b-baryon ADMIXTURE (Λ_b , Ξ_b , Ω_b)

b-baryon ADMIXTURE MEAN LIFE

Each measurement of the *b*-baryon mean life is an average over an admixture of various *b* baryons which decay weakly. Different techniques emphasize different admixtures of produced particles, which could result in a different *b*-baryon mean life. More *b*-baryon flavor specific channels are not included in the measurement.

VALUE (10^{-12} s)	EVTS	DOCUMENT ID		TECN	COMMENT
• • • We do not use the	e following	g data for averages	, fits,	limits, e	etc. • • •
$1.218^{+0.130}_{-0.115}{\pm}0.042$		¹ ABAZOV	07 S	D0	Repl. by ABAZOV 120
$1.22 \ {}^{+0.22}_{-0.18} \ {}^{\pm 0.04}$		¹ ABAZOV	05 C	D0	Repl. by ABAZOV 075
$1.16\ \pm 0.20\ \pm 0.08$		² ABREU	99W	DLPH	$e^+e^- \rightarrow Z$
$1.19 \ \pm 0.14 \ \pm 0.07$		³ ABREU	99W	DLPH	$e^+e^- \rightarrow Z$
$1.14\ \pm 0.08\ \pm 0.04$		⁴ ABREU	99W	DLPH	$e^+e^- \rightarrow Z$
$1.11 \begin{array}{c} +0.19 \\ -0.18 \end{array} \pm 0.05$		⁵ ABREU	99W	DLPH	$e^+e^- \rightarrow Z$
$1.29 \begin{array}{c} +0.24 \\ -0.22 \end{array} \pm 0.06$		⁵ ACKERSTAFF	98 G	OPAL	$e^+e^- \rightarrow Z$
$1.20\ \pm 0.08\ \pm 0.06$		⁶ BARATE	98 D	ALEP	$e^+e^- \rightarrow Z$
$1.21 \ \pm 0.11$		⁵ BARATE	98 D	ALEP	$e^+e^- \rightarrow Z$
$1.32\ \pm 0.15\ \pm 0.07$		⁷ ABE	96M	CDF	р р at 1.8 ТеV
$1.46 \begin{array}{c} +0.22 \\ -0.21 \end{array} \begin{array}{c} +0.07 \\ -0.09 \end{array}$		ABREU	96 D	DLPH	Repl. by ABREU 99W
$1.10 \begin{array}{c} +0.19 \\ -0.17 \end{array} \pm 0.09$		⁵ ABREU	96 D	DLPH	$e^+e^- \rightarrow Z$
$1.16\ \pm 0.11\ \pm 0.06$		⁵ AKERS	96	OPAL	$e^+e^- \rightarrow Z$
$1.27 \begin{array}{c} +0.35 \\ -0.29 \end{array} \pm 0.09$		ABREU	95 S	DLPH	Repl. by ABREU 99W
$1.05 \ {+0.12 \atop -0.11} \ \pm 0.09$	290	BUSKULIC	95L	ALEP	Repl. by BARATE 98D
$\begin{array}{rrr} 1.04 & +0.48 \\ & -0.38 \end{array} \pm 0.10$	11	⁸ ABREU	93F	DLPH	Excess $\Lambda\mu^-$, decay lengths
$1.05 \ {}^{+0.23}_{-0.20} \ \pm 0.08$	157	⁹ AKERS	93	OPAL	Excess $\Lambda \ell^-$, decay lengths
$\begin{array}{ccc} 1.12 & +0.32 \\ -0.29 & \pm 0.16 \end{array}$	101	¹⁰ BUSKULIC	921	ALEP	-
-		0			

¹Measured mean life using fully reconstructed $\Lambda_h^0 \rightarrow J/\psi \Lambda$ decays.

²Measured using $\Lambda \ell^-$ decay length.

³Measured using $p\ell^-$ decay length.

⁴ This ABREU 99W result is the combined result of the $\Lambda \ell^-$, $p\ell^-$, and excess $\Lambda \mu^-$ impact parameter measurements.

⁵ Measured using $\Lambda_c \ell^-$ and $\Lambda \ell^+ \ell^-$.

⁶Measured using the excess of $\Lambda \ell^-$, lepton impact parameter.

⁷ Measured using $\Lambda_c \ell^-$.

⁸ABREU 93F superseded by ABREU 96D.

. .

⁹AKERS 93 superseded by AKERS 96. ¹⁰BUSKULIC 921 superseded by BUSKULIC 95L.

b-baryon ADMIXTURE DECAY MODES $(\Lambda_b, \Xi_b, \Omega_b)$

These branching fractions are actually an average over weakly decaying *b*-baryons weighted by their production rates at the LHC, LEP, and Tevatron, branching ratios, and detection efficiencies. They scale with the *b*-baryon production fraction $B(b \rightarrow b$ -baryon).

The branching fractions B(*b*-baryon $\rightarrow \Lambda \ell^- \overline{\nu}_{\ell}$ anything) and B($\Lambda_b^0 \rightarrow$

 $\Lambda_c^+ \ell^- \overline{\nu}_\ell$ anything) are not pure measurements because the underlying measured products of these with B($b \rightarrow b$ -baryon) were used to determine B($b \rightarrow b$ -baryon), as described in the note "Production and Decay of b-Flavored Hadrons."

For inclusive branching fractions, e.g., $B \rightarrow D^{\pm}$ anything, the values usually are multiplicities, not branching fractions. They can be greater than one.

	Mode	Fraction (Γ_i/Γ)	Scale factor
Γ_1	$p\mu^-\overline{ u}$ anything	(5.8 + 2.3) %	
Г ₂ Га	$p\ell\overline{ u}_\ell$ anything p anything	$egin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	
Г4	$\Lambda\ell^-\overline{ u}_\ell$ anything	(3.8± 0.6) %	
Г ₅ Г ₆	$\Lambda\ell^+ u_\ell$ anything Λ anything	$(\begin{array}{ccc} 3.2 \pm & 0.8 \end{array}) \% \\ (39 \end{array} \pm \begin{array}{c} 7 \end{array}) \%$	
Γ ₇	$\Xi^-\ell^-\overline{ u}_\ell$ anything	$(4.6\pm1.4) imes10^{-3}$	1.2

b-baryon ADMIXTURE (Λ_b , Ξ_b , Ω_b) BRANCHING RATIOS

$\Gamma(p\mu^-\overline{ u})/\Gamma_{total}$						
VALUE (%)	EVTS	DOCUMENT ID		TECN	COMMENT	
$5.8^{+2.2}_{-1.9}\pm0.8$	125	¹ ABREU	95 S	DLPH	$e^+e^- \rightarrow Z$	

¹ABREU 95S reports $[\Gamma(b\text{-baryon} \rightarrow p\mu^{-}\overline{\nu}\text{anything})/\Gamma_{\text{total}}] \times [B(\overline{b} \rightarrow b\text{-baryon})]$ = 0.0049 ± 0.0011^{+0.0015}_{-0.0011} which we divide by our best value $B(\overline{b} \rightarrow b\text{-baryon}) = (8.4 \pm 1.1) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$(p\ell \nu_\ell anything)/I_{total}$					1 ₂ /1
VALUE (%)	DOCUMENT ID		TECN	COMMENT	
$5.6 \pm 0.9 \pm 0.7$	¹ BARATE	98v	ALEP	$e^+e^- ightarrow Z$	

¹BARATE 98V reports [$\Gamma(b\text{-baryon} \rightarrow p\ell \overline{\nu}_{\ell} \text{ anything})/\Gamma_{\text{total}}$] × [$B(\overline{b} \rightarrow b\text{-baryon})$] = (4.72 ± 0.66 ± 0.44) × 10⁻³ which we divide by our best value B($\overline{b} \rightarrow b\text{-baryon}$) = (8.4 ± 1.1) × 10⁻². Our first error is their experiment's error and our second error is the systematic error from using our best value.

https://pdg.lbl.gov

\ /=

$\Gamma(p\ell \overline{\nu}_{\ell} \text{ anything}) / \Gamma(p \text{ anything})$

VALUE (%)	DOCUMENT ID		TECN	COMMENT
8.0±1.2±1.4	BARATE	98v	ALEP	$e^+e^- \rightarrow Z$

$\Gamma(\Lambda \ell^- \overline{\nu}_\ell \text{ anything}) / \Gamma_{\text{total}}$

The values and averages in this section serve only to show what values result if one assumes our $B(b \rightarrow b$ -baryon). They cannot be thought of as measurements since the underlying product branching fractions were also used to determine $B(b \rightarrow b$ -baryon) as described in the note on "Production and Decay of b-Flavored Hadrons."

VALUE (%)	EVTS	DOCUMENT ID		TECN	COMMENT
3.8 ± 0.6 OUR AVERA	GE				
$3.9\!\pm\!0.5\!\pm\!0.5$		¹ BARATE	98 D	ALEP	$e^+e^- \rightarrow Z$
$3.5\!\pm\!0.4\!\pm\!0.5$		² AKERS	96	OPAL	Excess of $\Lambda\ell^-$ over $\Lambda\ell^+$
$3.6\!\pm\!0.9\!\pm\!0.5$	262	³ ABREU	95 S	DLPH	Excess of $\Lambda\ell^-$ over $\Lambda\ell^+$
$7.3\!\pm\!1.4\!\pm\!1.0$	290	⁴ BUSKULIC	95L	ALEP	Excess of $\Lambda\ell^-$ over $\Lambda\ell^+$
• • • We do not use f	he followi	ng data for averag	ges, fit	s, limits	, etc. ● ● ●
seen	157	⁵ AKERS	93	OPAL	Excess of $\Lambda\ell^-$ over $\Lambda\ell^+$
$8.3 {\pm} 2.5 {\pm} 1.1$	101	⁶ BUSKULIC	921	ALEP	Excess of $\Lambda\ell^-$ over $\Lambda\ell^+$

¹BARATE 98D reports [$\Gamma(b\text{-baryon} \rightarrow \Lambda \ell^- \overline{\nu}_\ell \text{ anything}) / \Gamma_{\text{total}}$] × [B($\overline{b} \rightarrow b\text{-baryon}$)] = 0.00326 \pm 0.00016 \pm 0.00039 which we divide by our best value B($\overline{b} \rightarrow b$ -baryon) = (8.4 \pm 1.1) \times 10⁻². Our first error is their experiment's error and our second error is the systematic error from using our best value. Measured using the excess of $\Lambda \ell^{-}$, lepton impact parameter.

- ²AKERS 96 reports $[\Gamma(b\text{-baryon} \rightarrow \Lambda \ell^- \overline{\nu}_\ell \text{ anything}) / \Gamma_{\text{total}}] \times [B(\overline{b} \rightarrow b\text{-baryon})] =$ $0.00291 \pm 0.00023 \pm 0.00025$ which we divide by our best value B($\overline{b} \rightarrow b$ -baryon) = $(8.4 \pm 1.1) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
- ³ABREU 95S reports [$\Gamma(b\text{-baryon} \rightarrow \Lambda \ell^- \overline{\nu}_\ell \text{ anything}) / \Gamma_{\text{total}}$] × [B($\overline{b} \rightarrow b\text{-baryon}$)] = 0.0030 \pm 0.0006 \pm 0.0004 which we divide by our best value B($\overline{b} \rightarrow b$ -baryon) = $(8.4 \pm 1.1) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
- ⁴ BUSKULIC 95L reports [$\Gamma(b$ -baryon $\rightarrow \Lambda \ell^- \overline{\nu}_\ell$ anything)/ Γ_{total}] \times [B($\overline{b} \rightarrow b$ -baryon)] = 0.0061 \pm 0.0006 \pm 0.0010 which we divide by our best value B($\overline{b} \rightarrow b$ -baryon) = $(8.4 \pm 1.1) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
- ⁵ AKERS 93 superseded by AKERS 96.
- ⁶BUSKULIC 921 reports [$\Gamma(b$ -baryon $\rightarrow \Lambda \ell^- \overline{\nu}_{\ell}$ anything)/ Γ_{total}] × [B($\overline{b} \rightarrow b$ -baryon)] = 0.0070 \pm 0.0010 \pm 0.0018 which we divide by our best value B($\overline{b} \rightarrow b$ -baryon) = $(8.4 \pm 1.1) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Superseded by BUSKULIC 95L.

$\Gamma(\Lambda \ell^+ \nu_\ell \text{ anything}) / \Gamma(\Lambda \text{ anything})$

 Γ_5/Γ_6 VALUE (units 10^{-2}) DOCUMENT ID TECN 99L OPAL $e^+e^- \rightarrow Z$ $8.0 \pm 1.2 \pm 0.8$ ABBIENDI • • • We do not use the following data for averages, fits, limits, etc. • • • $7.0 \pm 1.2 \pm 0.7$ ACKERSTAFF 97N OPAL Repl. by ABBIENDI 99L

https://pdg.lbl.gov

Γ4/Γ

 Γ_2/Γ_3

Γ(Λanything)/Γ _{total}						Г ₆ /Г
VALUE (%)	DOCUMENT ID		TECN	COMMENT		
39± 7 OUR AVERAGE						
$42\pm$ 6 ± 5	¹ ABBIENDI	99L	OPAL	$e^+e^- \rightarrow$	Ζ	
$27 \frac{+15}{-9} \pm 3$	² ABREU	95 C	DLPH	$e^+ e^- ightarrow$	Ζ	

• • • We do not use the following data for averages, fits, limits, etc. • • •

 $47\pm7\pm6$ ³ ACKERSTAFF 97N OPAL Repl. by ABBIENDI 99L

¹ABBIENDI 99L reports [$\Gamma(b\text{-baryon} \rightarrow \Lambda \text{anything})/\Gamma_{\text{total}}$] × [$B(\overline{b} \rightarrow b\text{-baryon})$] = 0.035 ± 0.0032 ± 0.0035 which we divide by our best value $B(\overline{b} \rightarrow b\text{-baryon}) = (8.4 \pm 1.1) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

the systematic error from using our best value. ²ABREU 95C reports $0.28 \stackrel{+0.17}{_{-0.12}}$ from a measurement of $[\Gamma(b\text{-baryon} \rightarrow \Lambda \text{anything})/\Gamma_{\text{total}}] \times [B(\overline{b} \rightarrow b\text{-baryon})]$ assuming $B(\overline{b} \rightarrow b\text{-baryon}) = 0.08 \pm 0.02$, which we rescale to our best value $B(\overline{b} \rightarrow b\text{-baryon}) = (8.4 \pm 1.1) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

³ACKERSTAFF 97N reports $[\Gamma(b\text{-baryon} \rightarrow \Lambda \text{anything})/\Gamma_{\text{total}}] \times [B(\overline{b} \rightarrow b\text{-baryon})]$ = 0.0393 ± 0.0046 ± 0.0037 which we divide by our best value $B(\overline{b} \rightarrow b\text{-baryon}) = (8.4 \pm 1.1) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(\Xi^-\ell^-\overline{\nu}_\ell \text{ anything})/\Gamma_{\text{total}}$

 $\begin{array}{c|c} \hline \text{VALUE (units 10^{-3})} & \hline \text{DOCUMENT ID} & \hline \text{TECN} & \text{COMMENT} \\ \hline \textbf{4.6 \pm 1.4 \text{ OUR AVERAGE}} & \text{Error includes scale factor of } 1.2. \\ \hline \textbf{3.6 \pm 1.2 \pm 0.5} & 1 & \text{ABDALLAH} & \textbf{05c} & \text{DLPH} & e^+e^- \rightarrow Z^0 \\ \hline \textbf{6.4 \pm 1.6 \pm 0.8} & 2 & \text{BUSKULIC} & \textbf{96T} & \text{ALEP} & \text{Excess } \Xi^-\ell^- & \text{over } \Xi^-\ell^+ \\ \hline \textbf{\bullet} \bullet \bullet \text{ We do not use the following data for averages, fits, limits, etc. } \bullet \bullet \\ \hline \textbf{7.0 \pm 2.8 \pm 0.9} & 3 & \text{ABREU} & \textbf{95v} & \text{DLPH} & \text{Repl. by ABDALLAH 05c} \end{array}$

¹ABDALLAH 05C reports $[\Gamma(b\text{-baryon} \rightarrow \Xi^- \ell^- \overline{\nu}_\ell \text{ anything})/\Gamma_{\text{total}}] \times [B(\overline{b} \rightarrow b\text{-baryon})] = (3.0 \pm 1.0 \pm 0.3) \times 10^{-4}$ which we divide by our best value $B(\overline{b} \rightarrow b\text{-baryon}) = (8.4 \pm 1.1) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

² BUSKULIC 96T reports $[\Gamma(b\text{-baryon} \rightarrow \Xi^- \ell^- \overline{\nu}_\ell \text{ anything})/\Gamma_{\text{total}}] \times [B(\overline{b} \rightarrow b\text{-baryon})] = (5.4 \pm 1.1 \pm 0.8) \times 10^{-4}$ which we divide by our best value $B(\overline{b} \rightarrow b\text{-baryon}) = (8.4 \pm 1.1) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

³ABREU 95V reports [$\Gamma(b\text{-baryon} \rightarrow \Xi^- \ell^- \overline{\nu}_\ell \text{ anything})/\Gamma_{\text{total}}$] × [B($\overline{b} \rightarrow b\text{-baryon}$)] = (5.9 ± 2.1 ± 1.0) × 10⁻⁴ which we divide by our best value B($\overline{b} \rightarrow b\text{-baryon}$) = (8.4 ± 1.1) × 10⁻². Our first error is their experiment's error and our second error is the systematic error from using our best value.

b-baryon ADMIXTURE (Λ_b , Ξ_b , Ω_b) REFERENCES

ABAZOV ABAZOV	-	PR D85 112003 PRL 99 142001	V.M. Abazov <i>et al.</i> V.M. Abazov <i>et al.</i>	(D0 Collab.) (D0 Collab.)
ABAZOV		PRL 99 142001 PRL 94 102001	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABDALLAH		EPJ C44 299	J. Abdallah <i>et al.</i>	(DELPHI Collab.)
ABBIENDI	99L	EPJ C9 1	G. Abbiendi <i>et al.</i>	(OPAL Collab.)
ABREU		EPJ C10 185	P. Abreu <i>et al.</i>	(DELPHI Collab.)
ACKERSTAFF		PL B426 161	K. Ackerstaff <i>et al.</i>	(OPAL Collab.)
BARATE	98D	EPJ C2 197	R. Barate <i>et al.</i>	(ALEPH Collab.)

https://pdg.lbl.gov

Page 4

Created: 5/30/2025 07:50

 Γ_7/Γ

Citation	S. Na	vas <i>et al.</i> (Particle [Data Group), Phys. Rev. D 110 , 030	001 (2024) and 2025 update
BARATE ACKERSTAFF ABE ABREU AKERS BUSKULIC ABREU ABREU ABREU BUSKULIC ABREU ABREU BUSKULIC	98V 97N 96M 96D 96 95C 95C 95V 95L 93F 93 92I	EPJ C5 205 ZPHY C74 423 PRL 77 1439 ZPHY C71 199 ZPHY C69 195 PL B384 449 PL B347 447 ZPHY C68 375 ZPHY C68 541 PL B357 685 PL B311 379 PL B316 435 PL B297 449	 R. Barate et al. K. Ackerstaff et al. F. Abreu et al. P. Abreu et al. R. Akers et al. D. Buskulic et al. P. Abreu et al. P. Abreu et al. P. Abreu et al. D. Buskulic et al. R. Akers et al. R. Akers et al. D. Buskulic et al. R. Akers et al. D. Buskulic et al. 	(ALEPH Collab.) (OPAL Collab.) (CDF Collab.) (DELPHI Collab.) (ALEPH Collab.) (DELPHI Collab.) (DELPHI Collab.) (DELPHI Collab.) (DELPHI Collab.) (ALEPH Collab.) (DELPHI Collab.) (DELPHI Collab.) (ALEPH Collab.) (OPAL Collab.)