>et al.</i>	(ALEPH Collab.)
	01Q	PL B520 1	G. Abbiendi <i>et al.</i>	(OPAL Collab.)
	01E	EPJ C19 213	R. Barate <i>et al.</i>	(ALEPH Collab.)
	01	NP B611 338	P. Gambino, M. Misiak	<i>/</i>
	001	PR D62 012004	T. Affolder <i>et al.</i>	(CDF Collab.)
	00_	EPJ C15 1	D.E. Groom <i>et al.</i>	(PDG Collab.)
	99E	EPJ C7 407	G. Abbiendi <i>et al.</i>	(OPAL Collab.)
	99E	PRL 82 4975	B. Abbott <i>et al.</i>	(D0 Collab.)
	99D	EPJ C8 3	K. Ackerstaff <i>et al.</i>	(OPAL Collab.)
	97L	PRL 79 357	F. Abe <i>et al.</i>	(CDF Collab.)
	97F	PL B396 327	M. Acciarri <i>et al.</i>	(L3 Collab.)
	97B	PRL 78 4686	R. Ammar <i>et al.</i>	(CLEO Collab.)
	97	PL B406 337	J.A. Coarasa, R.A. Jimenez, J. S	
GORDEEV 9	97	PAN 60 1164	V.A. Gordeev <i>et al.</i>	(PNPI)
GUCHAIT 9	97	Translated from YAF 60 1 PR D55 7263	M. Guchait, D.P. Roy	(ТАТА)
	97 97	PL B410 299		(TATA)
	97 97	ZPHY C74 73	M. Mangano, S. Slabospitsky A. Stahl, H. Voss	(BONN)
	97 96	PR D54 1	R. M. Barnett <i>et al.</i>	(PDG Collab.)
	90 95	PRL 74 2885	M.S. Alam <i>et al.</i>	(CLEO Collab.)
	95 95	PL B345 36	T. Asaka, K.I. Hikasa	(TOHOK)
	95 95	PL B343 444	D. Buskulic <i>et al.</i>	(ALEPH Collab.)
	95B	PL B357 630	Y. Grossman, H. Haber, Y. Nir	(ALLI II COND.)
	956 94	PL B332 373	Y. Grossman, Z. Ligeti	
	94 94	PL B324 121	A. Stahl	(BONN)
	94 92M	PL B295 347	P.D. Acton <i>et al.</i>	(OPAL Collab.)
	921vi 90	PRL 64 2877	M.L. Swartz <i>et al.</i>	(Mark II Collab.)
517/11/1 Z 3				