$B^{\pm}/B^0/B_s^0/b$ -baryon ADMIXTURE

$B^{\pm}/B^{0}/B_{s}^{0}/b$ -baryon ADMIXTURE MEAN LIFE

Each measurement of the B mean life is an average over an admixture of various bottom mesons and baryons which decay weakly. Different techniques emphasize different admixtures of produced particles, which could result in a different B mean life.

"OUR EVALUATION" is an average using rescaled values of the data listed below. This is a weighted average of the lifetimes of the five main b-hadron species (B^+ , B^0 , B^0_{sH} , B^0_{sL} , and Λ_b) that assumes the production fractions in Z decays (given at the end of this section) and equal production fractions of B^0_{sH} and B^0_{sL} mesons.

 $VALUE (10^{-12} \text{ s})$ DOCUMENT ID TECN COMMENT **EVTS** 1.5673 ± 0.0029 OUR EVALUATION (Produced by HFLAV) • • • We do not use the following data for averages, fits, limits, etc. • • • ¹ ABDALLAH 04E DLPH $e^+e^- \rightarrow Z$ $1.570 \pm 0.005 \pm 0.008$ +0.035² ABE 1.533 ± 0.015 CDF $p\overline{p}$ at 1.8 TeV ³ ACCIARRI L3 $e^+e^- \rightarrow Z$ $1.549 \ \pm 0.009 \ \pm 0.015$ 98 ⁴ ACKERSTAFF 97F OPAL $1.611 \pm 0.010 \pm 0.027$ ⁴ ABREU 96E DLPH $e^+e^- \rightarrow Z$ $1.582 \pm 0.011 \pm 0.027$ ⁵ ABREU 96E DLPH $e^+e^- \rightarrow$ $1.575 \pm 0.010 \pm 0.026$ ⁶ BUSKULIC $1.533 \pm 0.013 \pm 0.0229.8$ k 96F **ALEP** $1.564 \pm 0.030 \pm 0.036$ ⁷ ABE,K **95**B SLD ⁸ ABREU $1.542 \pm 0.021 \pm 0.045$ 94L DLPH $e^+e^- \rightarrow Z$ $^{+\,0.24}_{-\,0.21}$ ⁹ ABREU DLPH $e^+e^- \rightarrow Z$ 1.50 ± 0.03 10 ABF 1.46 ± 0.06 ± 0.065344 CDF Repl. by ABE 98B +0.14¹¹ ABRFU 1.23 ± 0.15 188 93D DLPH Sup. by ABREU 94L -0.13¹² ABREU 1.49 ± 0.11 ± 0.12 253 DLPH Sup. by ABREU 94L +0.16¹³ ACTON OPAL $e^+e^- \rightarrow Z$ 1.51 ± 0.11 130 -0.14¹⁴ ACTON $e^+e^- \rightarrow Z$ 93L OPAL $1.523 \pm 0.034 \pm 0.0385372$ ¹⁴ ADRIANI Repl. by ACCIARRI 98 $1.535 \pm 0.035 \pm 0.0287357$ L3 ¹⁵ BUSKULIC 930 ALEP $e^+e^- \rightarrow Z$ $1.511 \pm 0.022 \pm 0.078$ ¹⁶ ABREU 92 1.28 ± 0.10 DLPH Sup. by ABREU 94L ¹⁷ ACTON 1.37 $\pm\,0.07$ ± 0.061354 92 OPAL Sup. by ACTON 93L ¹⁸ BUSKULIC ± 0.03 $\pm\,0.06$ **ALEP** Sup. by BUSKULIC 96F 1.49 +0.19¹⁹ BUSKULIC $e^+e^- \rightarrow Z$ 92G ALEP 1.35 ± 0.05 -0.17²⁰ ADEVA 91H L3 Sup. by ADRIANI 93K 1.32 ± 0.08 ± 0.091386 $+0.31 \\ -0.25$ 21 ALEXANDER 91G OPAL $e^+e^- \rightarrow Z$ 1.32 ± 0.15 37 ²² DECAMP 91c ALEP Sup. by BUSKULIC 92F 1.29 ± 0.06 ± 0.102973 ²³ HAGEMANN JADE $E_{cm}^{ee} = 35 \text{ GeV}$ 90 1.36

1.13	±0.15		²⁴ LYONS	90	RVUE	
1.35	± 0.10	± 0.24	BRAUNSCH	89 B	TASS	$E_{\rm cm}^{\it ee}=$ 35 GeV
0.98	± 0.12	± 0.13	ONG	89	MRK2	$E_{ m cm}^{\it ee}=$ 29 GeV
1.17	$^{+0.27}_{-0.22}$	$^{+0.17}_{-0.16}$	KLEM	88	DLCO	Eee 29 GeV
	±0.20		²⁵ ASH	87	MAC	$E_{cm}^{ee} = 29 \; GeV$
1.02	$+0.42 \\ -0.39$	301	²⁶ BROM	87	HRS	E ^{ee} _{cm} = 29 GeV

 $^{^{1}}$ Measurement performed using an inclusive reconstruction and B flavor identification technique.

² Measured using inclusive $J/\psi(1S) \rightarrow \mu^{+}\mu^{-}$ vertex.

³ACCIARRI 98 uses inclusively reconstructed secondary vertex and lepton impact parameter.

⁴ ACKERSTAFF 97F uses inclusively reconstructed secondary vertices.

⁵ Combines ABREU 96E secondary vertex result with ABREU 94L impact parameter result.

⁶ BUSKULIC 96F analyzed using 3D impact parameter.

⁷ABE,K 95B uses an inclusive topological technique.

⁸ ABREU 94L uses charged particle impact parameters. Their result from inclusively reconstructed secondary vertices is superseded by ABREU 96E.

⁹ From proper time distribution of $b \to J/\psi(1S)$ anything.

¹⁰ ABE 93J analyzed using $J/\psi(1S) \rightarrow \mu\mu$ vertices.

¹¹ ABREU 93D data analyzed using $D/D^*\ell$ anything event vertices.

¹² ABREU 93G data analyzed using charged and neutral vertices.

¹³ ACTON 93C analysed using $D/D^*\ell$ anything event vertices.

 $^{^{14}}$ ACTON 93L and ADRIANI 93K analyzed using lepton (e and μ) impact parameter at Z.

 $^{^{15}\,\}mathrm{BUSKULIC}$ 930 analyzed using dipole method.

 $^{^{16}}$ ABREU 92 is combined result of muon and hadron impact parameter analyses. Hadron tracks gave $(12.7\pm0.4\pm1.2)\times10^{-13}$ s for an admixture of B species weighted by production fraction and mean charge multiplicity, while muon tracks gave $(13.0\pm1.0\pm0.8)\times10^{-13}$ s for an admixture weighted by production fraction and semileptonic branching fraction.

¹⁷ ACTON 92 is combined result of muon and electron impact parameter analyses.

¹⁸ BUSKULIC 92F uses the lepton impact parameter distribution for data from the 1991

¹⁹ BUSKULIC 92G use $J/\psi(1S)$ tags to measure the average b lifetime. This is comparable to other methods only if the $J/\psi(1S)$ branching fractions of the different b-flavored hadrons are in the same ratio.

Using $Z \to e^+ X$ or $\mu^+ X$, ADEVA 91H determined the average lifetime for an admixture of B hadrons from the impact parameter distribution of the lepton.

²¹ Using $Z \to J/\psi(1S)$ X, $J/\psi(1S) \to \ell^+\ell^-$, ALEXANDER 91G determined the average lifetime for an admixture of B hadrons from the decay point of the $J/\psi(1S)$.

²² Using $Z \rightarrow eX$ or μX , DECAMP 91C determines the average lifetime for an admixture of B hadrons from the signed impact parameter distribution of the lepton.

²³ HAGEMANN 90 uses electrons and muons in an impact parameter analysis.

²⁴LYONS 90 combine the results of the *B* lifetime measurements of ONG 89, BRAUN-SCHWEIG 89B, KLEM 88, and ASH 87, and JADE data by private communication. They use statistical techniques which include variation of the error with the mean life, and possible correlations between the systematic errors. This result is not independent of the measured results used in our average.

 $^{^{25}}$ We have combined an overall scale error of 15% in quadrature with the systematic error of ± 0.7 to obtain ± 2.1 systematic error.

²⁶ Statistical and systematic errors were combined by BROM 87.

CHARGED b-HADRON ADMIXTURE MEAN LIFE

VALUE (10^{-12} s)DOCUMENT IDTECNCOMMENT1.72±0.08±0.061 ADAM95 DLPH $e^+e^- \rightarrow Z$ 1 ADAM 95 data analyzed using vertex-charge technique to tag b-hadron charge.NEUTRAL b-HADRON ADMIXTURE MEAN LIFEVALUE (10^{-12} s)DOCUMENT IDTECNCOMMENT1.58±0.11±0.091 ADAM95 DLPH $e^+e^- \rightarrow Z$ 1 ADAM 95 data analyzed using vertex-charge technique to tag b-hadron charge.

MEAN LIFE RATIO $au_{ ext{charged }b- ext{hadron}}/ au_{ ext{neutral }b- ext{hadron}}$

VALUE	DOCUMENT I	D	TECN	COMMENT	
$1.09^{f +0.11}_{-0.10} \pm 0.08$	¹ ADAM	95	DLPH	$e^+e^- ightarrow Z$	
$^{ m 1}$ ADAM 95 data analyzed using vertex-charge technique to tag \emph{b} -hadron charge.					

$|\Delta \tau_b|/\tau_{b,\overline{b}}$

 ${ au}_{b,\overline{b}}$ and $|\Delta { au}_b|$ are the mean life average and difference between b and \overline{b} hadrons.

VALUE	DOCUMENT ID		TECN	COMMENT
$-0.001\pm0.012\pm0.008$	¹ ABBIENDI	99J	OPAL	$e^+e^- \rightarrow Z$

 $^{^{}m 1}$ Data analyzed using both the jet charge and the charge of secondary vertex in the opposite hemisphere.

\overline{b} PRODUCTION FRACTIONS AND DECAY MODES

The branching fraction measurements are for an admixture of B mesons and baryons at energies above the $\Upsilon(4S)$. Only the highest energy results (LHC, LEP, Tevatron, $Sp\overline{p}S$) are used in the branching fraction averages. In the following, we assume that the production fractions are the same at the LHC, LEP, and at the Tevatron.

For inclusive branching fractions, e.g., $B \to D^{\pm}$ anything, the values usually are multiplicities, not branching fractions. They can be greater than one.

The modes below are listed for a \overline{b} initial state. b modes are their charge conjugates. Reactions indicate the weak decay vertex and do not include mixing.

Scale factor/ Confidence level

Mode

Fraction (Γ_i/Γ)

PRODUCTION FRACTIONS

The production fractions for weakly decaying b-hadrons at high energy have been calculated from the best values of mean lives, mixing parameters, and branching fractions in this edition by the Heavy Flavor Averaging Group (HFLAV) as described in the note " B^0 - \overline{B}^0 Mixing" in the B^0 Particle Listings. We no longer provide world averages of the b-hadron production fractions, where results from LEP, Tevatron and LHC are averaged together; indeed the available data (from CDF and LHCb) shows that the fractions depend on the kinematics (in particular the p_T) of the produced b hadron. Hence we would like to list the fractions in Z decays instead, which are well-defined physics observables. The production fractions in $p_{\overline{p}}$ collisions at the Tevatron are also listed at the end of the section. Values assume

$$\begin{array}{ll} \mathsf{B}(\overline{b}\to \ B^+) = \mathsf{B}(\overline{b}\to \ B^0) \\ \mathsf{B}(\overline{b}\to \ B^+) + \mathsf{B}(\overline{b}\to \ B^0) + \mathsf{B}(\overline{b}\to \ B^0) + \mathsf{B}(b\to \ b\text{-baryon}) = 100\%. \end{array}$$

The correlation coefficients between production fractions are also reported:

$$cor(B_s^0, b ext{-baryon}) = 0.064$$

 $cor(B_s^0, B^{\pm} = B^0) = -0.633$
 $cor(b ext{-baryon}, B^{\pm} = B^0) = -0.813.$

The notation for production fractions varies in the literature $(f_d, d_{B^0}, f(b \to \overline{B}^0), \operatorname{Br}(b \to \overline{B}^0))$. We use our own branching fraction notation here, $\operatorname{B}(\overline{b} \to B^0)$.

Note these production fractions are b-hadronization fractions, not the conventional branching fractions of b-quark to a B-hadron, which may have considerable dependence on the initial and final state kinematic and production environment.

Γ_1	B^+	(40.8 =	± 0.7) %
Γ_2	B^0	(40.8 =	± 0.7) %
Γ ₃	B_s^0	(10.0 =	± 0.8) %
Γ_4	B_c^+		
Γ_5	<i>b</i> -baryon	(8.4 =	± 1.1) %

DECAY MODES

Semileptonic and leptonic modes

Γ_6	u anything	(23.1 ± 1.5) %	
Γ_7	$\ell^+ u_\ell$ anything	[a] ($10.69\pm~0.22)~\%$	
Γ ₈	$e^+ u_e$ anything	($10.86\pm~0.35)~\%$	
Γ ₉	$\mu^+ u_\mu$ anything	($10.95 ^{+}_{-} \begin{array}{l} 0.29 \\ 0.25 \end{array})$ %	
	$D^-\ell^+ u_\ell$ anything	[a] (2.2 \pm 0.4) %	S=1.9
Γ_{11}	$D^-\pi^+\ell^+ u_\ell$ anything	$(4.9 \pm 1.9) \times 10^{-3}$	

https://pdg.lbl.gov

Page 4

 $D^*(2010)^{\mp}D_s^{\pm}$ anything

[c] (3.3 + 1.6)%

Γ ₄₁	$D^0 D^*(2010)^{\pm}$ anything	[c]	$(3.0\ \frac{+}{-}\ \frac{1.1}{0.9}\)\ \%$
Γ_{42}	$D^*(2010)^\pmD^\mp$ anything	[c]	(2.5 + 1.2)%
	$D^*(2010)^{\pm} D^*(2010)^{\mp}$ anything		$(1.2 \pm 0.4)\%$
_	$\overline{D}D$ Danything	[-]	$(10 + \frac{11}{-10})\%$
	$D_2^*(2460)^0$ anything		= *
	D_{s}^{-} anything		(4.7 ± 2.7) % (14.7 ± 2.1) %
_	D_s^+ anything D_s^+ anything		$(10.1 \pm 3.1)\%$
	Λ_c^+ anything		$(7.6 \pm 1.1)\%$
	$\frac{\pi_c}{c}/c$ anything	[d]	,
1 49			, ,
F	Charmoniur	n mo	
	$J/\psi(1S)$ anything		$(1.16\pm 0.10)\%$ $(3.06\pm 0.30)\times 10^{-3}$
	$\psi(2S)$ anything $\chi_{c0}(1P)$ anything		$(3.00\pm 0.30) \times 10^{-3}$
	$\chi_{c1}(1P)$ anything		$(5.9 \pm 1.5) \times 10^{-3}$ S=1.2
Γ ₅₄	$\chi_{c2}(1P)$ anything		$(1.6 \pm 1.2) \times 10^{-3}$
Γ ₅₅	$\chi_c(2P)$ anything, $\chi_c \to \phi \phi$	<	$< 2.8 \times 10^{-7} \text{ CL}=95\%$
	$\eta_c(1S)$ anything		$(5.7 \pm 0.7) \times 10^{-3}$
	$\eta_{ m c}(2S)$ anything, $\eta_{ m c} ightarrow \phi \phi$		$(4.1 \pm 1.6) \times 10^{-7}$
Γ ₅₈	$\chi_{c1}(3872)$ anything, $\chi_{c1} ightarrow \phi \phi$		
Γ ₅₉	$\chi_{c0}(3915)$ anything, $\chi_{c0} \rightarrow \phi \phi$	<	$< 3.1 \times 10^{-7} \text{ CL}=95\%$
	K or K*	mod€	2S
Γ ₆₀	$\overline{s}\gamma$		$(3.1 \pm 1.1) \times 10^{-4}$
Γ_{61}	$\overline{s}\overline{\nu}\nu$ B1	<	$<$ 6.4 \times 10 ⁻⁴ CL=90%
	K^{\pm} anything		$(74 \pm 6)\%$
Γ ₆₃	K_S^0 anything		($29.0~\pm~2.9$) %
	Pion m	odes	
	π^{\pm} anything		$(397 \pm 21)\%$
	π^0 anything	[<i>d</i>]	$(280 \pm 60) \%$
l ₆₆	ϕ anything		(2.82 ± 0.23) %
	Baryon n	nodes	5
	p/\overline{p} anything		(13.1 ± 1.1) %
Γ ₆₈	$\Lambda/\overline{\Lambda}$ anything		(5.9 ± 0.6) %
Γ ₆₉	b-baryon anything		(10.2 ± 2.8) %
	$\overline{\Lambda}_b^0$ anything		
I ₇₁	Ξ_b^+ anything		
	Other m		
• –	charged anything	[<i>d</i>]	(497 ± 7) %
Γ ₇₃	${\sf hadron}^+$ ${\sf hadron}^-$		$(1.7 \ ^{+} \ ^{1.0} _{-}) \times 10^{-5}$
Γ ₇₄	charmless		$(7 \pm 21) \times 10^{-3}$
https:	z//pdg.lbl.gov Page 6		Created: 5/30/2025 07:50

$\Delta B = 1$ weak neutral current (B1) modes

 Γ_{75} $e^+\,e^-$ anything $$\rm B1$$ < 3.2 $\times\,10^{-4}$ CL=90% Γ_{77} $\nu\,\overline{\nu}$ anything

- [a] An ℓ indicates an e or a μ mode, not a sum over these modes.
- [b] D_j represents an unresolved mixture of pseudoscalar and tensor D^{**} (P-wave) states.
- [c] The value is for the sum of the charge states or particle/antiparticle states indicated.
- [d] Inclusive branching fractions have a multiplicity definition and can be greater than 100%.

$B^{\pm}/B^{0}/B_{s}^{0}/b$ -baryon ADMIXTURE BRANCHING RATIOS

 $\Gamma(B^+)/\Gamma_{\text{total}}$ "OUR EVALUATION" is an average from Z decay.

VALUEDOCUMENT IDTECNCOMMENT**0.408** \pm **0.007 OUR EVALUATION** (Produced by HFLAV)**0.4099** \pm **0.0082** \pm **0.0111** 1 ABDALLAH 03K DLPH $e^+e^- \rightarrow Z$

 $\Gamma(B^0_s)/\Gamma(B^+)$ VALUE DOCUMENT ID TECH COMMENT

<u>ALUE</u> <u>DOCUMENT ID</u> <u>TECN</u> <u>COMMENT</u>

• • We do not use the following data for averages, fits, limits, etc. • •

¹ The analysis is based on a neural network, to estimate the charge of the weakly-decaying *b* hadron by distinguishing its decay products from particles produced at the primary vertex.

¹AAIJ 20V measures the average value using the observed $B_s^0 \to J/\psi \phi$ and $B^+ \to J/\psi K^+$ yields, over the ranges *b*-hadron p_T of 0.5 and 40 GeV and η of 2.0 and 6.5. The value is not used in averages as BR-related systematic uncertainties are not evaluated.

² AAIJ 20V reports $[\Gamma(\overline{b} \to B_s^0)/\Gamma(\overline{b} \to B^+)] \times [B(B_s^0 \to J/\psi(1S)\phi)] / [B(B^+ \to J/\psi(1S)K^+)] = 0.1238 \pm 0.0010 \pm 0.0022$ which we multiply or divide by our best values $B(B_s^0 \to J/\psi(1S)\phi) = (1.03 \pm 0.04) \times 10^{-3}$, $B(B^+ \to J/\psi(1S)K^+) = (1.020 \pm 0.019) \times 10^{-3}$. Our first error is their experiment's error and our second error is the systematic error from using our best values.

³ AAIJ 20V reports $[\Gamma(\overline{b} \to B_s^0)/\Gamma(\overline{b} \to B^+)] \times [B(B_s^0 \to J/\psi(1S)\phi)] / [B(B^+ \to J/\psi(1S)K^+)] = 0.1270 \pm 0.0007 \pm 0.0022$ which we multiply or divide by our best

values B($B_s^0 \to J/\psi(1S)\phi$) = (1.03 \pm 0.04) \times 10⁻³, B($B^+ \to J/\psi(1S)K^+$) = (1.020 \pm 0.019) \times 10⁻³. Our first error is their experiment's error and our second error is the systematic error from using our best values.

 4 AAIJ 20V reports the results in two different data sets, and we quote here the weighted

 $^{5}\,\mathsf{AAIJ}\,\overset{\circ}{\mathsf{20V}}\,\,\mathsf{reports}\,\,[\Gamma(\overline{b}\to\ B_{s}^{0})/\Gamma(\overline{b}\to\ B^{+})]\,\times\,[\mathsf{B}(B_{s}^{0}\to\ J/\psi(1S)\phi)]\,\,/\,\,[\mathsf{B}(B^{+}\to B^{+})]$ $J/\psi(1S)K^+)] = 0.1326 \pm 0.0007 \pm 0.0023$ which we multiply or divide by our best values $B(B_s^0 \to J/\psi(1S)\phi) = (1.03 \pm 0.04) \times 10^{-3}$, $B(B^+ \to J/\psi(1S)K^+) =$ $(1.020 \pm 0.019) \times 10^{-3}$. Our first error is their experiment's error and our second error is the systematic error from using our best values

 $\Gamma_3/(\Gamma_1+\Gamma_2)$

 $\Gamma(B_s^0)/[\Gamma(B^+)+\Gamma(B^0)]$ "OUR EVALUATION" is an average from Z decay.

<u>VALUE</u> 0.1230±0.0115 OUR EVALUATIO	DOCUMENT ID (Produced b	<u>TECN</u>	COMMENT
	•	,	
 ● We do not use the following 	data for averages	s, fits, limits, e	etc. • • •
0.122 ± 0.006	¹ AAIJ	19AD LHCB	pp at 13 TeV
$0.134\ \pm0.004\ ^{+0.011}_{-0.010}$	² AAIJ	12J LHCB	pp at 7 TeV
$0.1265 \!\pm\! 0.0085 \!\pm\! 0.0131$	³ AAIJ	11F LHCB	pp at 7 TeV
$0.128 \ ^{+0.011}_{-0.010} \ \pm 0.011$	⁴ AALTONEN	08N CDF	$p\overline{p}$ at 1.96 TeV
0.213 ± 0.068	⁵ AFFOLDER	00E CDF	$p\overline{p}$ at 1.8 TeV
0.21 ± 0.036 $^{+0.038}_{-0.030}$	⁶ ABE	99P CDF	\overline{p} p at 1.8 TeV

 $^{^{}m 1}$ AAIJ $^{
m 19}$ AD measured the average value using $^{
m b}$ -hadron semileptonic decays and assuming isospin symmetry for b-hadron p_T of 4 and 25 GeV and η of 2 and 5.

 $^{^5}$ AFFOLDER 00E uses several electron-charm final states in $b\to c\,e^-$ X. 6 ABE 99P uses the numbers of $K^*(892)^0,~K^*(892)^+,$ and $\phi(1020)$ events produced in association with the double semileptonic decays $b \to c \mu^- X$ with $c \to s \mu^+ X$.

$\Gamma(B_s^0)/\Gamma(B^0)$					Γ_3/Γ_2
VALUE	DOCUMENT ID		TECN	COMMENT	
0.246 ± 0.023 OUR EVALUATIO	N (Produced b	y HFL	AV)		
0.239 ± 0.016 OUR AVERAGE					
$0.240\ \pm0.004\ \pm0.020$	¹ AAD	15 CM	ATLS	pp at 7 TeV	
$0.238 \pm 0.004 \pm 0.026$	² AAIJ	13 P	LHCB	pp at 7 TeV	
• • • We do not use the following	data for averages	, fits, I	imits, e	etc. • • •	
0.2385 ± 0.0075	³ AAIJ	21Y	LHCB	pp at 8 TeV	
0.2539 ± 0.0079	³ AAIJ	21Y	LHCB	pp at 13 TeV	
0.2390 ± 0.0076	³ AAIJ	21Y	LHCB	pp at 7 TeV	

https://pdg.lbl.gov

Page 8

 $^{^2}$ AAIJ 12J measured this value using b-hadron semileptonic decays and assuming isospin

 $^{^3}$ AAIJ 11F measured $f_s/f_d=0.253\pm0.017\pm0.017\pm0.020$, where the errors are statistical, systematic, and theoretical. We divide their value by 2. Our second error combines systematic and theoretical uncertainties.

⁴ AALTONEN 08N reports $[\Gamma(\overline{b} \rightarrow B_s^0)/[\Gamma(\overline{b} \rightarrow B^+) + \Gamma(\overline{b} \rightarrow B^0)]] \times [B(D_s^+ \rightarrow \phi\pi^+)] = (5.76 \pm 0.18^{+0.45}_{-0.42}) \times 10^{-3}$ which we divide by our best value $B(D_s^+ \rightarrow B_s^+)$ $\phi\pi^+)=(4.5\pm0.4)\times10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

- 1 AAD 15CM measurement is derived from the observed $B_s^0 o J/\psi \phi$ and $B_d^0 o J/\psi K^{*0}$ yields and a recent theory prediction of B($B_s^0 \to J/\psi \phi$)/B($B_d^0 \to J/\psi K^{*0}$). The second uncertainty combines in quadrature systematic and theoretical uncertainties.
- 2 AAIJ 13P studies also separately the $p_T(B)$ and $\eta(B)$ dependency of $\Gamma(\overline{b} o B_s^0)/\Gamma(\overline{b} o B_s^0)$ (B^0) , finding $f_s/f_d(p_T) = (0.256 \pm 0.020) + (-2.0 \pm 0.6) \ 10^{-3} \ / \text{GeV/c} \ (p_T - \langle p_T \rangle)$ and $f_{\rm S}/f_{\rm d}(\eta)$ = (0.256 \pm 0.020) + (0.005 \pm 0.006) (η – $\langle \eta \rangle$), where $\langle p_{\rm T} \rangle$ = 10.4 GeV/c and $\langle \eta \rangle =$ 3.28. AAIJ 13P reports the measurement as 0.238 \pm 0.004 \pm 0.015 \pm 0.021 where the last uncertainly is theoretical.
- 3 AAIJ 21Y uses hadronic decays $B^0 o D^-\pi^+$, $B^0 o D^-K^+$, $B^0_S o D^-_S\pi^+$ and $B_s^0 \to J/\psi \phi$ as well as semileptonic B^0 and B_s^0 decays. Measured within the p_T range [0.5,40] GeV/c, η range [2, 6.4].

$\Gamma(B_c^+)/[\Gamma(B^+)+\Gamma(B^0)]$

 $\Gamma_4/(\Gamma_1+\Gamma_2)$

$VALUE$ (units 10^{-3})	DOCUMENT ID		TECN	COMMENT
3.7 \pm 0.6 OUR AVERAGE				
$3.63 \pm 0.08 \pm 0.87$	¹ AAIJ	19AI	LHCB	pp at 7 TeV
$3.78\pm0.04\pm0.90$	¹ AAIJ	19AI	LHCB	pp at 13 TeV

¹ Measured using B_c^+ semileptonic decays.

$\Gamma(b\text{-baryon})/[\Gamma(B^+)+\Gamma(B^0)]$ "OUR EVALUATION" is an average from Z decay.

 $\Gamma_5/(\Gamma_1+\Gamma_2)$

DOCUMENT ID <u>TECN</u> <u>COMMENT</u> 0.103 ± 0.015 OUR EVALUATION (Produced by HFLAV)

We do not use the following data for averages, fits, limits, etc.

0.259 ± 0.018	¹ AAIJ	19AD LHCB	pp at 13 TeV
$0.305 \pm 0.010 \pm 0.081$	² AAIJ	12J LHCB	pp at 7 TeV
$\begin{array}{ccc} 0.31 & \pm 0.11 & +0.12 \\ -0.08 & \end{array}$	³ AALTONEN	09E CDF	$p\overline{p}$ at 1.8 TeV
$\begin{array}{ccc} 0.22 & ^{+0.08}_{-0.07} & \pm 0.01 \end{array}$	⁴ AALTONEN		• •
0.118 ± 0.042	^{3,5} AFFOLDER	00E CDF	$p\overline{p}$ at 1.8 TeV

- 1 AAIJ 19AD measured the average value for \varLambda_b^0 using semileptonic decays and assuming isospin symmetry for $b\text{-hadron }p_T$ of 4 and 25 GeV and η of 2 and 5.
- 2 AAIJ 12J measured the ratio to be (0.404 \pm 0.017 \pm 0.027 \pm 0.105) \times [1 (0.031 \pm $0.004 \pm 0.003) imes P_T$]using b-hadron semileptonic decays where the P_T is the momentum of charmed hadron-muon pair in GeV/c.We quote their weighted average value where the second error combines systematic and the error on B($\Lambda_c^+ \to p K^- \pi^+$).
- 3 AALTONEN 09E errata to the measurement reported in AFFOLDER 00E using the ho_{T} spectra from fully reconstructed ${\it B}^{0}$ and ${\it \Lambda}_{\it b}$ decays.
- ⁴ AALTONEN 08N reports $[\Gamma(\overline{b} \to b\text{-baryon})/[\Gamma(\overline{b} \to B^+) + \Gamma(\overline{b} \to B^0)]] \times [B(\Lambda_c^+ \to b^+)]$ $pK^-\pi^+)]=(14.1\pm0.6^{+5.3}_{-4.4})\times10^{-3}$ which we divide by our best value B($\Lambda_C^+\to$ $pK^-\pi^+$) = $(6.35 \pm 0.25) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

 5 AFFOLDER 00E uses several electron-charm final states in $b
ightarrow c \, e^{-}$ X.

$\Gamma(\nu \text{ anything})/\Gamma_{\text{total}}$

 Γ_6/Γ

VALUE	DOCUMENT ID	TECN	COMMENT
0.2308±0.0077±0.0124	1,2 ACCIARRI 960	L3	$e^+e^- \rightarrow Z$

https://pdg.lbl.gov

Page 9

 2 Assumes Standard Model value for R_{B} .

 $\Gamma(\ell^+\nu_\ell \, {\rm anything})/\Gamma_{\rm total}$ "OUR EVALUATION" is an average of the data listed below, excluding all asymmetry

"OUR EVALUATION" is an average of the data listed below, excluding all asymmetry measurements, performed by the LEP Electroweak Working Group as described in the "Note on the Z boson" in the Z Particle Listings.

VALUE	DOCUMENT ID		TECN	COMMENT
0.1069±0.0022 OUR EVALUATION	V			
0.1064 ± 0.0016 OUR AVERAGE				
$0.1070 \pm 0.0010 \pm 0.0035$	$^{ m 1}$ HEISTER	0 2G	ALEP	$e^+e^- ightarrow Z$
$0.1070 \pm 0.0008 {}^{+ 0.0037}_{- 0.0049}$	² ABREU	01L	DLPH	$e^+e^- ightarrow Z$
$0.1083 \!\pm\! 0.0010 \! \begin{array}{l} +0.0028 \\ -0.0024 \end{array}$	³ ABBIENDI	00E	OPAL	$e^+e^- ightarrow Z$
	⁴ ACCIARRI			$e^+e^- ightarrow Z$
	⁶ ACCIARRI			$e^+e^- ightarrow Z$
 ● We do not use the following 	data for averages	, fits,	limits, e	etc. • • •
$0.1106 \pm 0.0039 \pm 0.0022$	⁷ ABREU	95 D	DLPH	$e^+e^- ightarrow Z$
$0.114\ \pm0.003\ \pm0.004$	⁸ BUSKULIC	94 G	ALEP	$e^+e^- ightarrow Z$
	⁹ ABREU	93 C	DLPH	$e^+e^- ightarrow Z$
$0.105 \pm 0.006 \pm 0.005$ 1	⁰ AKERS	93 B	OPAL	Repl. by ABBI- ENDI 00E

¹ Uses the combination of lepton transverse momentum spectrum and the correlation between the charge of the lepton and opposite jet charge. The first error is statistic and the second error is the total systematic error including the modeling.

the second error is the total systematic error including the modeling.

The experimental systematic and model uncertainties are combined in quadrature.

obtain 0.100 \pm 0.007 \pm 0.007. AKERS 93B analysis performed using single and dilepton events.

$\Gamma(e^{+}\nu_{e} \text{ anything})/\Gamma_{total}$						Г8/Г
	VTS	DOCUMENT ID		TECN	COMMENT	
0.1086±0.0035 OUR AVER	AGE					
$0.1078\!\pm\!0.0008\!+\!0.0050\\-0.0046$		¹ ABBIENDI	00E	OPAL	$e^+e^- ightarrow ~Z$	
$0.1089 \pm 0.0020 \pm 0.0051$ $0.107 \pm 0.015 \pm 0.007$	260	^{2,3} ACCIARRI ⁴ ABREU			$e^+e^- ightarrow Z$ $e^+e^- ightarrow Z$	
$0.138 \pm 0.032 \pm 0.008$	200	⁵ ADEVA			$e^+e^- \rightarrow Z$	
https://pdg.lbl.gov		Page 10		Created	d: 5/30/2025	07:50

¹ ACCIARRI 96C assumes relative b semileptonic decay rates $e:\mu:\tau$ of 1:1:0.25. Based on missing-energy spectrum.

³ ABBIENDI 00E result is determined by comparing the distribution of several kinematic variables of leptonic events in a lifetime tagged $Z \rightarrow b \bar{b}$ sample using artificial neural network techniques. The first error is statistic; the second error is the total systematic error.

⁴ ACCIARRI 00 result obtained from a combined fit of $R_b = \Gamma(Z \to b \, \overline{b}) / \Gamma(Z \to \text{hadrons})$ and B($b \to \ell \, \nu \, X$), using double-tagging method.

⁵ ACCIARRI 96C result obtained by a fit to the single lepton spectrum.

 $^{^6}$ Assumes Standard Model value for R_B .

⁷ ABREU 95D give systematic errors ± 0.0019 (model) and 0.0012 (R_c). We combine these in quadrature.

⁸ BUSKULIC 94G uses e and μ events. This value is from a global fit to the lepton p and p_T (relative to jet) spectra which also determines the b and c production fractions, the fragmentation functions, and the forward-backward asymmetries. This branching ratio depends primarily on the ratio of dileptons to single leptons at high p_T , but the lower p_T portion of the lepton spectrum is included in the global fit to reduce the model dependence. The model dependence is ± 0.0026 and is included in the systematic error. ⁹ ABREU 93C event count includes ee events. Combining ee, $\mu\mu$, and $e\mu$ events, they

• • • We do not use the following data for averages, fits, limits, etc. • • •

$0.086\ \pm0.027$	± 0.008		⁶ ABE	93E	VNS	$E_{ m cm}^{ m ee} =$ 58 GeV
$0.109 \begin{array}{l} +0.014 \\ -0.013 \end{array}$	± 0.0055	2719	⁷ AKERS	93 B	OPAL	Repl. by ABBI- ENDI 00E
0.111 ± 0.028	± 0.026		BEHREND	90 D	CELL	$E_{\rm cm}^{ee} = 43 \text{ GeV}$
$0.150\ \pm0.011$	± 0.022		BEHREND	90 D	CELL	$E_{ m cm}^{\it ee}=$ 35 GeV
0.112 ± 0.009	±0.011		ONG	88	MRK2	$E_{ m cm}^{ee} =$ 29 GeV
$0.149 \begin{array}{l} +0.022 \\ -0.019 \end{array}$			PAL	86	DLCO	Eee = 29 GeV
$0.110\ \pm0.018$	± 0.010		AIHARA	85	TPC	$E_{ m cm}^{\it ee}=$ 29 GeV
0.111 ± 0.034	± 0.040		ALTHOFF	84J	TASS	$E_{\rm cm}^{ee} = 34.6 \; {\rm GeV}$
$0.146\ \pm0.028$			KOOP	84	DLCO	Repl. by PAL 86
0.116 ± 0.021	±0.017		NELSON	83	MRK2	$E_{\rm cm}^{ee} = 29 \text{ GeV}$

¹ ABBIENDI 00E result is determined by comparing the distribution of several kinematic variables of leptonic events in a lifetime tagged $Z \to b \, \overline{b}$ sample using artificial neural network techniques. The first error is statistic; the second error is the total systematic error

⁷ AKERS 93B analysis performed using single and dilepton events.

$\Gamma(\mu^+ \nu_\mu \text{ anything})/\Gamma_{\text{to}}$	otal				٦/و۲
VALUE	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT
$0.1095^{igoplus 0.0029}_{-0.0025}$ OUR AVE	ERAGE				
$0.1096 \!\pm\! 0.0008 \!+\! 0.0034 \\ -0.0027$		¹ ABBIENDI	00E	OPAL	$e^+e^- ightarrow Z$
$0.1082 \pm 0.0015 \pm 0.0059$ $0.110 \pm 0.012 \pm 0.007$	656	^{2,3} ACCIARRI ⁴ ABREU ⁵ ADEVA	93C	DLPH	$e^+e^- \rightarrow Z$ $e^+e^- \rightarrow Z$
$0.113 \pm 0.012 \pm 0.006$ • • • We do not use the	following				$e^+e^- \rightarrow Z$
$0.122\ \pm0.006\ \pm0.007$		³ UENO	96	AMY	e^+e^- at 57.9 GeV
$0.101 {+0.010 \atop -0.009} \pm 0.0055$	4248	⁶ AKERS	93 B	OPAL	Repl. by ABBI- ENDI 00E
$0.104\ \pm0.023\ \pm0.016$		BEHREND	90 D	CELL	$E_{\rm cm}^{\rm ee} = 43 \; {\rm GeV}$
$0.148 \pm 0.010 \pm 0.016$		BEHREND	90 D	CELL	$E_{\rm cm}^{\it ee}=$ 35 GeV
$0.118 \ \pm 0.012 \ \pm 0.010$		ONG	88	MRK2	E ^{ee} _{cm} = 29 GeV
$0.117\ \pm0.016\ \pm0.015$		BARTEL	87	JADE	$E_{\rm cm}^{ee} = 34.6 \; {\rm GeV}$
$0.114\ \pm0.018\ \pm0.025$		BARTEL	8 5 J	JADE	Repl. by BARTEL 87
$0.117 \pm 0.028 \pm 0.010$		ALTHOFF	84G	TASS	E _{cm} = 34.5 GeV
https://pdg.lbl.gov		Page 11		Create	d: 5/30/2025 07:50

error. 2 ACCIARRI 96C result obtained by a fit to the single lepton spectrum.

 $^{^3}$ Assumes Standard Model value for R_R .

⁴ ABREU 93C event count includes ee events. Combining ee, $\mu\mu$, and $e\mu$ events, they obtain $0.100\pm0.007\pm0.007$.

Solution 0.100 \pm 0.007 \pm 0.007. \pm 0.008. Constraining the initial number of b quarks by the Standard Model prediction (378 \pm 3 MeV) for the decay of the Z into $b\overline{b}$, the electron result gives $0.112 \pm 0.004 \pm 0.008$. They obtain $0.119 \pm 0.003 \pm 0.006$ when e and μ results are combined. Used to measure the $b\overline{b}$ width itself, this electron result gives $370 \pm 12 \pm 24$ MeV and combined with the muon result gives $385 \pm 7 \pm 22$ MeV.

 $^{^6}$ ABE 93E experiment also measures forward-backward asymmetries and fragmentation _ functions for b and c.

0.105
$$\pm$$
0.015 \pm 0.013 ADEVA 83B MRKJ $E_{\rm cm}^{ee}=$ 33–38.5 GeV 0.155 $^{+0.054}_{-0.029}$ FERNANDEZ 83D MAC $E_{\rm cm}^{ee}=$ 29 GeV

error. $^2\,\text{ACCIARRI}$ 96C result obtained by a fit to the single lepton spectrum.

$\Gamma(D^-\ell^+\nu_\ell \text{ anything})/\Gamma_{\text{total}}$

 Γ_{10}/Γ

(=0,
<u>VALUE</u>	DOCUMENT ID	TECN COMMENT	
0.022 ±0.004 OUR AVERAGE	Error includes scale fa	actor of 1.9.	
$0.0272\!\pm\!0.0028\!\pm\!0.0018$	¹ ABREU 00F	R DLPH $e^+e^- ightarrow 2$	7 -
$0.0194 \pm 0.0025 \pm 0.0003$	² AKERS 950	Q OPAL $e^+e^- ightarrow ar{z}$	7

 $^{^1}$ ABREU 00R reports their experiment's uncertainties $\pm 0.0019 \pm 0.0016 \pm 0.0018$, where the first error is statistical, the second is systematic, and the third is the uncertainty due to the D branching fraction. We combine first two in quadrature.

² AKERS 95Q reports $[\Gamma(\overline{b} \to D^-\ell^+\nu_\ell \text{ anything})/\Gamma_{\text{total}}] \times [B(D^+ \to K^-2\pi^+)] = (1.82 \pm 0.20 \pm 0.12) \times 10^{-3}$ which we divide by our best value $B(D^+ \to K^-2\pi^+) = (9.38 \pm 0.16) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

Γ($(D^-\pi^+$	$\ell^+ u_\ell$	anything)/Г	total
----	-------------	-----------------	----------	-----	-------

 Γ_{11}/Γ

VALUE	 DOCUMENT ID		TECN	COMMENT
$0.0049 \pm 0.0018 \pm 0.0007$	ABREU	00 R	DLPH	$e^+e^- ightarrow Z$

$\Gamma(D^-\pi^-\ell^+\nu_\ell \text{ anything})/\Gamma_{\text{total}}$

 Γ_{12}/Γ

,	· •,	1014.				/
VALUE		DOCUMENT ID		TECN	COMMENT	
$0.0026\pm0.0015\pm0.$	0004	ABREU	00 R	DLPH	$e^+e^- ightarrow Z$	

$\Gamma(\overline{D}^0\ell^+\nu_\ell \text{ anything})/\Gamma_{\text{total}}$

 Γ_{13}/Γ

, , , , , , , , , , , , , , , , , , , ,					
VALUE	DOCUMENT ID		TECN	COMMENT	
0.0679±0.0034 OUR AVERAGE					
$0.0704 \pm 0.0040 \pm 0.0017$	¹ ABREU	00 R	DLPH	$e^+e^- ightarrow Z$	
$0.0639 \pm 0.0056 \pm 0.0005$	² AKERS	95Q	OPAL	$e^+e^- ightarrow~Z$	

 $^{^1}$ ABREU 00R reports their experiment's uncertainties $\pm 0.0034 \pm 0.0036 \pm 0.0017$, where the first error is statistical, the second is systematic, and the third is the uncertainty due to the D branching fraction. We combine first two in quadrature.

¹ ABBIENDI 00E result is determined by comparing the distribution of several kinematic variables of leptonic events in a lifetime tagged $Z \to b \, \overline{b}$ sample using artificial neural network techniques. The first error is statistic; the second error is the total systematic error.

 $^{^3}$ Assumes Standard Model value for R_B .

⁴ ABREU 93C event count includes $\mu\mu$ events. Combining ee, $\mu\mu$, and $e\mu$ events, they obtain $0.100\pm0.007\pm0.007$.

ADEVA 91C measure the average B($b \rightarrow eX$) branching ratio using single and double tagged b enhanced Z events. Combining e and μ results, they obtain $0.113 \pm 0.010 \pm 0.006$. Constraining the initial number of b quarks by the Standard Model prediction (378 ± 3 MeV) for the decay of the Z into $b\bar{b}$, the muon result gives $0.123 \pm 0.003 \pm 0.006$. They obtain $0.119 \pm 0.003 \pm 0.006$ when e and μ results are combined. Used to measure the $b\bar{b}$ width itself, this muon result gives $394 \pm 9 \pm 22$ MeV and combined with the electron result gives $385 \pm 7 \pm 22$ MeV.

⁶ AKERS 93B analysis performed using single and dilepton events.

² AKERS 95Q reports $[\Gamma(\overline{b} \to \overline{D}^0 \ell^+ \nu_\ell \text{ anything})/\Gamma_{\text{total}}] \times [B(D^0 \to K^- \pi^+)] = (2.52 \pm 0.14 \pm 0.17) \times 10^{-3}$ which we divide by our best value $B(D^0 \to K^- \pi^+) = (3.945 \pm 0.030) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(\overline{D}{}^0\pi^-\ell^+ u_\ell$ anything)/ $\Gamma_{ m total}$	1				Γ_{14}/Γ
VALUE	DOCUMENT ID		TECN	COMMENT	
$0.0107 \pm 0.0025 \pm 0.0011$	ABREU	00 R	DLPH	$e^+e^- \rightarrow Z$	
$\Gamma(\overline{D}{}^0\pi^+\ell^+ u_\ell$ anything)/ $\Gamma_{ m total}$	1				Γ ₁₅ /Γ
VALUE	DOCUMENT ID		TECN	COMMENT	
$0.0023 \pm 0.0015 \pm 0.0004$	ABREU	00 R	DLPH	$e^+e^- ightarrow Z$	
$\Gamma(D^{*-}\ell^+ u_\ell$ anything)/ $\Gamma_{ ext{total}}$					Γ ₁₆ /Γ
VALUE	DOCUMENT ID		TECN	COMMENT	
0.0275±0.0019 OUR AVERAGE	¹ ABREU	005	DI DII	$e^+e^- ightarrow Z$	
	² AKERS			$e^+e^- ightarrow Z$	
the first error is statistical, the sto the D branching fraction. We 2 AKERS 95Q reports $[B(\overline{b} \rightarrow D^2)]$ = $((7.53 \pm 0.47 \pm 0.56) \times 10^{-1}]$ B($D^0 \rightarrow K^-\pi^+$) = 0.0401 \pm experiments error and the second branching ratios.	e combine first the $*\ell^+\nu_\ell X) imes B(\ell^-4)$ and uses $B(\ell^-4)$ and obtain	wo in o D*+ - D*+ - n the a	quadration $ o D^0\pi^0 \to D^0\pi^0$ above re	ure. $^+) imes B(D^0 ightarrow ^+) = 0.681 \pm 0.000$ sult. The first $_{ m c}$	$(K^-\pi^+)$] 0.013 and error is the
$\Gamma(D^{*-}\pi^{-}\ell^{+}\nu_{\ell} \text{ anything})/\Gamma_{\text{tot}}$	t al <u>DOCUMENT ID</u>		<u>TECN</u>	<u>COMMENT</u>	Γ ₁₇ /Γ
$0.0006 \pm 0.0007 \pm 0.0002$	ABREU	00 R	DLPH	$e^+e^- ightarrow Z$	
$\Gamma(D^{*-}\pi^{+}\ell^{+}\nu_{\ell} \text{ anything})/\Gamma_{\text{tot}}$	tal <u>DOCUMENT ID</u>		<u>TECN</u>	<u>COMMENT</u>	Γ ₁₈ /Γ
$0.0048 \pm 0.0009 \pm 0.0005$	ABREU	00 R	DLPH	$e^+e^-\to~Z$	
$\Gamma(\overline{D_j^0}\ell^+\nu_\ell \text{ anything} \times B(\overline{D_j^0}-E_j)$ represents an unresolved n			and ter	nsor <i>D</i> ** (<i>P</i> -wa	Γ ₁₉ /Γ ve) states.
VALUE (units 10 ⁻³)	OCUMENT ID	TE	CN CO	OMMENT	
	BBIENDI 0				
• • • We do not use the following					
6.1 $\pm 1.3 \pm 1.3$	KERS 9	5Q OI	PAL R	epl. by ABBIEN	IDI 03M
$\Gamma(D_j^-\ell^+\nu_\ell \text{ anything} \times B(D_j^\nu_\ell)$ represents an unresolved in			and ter	usor D** (P-wa	Γ₂₀/Γ
VALUE (units 10^{-3})	DOCUMENT ID				ve) states.
$7.0\pm1.9^{+1.2}_{-1.3}$	AKERS	95Q	OPAL	$e^+e^- \rightarrow Z$	
$\Gamma(\overline{D}_2^*(2460)^0\ell^+ u_\ell$ anything $ imes$	$B(\overline{D}_2^*(2460)^0$	$\rightarrow D$	*- \pi +	$)/\Gamma_{ m total}$	Γ ₂₁ /Γ
VALUE (units 10 ⁻³) CL%					
<1.4 90	ABBIENDI	03м	OPAL	$e^+e^- o Z$	

$\Gamma(D_2^*(2460)^-\ell^+ u_\ell$ anything $ imes$ B $(D_2^*(2460)^- ightarrow D^0\pi^-))/\Gamma_{total}$						
VALUE (units 10^{-3})	DOCUMENT ID		TECN	COMMENT		
$4.2\pm1.3^{igoplus 0.7}_{-1.2}$	AKERS	95Q	OPAL	$e^+e^- ightarrow Z$		
$\Gamma(\overline{D}_2^*(2460)^0\ell^+ u_\ell$ anything \times B $(\overline{D}_2^*(2460)^0 o D^-\pi^+))/\Gamma_{ ext{total}}$						
VALUE (units 10^{-3})	DOCUMENT ID		TECN	COMMENT		
$1.6 \pm 0.7 \pm 0.3$	AKERS	95Q	OPAL	$e^+e^- ightarrow~Z$		

 $\Gamma(\text{charmless } \ell \overline{\nu}_{\ell})/\Gamma_{\text{total}}$

 Γ_{24}/Γ

"OUR EVALUATION" is an average of the data listed below performed by the LEP Heavy Flavour Steering Group. The averaging procedure takes into account correlations between the measurements.

VALUE	DOCUMENT ID		TECN	COMMENT
0.00171±0.00052 OUR EVALUAT				
0.0017 ± 0.0004 OUR AVERAGE	<u> </u>			
$0.00163\!\pm\!0.00053\!+\!0.00055\\-0.00062$	¹ ABBIENDI	01 R	OPAL	$e^+e^- ightarrow Z$
$0.00157 \pm 0.00035 \pm 0.00055$	² ABREU			$e^+e^- ightarrow Z$
$0.00173 \pm 0.00055 \pm 0.00055$	³ BARATE	99G	ALEP	$e^+e^- ightarrow Z$
$0.0033 \pm 0.0010 \pm 0.0017$	⁴ ACCIARRI	98K	L3	$e^+e^- ightarrow Z$

¹ Obtained from the best fit of the MC simulated events to the data based on the $b \to X_{II} \ell \nu$ neutral network output distributions.

$\Gamma(\tau^+ u_{ au}$ anything)/ $\Gamma_{ ext{total}}$

 Γ_{25}/Γ

, , , , , , , , , , , , , , , , , , , ,						
VALUE (units 10^{-2})	EVTS	DOCUMENT ID		TECN	COMMENT	
2.41±0.23 OUR AVER	AGE					
$2.78\!\pm\!0.18\!\pm\!0.51$		$^{ m 1}$ abbiendi	01Q	OPAL	$e^+e^- ightarrow~Z$	
$2.43\!\pm\!0.20\!\pm\!0.25$		² BARATE	01E	ALEP	$e^+e^- ightarrow~Z$	
$2.19\!\pm\!0.24\!\pm\!0.39$		³ ABREU	00 C	DLPH	$e^+e^- ightarrow~Z$	
$1.7 \pm 0.5 \pm 1.1$		^{4,5} ACCIARRI	96 C	L3	$e^+e^- ightarrow~Z$	
$2.4 \pm 0.7 \pm 0.8$	1032	⁶ ACCIARRI	94 C	L3	$e^+e^- ightarrow~Z$	
• • • We do not use the	ne followi	ng data for averages	, fits,	limits, e	etc. • • •	
$2.75\pm0.30\pm0.37$	405	⁷ BUSKULIC	95	ALEP	Repl. by BARAT	E 01E
$4.08\!\pm\!0.76\!\pm\!0.62$		BUSKULIC	93 B	ALEP	Repl. by BUSKU	JLIC 95

¹ABBIENDI 01Q uses a missing energy technique.

 $^{^2}$ ABREU 00D result obtained from a fit to the numbers of decays in $b\to u$ enriched and depleted samples and their lepton spectra, and assuming $|V_{c\,b}| = 0.0384 \pm 0.0033$ and $\tau_b = 1.564 \pm 0.014$ ps.

³ Uses lifetime tagged $b\overline{b}$ sample.

 $^{^4}$ ACCIARRI 98K assumes $R_b = 0.2174 \pm 0.0009$ at Z decay.

² The energy-flow and *b*-tagging algorithms were used.

³ Uses the missing energy in $Z \rightarrow b\overline{b}$ decays without identifying leptons.

⁴ ACCIARRI 96C result obtained from missing energy spectrum.

 $^{^{5}}$ Assumes Standard Model value for R_{B} .

⁶ This is a direct result using tagged $b\overline{b}$ events at the Z, but species are not separated.

⁷ BUSKULIC 95 uses missing-energy technique.

$\Gamma(D^{*-} au u_{ au} any thing) / \Gamma_{total}$					Γ_{26}/Γ
VALUE	DOCUMENT ID		TECN	COMMENT	
$(0.88\pm0.31\pm0.28)\times10^{-2}$	¹ BARATE	01E	ALEP	$e^+e^- o Z$	

 $^{^{1}}$ The energy-flow and b-tagging algorithms were used.

$\Gamma(\overline{b} \to \overline{c} \to \ell^- \overline{\nu}_{\ell} \text{ anything}) / \Gamma_{\text{total}}$

 Γ_{27}/Γ

"OUR EVALUATION" is an average of the data listed below, excluding all asymmetry measurements, performed by the LEP Electroweak Working Group as described in the "Note on the Z boson" in the Z Particle Listings.

VALUE	DOCUMENT ID		TECN	COMMENT
0.0802±0.0019 OUR EVALUATIO	N			
0.0817 ± 0.0020 OUR AVERAGE				
$0.0818 \!\pm\! 0.0015 \!+\! 0.0024 \\ -0.0026$	¹ HEISTER	0 2G	ALEP	$e^+e^- ightarrow Z$
$0.0798 \!\pm\! 0.0022 \!+\! 0.0025 \\ -\! 0.0029$	² ABREU	01L	DLPH	$e^+e^- ightarrow Z$
$0.0840 \pm 0.0016 {}^{+ 0.0039}_{- 0.0036}$	³ ABBIENDI	00E	OPAL	$e^+e^- ightarrow Z$
• • • We do not use the following	data for averages	s, fits,	limits, e	etc. • • •
$0.0770 \pm 0.0097 \pm 0.0046$	⁴ ABREU			$e^+e^- ightarrow Z$
$0.082\ \pm0.003\ \pm0.012$	⁵ BUSKULIC	94G	ALEP	$e^+e^- ightarrow Z$
$0.077 \pm 0.004 \pm 0.007$	⁶ AKERS	93 B	OPAL	Repl. by ABBI- ENDI 00E

¹ Uses the combination of lepton transverse momentum spectrum and the correlation between the charge of the lepton and opposite jet charge. The first error is statistic and the second error is the total systematic error including the modeling.

$\Gamma(c \to \ell^+ \nu \text{ anything}) / \Gamma_{\text{total}}$

 Γ_{28}/Γ

VALUE	DOCUMENT ID	TECN	COMMENT	
$0.0161 \pm 0.0020 {+0.0034 \atop -0.0047}$	¹ ABREU 01	L DLPH	$e^+e^- ightarrow Z$	

 $^{^{}m 1}$ The experimental systematic and model uncertainties are combined in quadrature.

$\Gamma\big(\overline{\mathcal{D}}{}^0 \, \text{anything}\big)/\Gamma_{\text{total}}$

 Γ_{29}/Γ

VALUE	<u>DOCUMENT ID</u>		TECN	COMMENT
$0.587 \pm 0.028 \pm 0.005$	¹ BUSKULIC	96Y	ALEP	$e^+e^- ightarrow Z$

¹ BUSKULIC 96Y reports $0.605 \pm 0.024 \pm 0.016$ from a measurement of $[\Gamma(\overline{b} \to \overline{D}^0 \text{ anything})/\Gamma_{\text{total}}] \times [B(D^0 \to K^-\pi^+)]$ assuming $B(D^0 \to K^-\pi^+) = 0.0383$, which we rescale to our best value $B(D^0 \to K^-\pi^+) = (3.945 \pm 0.030) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

²The experimental systematic and model uncertainties are combined in quadrature.

³ ABBIENDI 00E result is determined by comparing the distribution of several kinematic variables of leptonic events in a lifetime tagged $Z \rightarrow b\overline{b}$ sample using artificial neural network techniques. The first error is statistic; the second error is the total systematic error.

⁴ABREU 95D give systematic errors ± 0.0033 (model) and 0.0032 (R_c). We combine these in quadrature. This result is from the same global fit as their $\Gamma(\overline{b} \to \ell^+ \nu_\ell X)$ _ data.

data. 5 BUSKULIC 94G uses e and μ events. This value is from the same global fit as their $\Gamma(\overline{b}\to~\ell^+\nu_\ell$ anything)/ $\Gamma_{\rm total}$ data.

⁶ AKERS 93B analysis performed using single and dilepton events.

$\Gamma(D^0D_s^{\pm})/\Gamma_{total}$					Γ ₃₀ /Γ
VALUE	·			COMMENT	
$0.091^{+0.020}_{-0.018}^{+0.034}_{-0.022}$	¹ BARATE	98Q	ALEP	$e^+e^- \rightarrow Z$	
$^{ m 1}$ The systematic error includes	the uncertainties	due to	the cha	rm branching ra	atios.
$\Gamma(D^{\mp}D_s^{\pm} \text{ anything})/\Gamma_{\text{total}}$					Г ₃₁ /Г
VALUE	DOCUMENT ID		TECN	COMMENT	<u> </u>
$0.040^{+0.017}_{-0.014}^{+0.016}_{-0.011}$	¹ BARATE	98Q	ALEP	$e^+e^- ightarrow Z$	
$^{ m 1}$ The systematic error includes	the uncertainties	due to	the cha	rm branching ra	atios.
$\left[\Gamma(D^0 D_s^{\pm} \text{ anything}) + \Gamma(D^{-1} D_s^{\pm})\right]$				(F ₃₀	+Γ ₃₁)/Γ
<u>VALUE</u>	DOCUMENT ID				
$0.131 ^{+0.026}_{-0.022} ^{+0.048}_{-0.031}$	¹ BARATE	98Q	ALEP	$e^+e^- o Z$	
¹ The systematic error includes	the uncertainties	due to	the cha	rm branching ra	atios.
$\Gamma(\overline{D}{}^0D^0$ anything)/ Γ_{total}					Γ_{32}/Γ
VALUE	DOCUMENT ID		TECN	COMMENT	
$0.051 {}^{+0.016}_{-0.014} {}^{+0.012}_{-0.011}$	$^{ m 1}$ BARATE	98Q	ALEP	$e^+e^- ightarrow Z$	
$^{ m 1}$ The systematic error includes	the uncertainties	due to	the cha	rm branching ra	atios.
$\Gamma(D^0D^{\pm}$ anything)/ Γ_{total}					Г ₃₃ /Г
VALUE VALUE	DOCUMENT ID		TECN	COMMENT	- 33/ -
$0.027^{igoplus 0.015}_{-0.013}^{+0.015}_{-0.009}^{+0.015}$	¹ BARATE	98Q	ALEP	$e^+e^- ightarrow Z$	
$^{ m 1}$ The systematic error includes	the uncertainties	due to	the cha	rm branching ra	atios.
$\left[\Gamma(\overline{D}^0D^0\text{ anything})+\Gamma(D^0)\right]$	D^{\pm} anything)]	/F _{total}		(F ₃₂	+Γ ₃₃)/Γ
VALUE	DOCUMENT ID			•	1 - 33// -
$0.078 ^{+ 0.020 + 0.018}_{- 0.018 - 0.016}$	¹ BARATE	98Q	ALEP	$e^+e^- ightarrow Z$	
$^{ m 1}$ The systematic error includes	the uncertainties	due to	the cha	rm branching ra	atios.
$\Gamma(D^{\pm}D^{\mp}$ anything)/ Γ_{total}					Г ₃₄ /Г
	DOCUMENT ID		TECN	COMMENT	
<0.009 90	<u>DOCUMENT ID</u> BARATE	98Q	ALEP	$e^+e^- ightarrow Z$	
$\Gamma(D^0 \text{ anything}) + \Gamma(D^+ \text{ an})$	vthing)]/Ftotal			(Г _{3Б}	+Γ ₃₆)/Γ
VALUE			TECN		
$0.093 \pm 0.017 \pm 0.014$	DOCUMENT ID 1 ABDALLAH	03E	DLPH	$e^+e^-\to~Z$	
¹ The second error is the total of used in the measurement.	of systematic uncer	rtaintie	s includi	ng the branchin	g fractions
$\Gamma(D^-$ anything)/ Γ_{total}					Γ ₃₇ /Γ
VALUE	DOCUMENT ID BUSKULIC		TECN	COMMENT	- *
$0.227 \pm 0.016 \pm 0.004$	¹ BUSKULIC	96Y	ALEP	$e^+e^- \rightarrow Z$	
had a list on	Da 10		C		<u> </u>
https://pdg.lbl.gov	Page 16		Creat	$2 \cdot (100) = 100$	∠o U/:5U

¹ BUSKULIC 96Y reports $0.234\pm0.013\pm0.010$ from a measurement of $[\Gamma(\overline{b}\to D^- \text{ anything})/\Gamma_{\text{total}}] \times [B(D^+\to K^-2\pi^+)]$ assuming $B(D^+\to K^-2\pi^+)=0.091$, which we rescale to our best value $B(D^+\to K^-2\pi^+)=(9.38\pm0.16)\times10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(D^*(2010)^+ \text{ anything})/\Gamma_{\text{total}}$ Γ_{38}/Γ 1 ACKERSTAFF 98E OPAL $e^{+}e^{-} \rightarrow Z$ $0.173 \pm 0.016 \pm 0.012$ ¹Uses lepton tags to select $Z \rightarrow b\overline{b}$ events. $\Gamma(D_1(2420)^0 \text{ anything})/\Gamma_{\text{total}}$ Γ_{39}/Γ VALUE DOCUMENT ID TECN COMMENT 1 ACKERSTAFF 97W OPAL $e^{+}e^{-} \rightarrow Z$ $0.050 \pm 0.014 \pm 0.006$ ¹ ACKERSTAFF 97W assumes $B(D_2^*(2460)^0 \rightarrow$ $D^{*+}\pi^{-}) = 0.21 \pm 0.04$ and $\Gamma_{b\overline{b}}/\Gamma_{hadrons}=0.216$ at Z decay. $\Gamma(D^*(2010)^{\mp}D_s^{\pm} \text{ anything})/\Gamma_{\text{total}}$ Γ_{40}/Γ VALUE DOCUMENT ID TECN COMMENT $0.033^{\displaystyle{+0.010}}_{\displaystyle{-0.009}}^{\displaystyle{+0.012}}_{\displaystyle{-0.009}}^{\displaystyle{+0.012}}$ ¹ BARATE 98Q ALEP $e^+e^- \rightarrow Z$ ¹ The systematic error includes the uncertainties due to the charm branching ratios. $\Gamma(D^0D^*(2010)^{\pm} \text{ anything})/\Gamma_{\text{total}}$ Γ_{41}/Γ DOCUMENT ID TECN COMMENT $0.030^{+0.009}_{-0.008}^{+0.007}_{-0.005}$ ¹ BARATE 980 ALEP $e^+e^- \rightarrow Z$ $^{ m 1}$ The systematic error includes the uncertainties due to the charm branching ratios. $\Gamma(D^*(2010)^{\pm}D^{\mp} \text{ anything})/\Gamma_{\text{total}}$ <u>VALUE</u> TECN COMMENT $0.025 {}^{\displaystyle +0.010}_{\displaystyle -0.009} {}^{\displaystyle +0.006}_{\displaystyle -0.005}$ ¹ BARATE 98Q ALEP $e^+e^- \rightarrow Z$ $^{ m 1}$ The systematic error includes the uncertainties due to the charm branching ratios. $\Gamma(D^*(2010)^{\pm}D^*(2010)^{\mp}$ anything)/ Γ_{total} Γ_{43}/Γ TECN COMMENT $0.012^{+0.004}_{-0.003}\pm0.002$ ¹ BARATE 98Q ALEP $e^+e^- \rightarrow Z$ ¹ The systematic error includes the uncertainties due to the charm branching ratios. $\Gamma(\overline{D}Danything)/\Gamma_{total}$ Γ_{44}/Γ VALUE TECN COMMENT

04I OPAL $e^+e^- \rightarrow 7$

Created: 5/30/2025 07:50

 $0.10\pm0.032^{+0.107}_{-0.095}$

¹ ABBIENDI

 $^{^{1}}$ Measurement performed using an inclusive identification of B mesons and the D candidates.

$\Gamma(D_2^*(2460)^0 \, \text{anything})/\Gamma_{\text{total}}$

DOCUMENT ID TECN COMMENT

 1 ACKERSTAFF 97W OPAL $e^{+}e^{-}
ightarrow Z$ $0.047 \pm 0.024 \pm 0.013$

$\Gamma(D_{\epsilon}^{-} \text{ anything})/\Gamma_{\text{total}}$

 Γ_{46}/Γ

VALUE	DOCUMENT ID	TECN	COMMENT		
$0.147 \pm 0.017 \pm 0.013$	$^{ m 1}$ BUSKULIC	96Y	ALEP	$e^+e^- ightarrow~Z$	

 $^{^{1}}$ BUSKULIC 96Y reports 0.183 \pm 0.019 \pm 0.009 from a measurement of [$\Gamma(\overline{b}
ightarrow$ D_s^- anything)/ $\Gamma_{ ext{total}}$] imes [B($D_s^+ o \phi \pi^+$)] assuming B($D_s^+ o \phi \pi^+$) = 0.036, which we rescale to our best value B($D_s^+ \to \phi \pi^+$) = (4.5 ± 0.4) × 10⁻². Our first error is their experiment's error and our second error is the systematic error from using our best

$\Gamma(D_s^+ \text{ anything})/\Gamma_{\text{total}}$

 $0.101 \pm 0.010 \pm 0.029$

$\Gamma(b \to \Lambda_c^+ \text{ anything})/\Gamma_{\text{total}}$

 Γ_{48}/Γ

 $0.076 \pm 0.011 \pm 0.003$

$\Gamma(\overline{c}/c \text{ anything})/\Gamma_{\text{total}}$

 Γ_{49}/Γ

VALUE	DOCUMENT ID		TECN	COMMENT
1.162±0.032 OUR AVERAGE				
$1.12 \begin{array}{c} +0.11 \\ -0.10 \end{array}$	¹ ABBIENDI	041	OPAL	$e^+e^- ightarrow Z$
$1.166 \pm 0.031 \pm 0.080$	² ABREU	00	DLPH	$e^+e^- ightarrow Z$
1.147 ± 0.041	³ ABREU	98 D	DLPH	$e^+e^- ightarrow Z$
$1.230 \pm 0.036 \pm 0.065$	⁴ BUSKULIC	96Y	ALEP	$e^+e^- ightarrow Z$

 $^{^{}m 1}$ Measurement performed using an inclusive identification of B mesons and the D candi-

 $^{^1}$ ACKERSTAFF 97W assumes B $(D_2^*(2460)^0 \rightarrow D^{*+}\pi^-) = 0.21 \pm 0.04$ and $\Gamma_{b\overline{b}}/\Gamma_{hadrons} = 0.216$ at Z decay.

 $^{^{}m 1}$ The second error is the total of systematic uncertainties including the branching fractions used in the measurement.

 $^{^{1}}$ BUSKULIC 96Y reports 0.110 \pm 0.014 \pm 0.006 from a measurement of [Γ(b ightarrow Λ_c^+ anything)/ Γ_{total}] \times [B($\Lambda_c^+ \to pK^-\pi^+$)] assuming B($\Lambda_c^+ \to pK^-\pi^+$) = 0.044, which we rescale to our best value B($\Lambda_c^+ \to pK^-\pi^+$) = (6.35 \pm 0.25) \times 10⁻². Our first error is their experiment's error and our second error is the systematic error from using our best value.

² Evaluated via summation of exclusive and inclusive channels.

 $^{^3}$ ABREU 98D results are extracted from a fit to the *b*-tagging probability distribution based on the impact parameter.

 $^{^4}$ BUSKULIC 96Y assumes PDG 96 production fractions for B^0 , B^+ , B_s , b baryons, and PDG 96 branching ratios for charm decays. This is sum of their inclusive \overline{D}^0 , D^- , \overline{D}_s , and $\Lambda_{\mathcal{C}}$ branching ratios, corrected to include inclusive $\Xi_{\mathcal{C}}$ and charmonium.

$\Gammaig(J/\psi(1S)$ anythin	$_{ m lg})/\Gamma_{ m tota}$	I					I	₅₀ /Г
$VALUE$ (units 10^{-2})	CL%	EVTS	DOCUME	ENT ID		TECN	COMMENT	
1.16±0.10 OUR A	VERAGE		-					
$1.12 \pm 0.12 \pm 0.10$			¹ ABREU				$e^+e^- \rightarrow$	
$1.16 \pm 0.16 \pm 0.14$		121	² ADRIAI	NI	93 J		$e^+e^- \rightarrow$	
$1.21\!\pm\!0.13\!\pm\!0.08$			BUSKU				$e^+e^- \rightarrow$	Z
• • We do not use	the follow	ing data	_		mits,	etc. • •	•	
$1.3 \pm 0.2 \pm 0.2$			³ ADRIAI	NI	92	L3	$e^+e^- \rightarrow$	Ζ
<4.9	90		MATTE	EUZZI	83	MRK2	$E_{\rm cm}^{\rm ee}=29$	GeV
1 ABREU 94P is an e^+e^- and $\mu^+\mu^-$ 2 ADRIANI 93J is a	channels	s. Assum e measur	tes $\Gamma(Z o I)$ rement from	<i>b </i> b)/Γ _{ha}	adron ¹	=0.22.		
$\mu^+\mu^-$ and $J/\psi(3$ ADRIANI 92 meas 0.3) \times 10 ⁻³ whic	surement i	s an incl	usive result f	or B(<i>Z</i> on conti	$ ightarrow J_{j}$ ributio	$/\psi(1S)$ on to $J/\psi(1S)$	$(0,1) = (4.1 \pm 1) \psi(1S)$ produ	\pm 0.7 \pm
$\Gamma(\psi(2S)$ anything)	$/\Gamma_{\text{total}}$	DO	CUMENT ID	7	ΓΕϹΝ	<u>COMM</u>		₅₁ /Γ
• • We do not use	the follow							
$0.0048 \pm 0.0022 \pm 0.00$			BREU			e^+e^-		
		, , _		J		• •	· –	
1 ARREIL OAR is a	n inclusive	moscur	romont from	h doc	ave at	+ho 7	Llege ali(2	(S)
¹ ABREU 94P is a $I/\psi(1S)\pi^+\pi^-$								
$J/\psi(1S)\pi^+\pi^-$,	$J/\psi(1S)$ -	$\rightarrow \mu^+ \mu$	channels.					
$J/\psi(1S)\pi^+\pi^-,$ $\Gammaig(\psi(2S))$ anything $ig)$	$J/\psi(1S)$ -	$ ightarrow \ \mu^+ \mu$ (1 S) any	<pre>- channels. /thing)</pre>	Assum	es Γ(<i>2</i>	$Z o b \overline{b}$	⁵)/Γ _{hadron} ⁵ Γ _{5:}	
$J/\psi(1S)\pi^+\pi^-,$ $\Gammaig(\psi(2Sig)$ anything $ig)$ $_{NALUE}$	J/ψ(1S) - /Γ(J/ψ($ ightarrow \ \mu^+ \mu$ (1 S) any	channels.	Assum	es Γ(<i>2</i>	$Z o b \overline{b}$	⁵)/Γ _{hadron} ⁵ Γ _{5:}	=0.22.
$J/\psi(1S)\pi^+\pi^-,$ $\Gamma(\psi(2S)$ anything) ψ_{ALUE} 0.263 \pm 0.013 OUR A	J/ψ(1S) - /Γ(J/ψ($ ightarrow \ \mu^+ \mu$ (1 S) any	channels. thing) CUMENT ID	Assum	es Γ(Z	$Z o b \overline{b}$	_δ)/Γ _{hadron} - Γ_{5:}	=0.22.
$J/\psi(1S)\pi^{+}\pi^{-}$, $\Gamma(\psi(2S))$ anything) VALUE 0.263 \pm 0.013 OUR AV 0.265 \pm 0.002 \pm 0.016	J/ψ(1S) - /Γ(J/ψ($ ightarrow \ \mu^+ \mu$ (1 S) any	- channels. /thing) CUMENT ID	Assumo	es Γ(Z TECN -HCB	$Z ightarrow b \overline{b}$ $COMM_{ar b}$ $p p$ at		=0.22.
$J/\psi(1S)\pi^{+}\pi^{-}$, $(\psi(2S))$ anything) $J/\Delta LUE$ $J/\Delta LUE$	J/ψ(1S) - /Γ(J/ψ($ \frac{\mu^+ \mu}{2.3 \text{ AA}} $	channels. /thing) CUMENT ID NJ	Assumon 20 L 12BD L	es Γ(<i>Σ</i> ΓΕCN -HCB -HCB	$Z ightarrow b \overline{b}$ $COMM_{ar p} p$ at pp at		=0.22.
$J/\psi(1S)\pi^{+}\pi^{-}$, $\Gamma(\psi(2S) \text{ anything})$ VALUE $0.263\pm0.013 \text{ OUR AV}$ $0.265\pm0.002\pm0.016$ $0.266\pm0.06 \pm0.03$ $0.257\pm0.015\pm0.019$	J/ψ(1S) - / Γ(J/ψ(VERAGE	$\mu^+\mu^-$ (1 <i>S</i>) any $\frac{DO}{4}$	channels. /thing) /CUMENT ID NJ NJ NATRCHYAN	Assum 20G L 12BD L	es Γ(2 TECN LHCB LHCB CMS	$Z o b \overline{b}$ $COMM$ pp at pp at pp at	b)/Γ _{hadron}	=0.22.
$J/\psi(1S)\pi^+\pi^-$, $\Gamma(\psi(2S)$ anything) $VALUE$ 0.263 ± 0.013 OUR AV $0.265\pm0.002\pm0.016$ $0.266\pm0.06\pm0.03$ $0.257\pm0.015\pm0.019$ 1 The first error is second 2 AAIJ 12BD report	$J/\psi(1S)$ - $J/\psi($	$ \frac{1}{4} + \mu + \mu $ (15) any $ \frac{DO}{4} $ 1 AA 2,3 AA 4,5 CH the second $ \psi(2S) X $	channels. Thing) CUMENT ID ALJ HATRCHYAN decror is the control of the contro	Assuma 20G L 12BD L 112AK O e total s E 0.07 :	es Γ(2 FECN LHCB LHCB CMS ystem ± 0.36	$Z ightarrow b \overline{b}$ $COMM$ pp at pp at pp at atic error $\overline{b} \pm 0.27$	\overline{b})/ Γ_{hadron} Γ_{5} ENT 13 TeV 7 TeV 7 TeV or. 7) \times 10 ⁻³ a	=0.22. L/ \(\Gamma_{50}\)
$J/\psi(1S)\pi^+\pi^-,$ $\Gamma(\psi(2S) \text{ anything})$ $VALUE$ $0.263\pm0.013 \text{ OUR AV}$ $0.265\pm0.002\pm0.016$ $0.266\pm0.06\pm0.03$ $0.257\pm0.015\pm0.019$ 1 The first error is second divided our best where.	$J/\psi(1S)$ - $J/\psi($	$\mu^+\mu^-$ (15) any $\frac{DO}{2}$ 1 AA 2,3 AA 4,5 CH The second $\psi(2S)X$ $\psi(2S)X$	channels. Thing) COMENT ID ALJ ATRCHYAN deferror is the $X = (3.08 \pm 1.00)$ $(1S)X) = (1.00)$	20G L 12BD L 12AK 0 1 total s ± 0.07 ±	ES Γ(2 FECN HCB HCB CMS ystem ± 0.36 0.10)	$Z ightarrow b \overline{b}$ $COMM$ pp at pp at pp at atic error 0 ± 0.27 0×10^{-2}	\overline{b})/ Γ_{hadron} Γ_{5} ENT 13 TeV 7 TeV 7 TeV or. 7) \times 10 ⁻³ a as the ratio	=0.22. L/Γ ₅₀
$J/\psi(1S)\pi^+\pi^-,$ $\Gamma(\psi(2S) \text{ anything})$ $VALUE$ $0.263\pm0.013 \text{ OUR AV}$ $0.265\pm0.002\pm0.016$ $0.266\pm0.06\pm0.03$ $0.257\pm0.015\pm0.019$ 1 The first error is some 2 AAIJ 12BD report divided our best where. 3 Assumes lepton u	$J/\psi(1S)$ - $J/\psi($	$ \begin{array}{ccc} & \mu^+ \mu \\ & \underline{DO} \\ & \underline{DO} \\ & 1 \text{ AA} \\ & 2.3 \text{ AA} \\ & 4.5 \text{ CH} \\ & \psi(2S) X \\ & b \rightarrow \psi(1) \\ & \text{imposing} $	channels. Thing) CUMENT ID ALJ AATRCHYAN deerror is the $X(1) = (3.08 \pm 1.0)$ $X(1) = (1.0)$ $X(2) = (1.0)$ $X(3) = $	Assuming As	es $\Gamma(2)$ HCB HCB CMS ystem ± 0.36 0.10) ϵ^{-}) =	$Z ightarrow b \overline{b}$ $COMM$ pp at pp at pp at atic error 5 ± 0.27 $\times 10^{-2}$ $B(\psi(2s))$	\overline{b})/ Γ_{hadron} Γ_{5} ENT 13 TeV 7 TeV 7 TeV or. 7) \times 10 ⁻³ ϵ as the ratio	and we blisted
$J/\psi(1S)\pi^+\pi^-$, $\Gamma(\psi(2S)$ anything) $VALUE$ 0.263 ± 0.013 OUR AV $0.265\pm0.002\pm0.016$ $0.266\pm0.06\pm0.03$ $0.257\pm0.015\pm0.019$ 1 The first error is second divided our best where. 1 Assumes lepton u 1 CHATRCHYAN 1 :	$J/\psi(1S)$ - $J/\psi(J/\psi)$ VERAGE Statistic; the set $B(b \rightarrow a)$ ralue of $B(b)$ iniversality 2AK really in	$\mu^+\mu^ (15)$ any DO 1 AA $2,3$ AA $4,5$ CH the second $\psi(25)$ X $b \rightarrow \psi(15)$ imposing reports Γ	channels. Thing) COMENT ID ALJ ALJ AATRCHYAN deerror is the $X = (3.08 \pm 0.00)$ $X = (1.5) \times (1.5) \times (1.5)$ $X = (1.5) \times (1$	Assumation	es $\Gamma(2)$ HCB HCB System ± 0.36 0.10) ± 0.1	$Z ightarrow b \overline{b}$ $COMM$ pp at pp at pp at atic errow 5 ± 0.27 $\times 10^{-2}$ $B(\psi(2s) 3 \pm 0.42$	\overline{b})/ Γ_{hadron} $\overline{\Gamma_{5}}$ 13 TeV 7 TeV 7 TeV or. 7) × 10 ⁻³ a as the ratio \overline{s}) $\rightarrow e^{+}e^{-}$)×10 ⁻³ ass	and we be listed
$J/\psi(1S)\pi^+\pi^-$, $\Gamma(\psi(2S)$ anything) $VALUE$ $D.263\pm0.013$ OUR AV $D.265\pm0.002\pm0.016$ $D.266\pm0.06\pm0.03$ $D.257\pm0.015\pm0.019$ $The first error is selected The first The first error is selected our best of the The first The first error is selected The first The first The first error is selected The first The first error is selected The first The first The first error is selected The first The f$	$J/\psi(1S)$ - $J/\psi($	$\mu^+\mu^-$ (15) any $\frac{DO}{2}$ $\frac{1}{4}$ AA $\frac{2}{3}$ AA $\frac{4}{5}$ CH The second $\frac{\psi(2S)X}{b \rightarrow \psi(0)}$ $\frac{1}{4}$ 1	channels. Thing) CUMENT ID ALJ HATRCHYAN derror is the $(x) = (3.08 \pm 1.0) \times 10^{-2}$	Assumation	es $\Gamma(2)$ HCB HCB System ± 0.36 0.10) ± 0.1	$Z ightarrow b \overline{b}$ $COMM$ pp at pp at pp at atic errow 5 ± 0.27 $\times 10^{-2}$ $B(\psi(2s) 3 \pm 0.42$	\overline{b})/ Γ_{hadron} $\overline{\Gamma_{5}}$ 13 TeV 7 TeV 7 TeV or. 7) × 10 ⁻³ a as the ratio \overline{s}) $\rightarrow e^{+}e^{-}$)×10 ⁻³ ass	and we be listed
$J/\psi(1S)\pi^+\pi^-,$ $\Gamma(\psi(2S) \text{ anything})$ $VALUE$ $0.263\pm0.013 \text{ OUR AV}$ $0.265\pm0.002\pm0.016$ $0.266\pm0.06\pm0.03$ $0.257\pm0.015\pm0.019$ 1 The first error is second invided our best where. 3 Assumes lepton uelength of 4 CHATRCHYAN 1:12 PDG 10 value of 4 Cellos 4 Cellos 4 Characteristics	$J/\psi(1S)$ - $J/\psi($	$\mu^+\mu^-$ (1S) any DO 1 AA 2,3 AA 4,5 CH The second $\psi(2S)X$ $b \to \psi(0S)$ imposing reports Γ 1.16 \pm 0. \times 10 $^{-2}$	channels. Thing) ALUMENT ID	Assumation	es $\Gamma(2)$ HCB HCB System ± 0.36 0.10) e^{-}) = 2 ± 0.1 we present	$Z ightarrow b \overline{b}$ $COMM$ pp at pp at pp at atic error 5 ± 0.27 $\times 10^{-2}$ $B(\psi(2s) 3 \pm 0.42)$ sent as a	\overline{b})/ Γ_{hadron} Γ_{5} ENT 13 TeV 7 TeV 7 TeV or. 7) \times 10 ⁻³ a as the ratio \overline{s}) \rightarrow $e^{+}e^{-}$) \times 10 ⁻³ ass a ratio of Γ_{5}	and we blisted suming $1/\Gamma_{50}$
$J/\psi(1S)\pi^+\pi^-$, $\Gamma(\psi(2S)\text{ anything})$ $VALUE$ $D.263\pm0.013$ OUR AV $D.265\pm0.002\pm0.016$ $D.266\pm0.06\pm0.03$ $D.257\pm0.015\pm0.019$ $The first error is second 2 AAIJ 12BD report divided our best where. TA = 0.0000000000000000000000000000000000$	$J/\psi(1S)$ - $J/\psi($	$\mu^+\mu^-$ (15) any \underline{DO} 1 AA 2,3 AA 4,5 CH The second $\psi(2S)X$ $b \to \psi(0)$ imposing reports Γ 1.16 \pm 0. \times 10 ⁻² ts (26.5 g)/ $\Gamma(\overline{b}$ -	channels. Thing) COMENT ID ALJ ALJ ATRCHYAN derror is the $X = (3.08 \pm 0.05)$ $(1S)X) = (15)$ $(1S)X $	Assuming As	es $\Gamma(2)$ TECN HCB HCB CMS 9.100 E^{-} E^{+} HCB E^{+} E^{-} HCB E^{-} HCB E^{-} HCB HCB HCB HCB HCB HCB HCB HC	$Z \rightarrow b \overline{b}$ $COMM$ pp at pp at pp at atic error 0.27×10^{-2} 0.42×10^{-2}	\overline{b})/ Γ_{hadron} Γ_{5} ENT 13 TeV 7 TeV 7 TeV or. 7) × 10 ⁻³ as the ratio \overline{b}) × 10 ⁻³ ass a ratio of Γ_{5} \overline{b}	and we be listed $1/\Gamma_{50}$ suming $1/\Gamma_{50}$ rement $1/\Gamma_{50}$
$J/\psi(1S)\pi^+\pi^-,$ $\Gamma(\psi(2S)\text{ anything})$ $VALUE$ $0.263\pm0.013 \text{ OUR AN}$ $0.265\pm0.002\pm0.016$ $0.266\pm0.06\pm0.03$ $0.257\pm0.015\pm0.019$ 1 The first error is some 2 AAIJ 12BD report divided our best where. 3 Assumes lepton uuthere. 4 CHATRCHYAN 15 4 PDG 10 value of 6 = $(26.5\pm1.0\pm5)$ 6 CHATRCHYAN 1 6 of 6 6 6 6 6 6 6 6	$J/\psi(1S)$ - $J/\psi($	$\mu^+\mu^-$ (15) any \underline{DO} 1 AA 2,3 AA 4,5 CH The second $\psi(2S)X$ $b \to \psi(0S)X$ $(ab) \to \psi(0S)X$	channels. Thing) CUMENT ID ALJ ALT ALT ALT ALT ALT ALT ALT	Assuming As	es $\Gamma(Z)$ FECN HCB HCB CMS 9.36 0.10) μ^{-} ve presented by μ^{+}	$Z \rightarrow b \overline{b}$ $\frac{COMM}{pp \text{ at}}$ $pp \text{ at}$ $pp \text{ at}$ $pp \text{ at}$ atic error 5 ± 0.27 $\times 10^{-2}$ $8(\psi(2s)$ 3 ± 0.42 sent as a 5 ± 0.42 6 ± 0.42 6 ± 0.42 6 ± 0.42 $7 \pm 0.$	\overline{b})/ Γ_{hadron} Γ_{5} ENT 13 TeV 7 TeV 7 TeV or. 7) × 10^{-3} as the ratio (a) × 10^{-3} assaratio of Γ_{5} m a measure (2S) $\rightarrow \mu^{-1}$ = (7.7 \pm 0)	and we be listed $1/\Gamma_{50}$ rement $[\mu^{-}]_{0.8}$
$J/\psi(1S)\pi^+\pi^-,$ $\Gamma(\psi(2S) \text{ anything})$ $VALUE$ $0.263\pm0.013 \text{ OUR AV}$ $0.265\pm0.002\pm0.016$ $0.266\pm0.06\pm0.03$ $0.257\pm0.015\pm0.019$ 1 The first error is second divided our best of there. 3 Assumes lepton uelement of 4 CHATRCHYAN 1: 2 PDG 10 value of 6 = $(26.5\pm1.0\pm5)$ CHATRCHYAN 1 of $[\Gamma(\overline{b}\to\psi(2S))]$ $[B(J/\psi(1S)-10^{-3}]$, $B(J/\psi(1S))$	$J/\psi(1S)$ - $J/\psi($	$\mu^+ \mu^ \mu^+ \mu^ \mu^-$	channels. Thing) CUMENT ID ALJ HATRCHYAN deerror is the $X(t) = (3.08 \pm 0.00) \times 10^{-2}$ $t = 1.0 \pm 1.1$	Assuming As	es $\Gamma(2)$ HCB HCB System ± 0.36 0.10) π^{-}) = 2 ± 0.1 we present the property of the property	$Z \rightarrow b \overline{b}$ $\frac{COMM}{pp}$ pp at pp at pp at atic error 5 ± 0.27 $\times 10^{-2}$ $B(\psi(2s)$ 3 ± 0.42 $5 $	\overline{b})/ $\Gamma_{\rm hadron}$ $\overline{\Gamma_5}$ ENT 13 TeV 7 TeV 7 TeV or. 7) × 10 ⁻³ as the ratio of Γ_5 10^{-3} as a ratio of Γ_5	and we be listed $1/\Gamma_{50}$ rement μ^{-})] 0.8 × to our
$J/\psi(1S)\pi^+\pi^-,$ $\Gamma(\psi(2S) \text{ anything})$ $VALUE$ $0.263\pm 0.013 \text{ OUR AV}$ $0.265\pm 0.002\pm 0.016$ $0.266\pm 0.06 \pm 0.03$ $0.257\pm 0.015\pm 0.019$ 1 The first error is second 2 AAIJ 12BD report divided our best where. 3 Assumes lepton uelemant 4 CHATRCHYAN 112BD 4 PDG 10 value of 4 PDG 10 value of 4 CHATRCHYAN 112BD 4 4 CHATRCHYAN 112BD 4 4 4 4 4 4 4 4	$J/\psi(1S)$ - $J/\psi($	$\mu^+ \mu^ \mu^+ \mu^ \mu^+ \mu^ \mu^-$	channels. Thing) CUMENT ID ALJ ALJ ALTRCHYAN $(1S)X) = (1$ $(1S)X) = (1$ $(1S)X) = (1$ $(1S)X = (1)$	Assume 20G L 12BD L 12AK Ω a total set total set $0.07 = 1.16 \pm 0.12$ which which which versus $0.07 = 1.28$ which versus 0.0	es $\Gamma(2)$ HCB HCB SMS yestem ± 0.36 0.10) π^{-}) = 2 ± 0.1 we present the property of the pro	$Z \rightarrow b \overline{b}$ $\frac{COMM}{pp}$ pp at pp at pp at atic error 0 ± 0.27 0 ± 0.42 Sent as a $0 - 2$ from 0 ± 0.42 Sent as a $0 - 2$ from 0 ± 0.42 Which 0 ± 0.42	\overline{b})/ $\Gamma_{\rm hadron}$ $\overline{\Gamma_5}$ ENT 13 TeV 7 TeV 7 TeV or. 7) × 10 ⁻³ as the ratio \overline{s}) $\rightarrow e^+e^-$)×10 ⁻³ assa ratio of Γ_5 \overline{m} a measur $\overline{2S}$) $\rightarrow \mu^ \overline{=}$ (7.7 \pm 0 we rescale \overline{s}) $\rightarrow \mu^-$	and we be listed $1/\Gamma_{50}$ rement $1/\Gamma_{50}$ rement $1/\Gamma_{50}$ $1/\Gamma_{50}$ rement $1/\Gamma_{50}$ $1/\Gamma_{50}$ rement $1/\Gamma_{50}$ $1/\Gamma_{50}$ rement $1/\Gamma_{50}$ $1/\Gamma_{50}$
$J/\psi(1S)\pi^+\pi^-,$ $\Gamma(\psi(2S) \text{ anything})$ $VALUE$ $0.263\pm0.013 \text{ OUR AV}$ $0.265\pm0.002\pm0.016$ $0.266\pm0.06\pm0.03$ $0.257\pm0.015\pm0.019$ 1 The first error is second divided our best of there. 3 Assumes lepton ueighted 4 CHATRCHYAN 1: PDG 10 value of Γ $= (26.5\pm1.0\pm5)$ CHATRCHYAN 1 of $\Gamma(\overline{b} \rightarrow \psi(25))$	$J/\psi(1S)$ - $J/\psi($	$\mu^+\mu^-$ (1S) any \underline{DO} 1 AA 2,3 AA 4,5 CH The second $\psi(2S)X$ $b \to \psi(0)$ imposing reports Γ 1.16 \pm 0. \times 10 $^{-2}$ ts (26.5 g)/ $\Gamma(\overline{b}$)] assu μ^-) = $\mu^+\mu^-$) . Our fin	channels. Thing) CUMENT ID AIJ HATRCHYAN derror is the $X = (3.08 \pm 0.00)$ $X = (3.08 $	Assuming the property of the	es $\Gamma(2)$ HCB HCB SMS yestem ± 0.36 0.10) π^{-}) = 2 ± 0.1 we present the property of the pro	$Z \rightarrow b \overline{b}$ $\frac{COMM}{pp}$ pp at pp at pp at atic error 0 ± 0.27 0 ± 0.42 Sent as a $0 - 2$ from 0 ± 0.42 Sent as a $0 - 2$ from 0 ± 0.42 Which 0 ± 0.42	\overline{b})/ $\Gamma_{\rm hadron}$ $\overline{\Gamma_5}$ ENT 13 TeV 7 TeV 7 TeV or. 7) × 10 ⁻³ as the ratio \overline{s}) $\rightarrow e^+e^-$)×10 ⁻³ assa ratio of Γ_5 \overline{m} a measur $\overline{2S}$) $\rightarrow \mu^ \overline{=}$ (7.7 \pm 0 we rescale \overline{s}) $\rightarrow \mu^-$	and we be listed $1/\Gamma_{50}$ rement $1/\Gamma_{50}$ rement $1/\Gamma_{50}$ $1/\Gamma_{50}$ rement $1/\Gamma_{50}$ $1/\Gamma_{50}$ rement $1/\Gamma_{50}$ $1/\Gamma_{50}$ rement $1/\Gamma_{50}$ $1/\Gamma_{50}$

$\Gamma(\chi_{c0}(1P))$ anything $\Gamma(\chi_{c0}(1P))$

 Γ_{52}/Γ

VALUE (units 10^{-3})	DOCUMENT ID	TECN	COMMENT
$3.0 \pm 0.6 \pm 0.2$	¹ AAIJ	24AP LHCB	pp at 13 TeV

https://pdg.lbl.gov

Page 19

 1 AAIJ 24AP reports $[\Gamma(\overline{b}\to\chi_{c0}(1P)\,\text{anything})/\Gamma_{\text{total}}]\times[\mathrm{B}(\chi_{c0}(1P)\to\,p\overline{p})]=(6.74\pm1.18\pm0.62)\times10^{-7}$ which we divide by our best value $\mathrm{B}(\chi_{c0}(1P)\to\,p\overline{p})=(2.21\pm0.14)\times10^{-4}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(\chi_{c0}(1P))$ anything $\Gamma(\eta_{c}(1S))$ anything

 Γ_{52}/Γ_{56}

0.32±0.05±0.08	¹ AAIJ	17BB LHCB	pp at 7, 8 TeV
1 AAIJ 17BB reports $[\Gamma(\overline{b} ightarrow \phi)] imes [B(\chi_{C0}(1P) ightarrow \phi)$	$(\chi_{c0}(1P))$ anything $(\phi)]=0.147\pm0.$	$(g)/\Gamma(\overline{b} ightarrow \eta_{m{C}}(1S) a$ 023 \pm 0.011 which	anything)] $/$ [B $(\eta_{m{\mathcal{C}}}(1S) ightarrow$ n we multiply or divide by

¹ AAIJ 17BB reports $[\Gamma(\overline{b} \to \chi_{c0}(1P) \text{ anything})/\Gamma(\overline{b} \to \eta_c(1S) \text{ anything})] / [B(\eta_c(1S) \to \phi\phi)] \times [B(\chi_{c0}(1P) \to \phi\phi)] = 0.147 \pm 0.023 \pm 0.011$ which we multiply or divide by our best values $B(\eta_c(1S) \to \phi\phi) = (1.8 \pm 0.4) \times 10^{-3}$, $B(\chi_{c0}(1P) \to \phi\phi) = (8.48 \pm 0.31) \times 10^{-4}$. Our first error is their experiment's error and our second error is the systematic error from using our best values.

TECN

COMMENT

$\Gamma(\chi_{c1}(1P))$ anything $\Gamma(\chi_{c1}(1P))$

VALUE

 Γ_{53}/Γ

VALUE (units 10^{-3})	EVTS	DOCUMENT ID		TECN	COMMENT
5.9±1.5 OUR AVERAGE	Error i	ncludes scale fact	or of 1	L.2.	
$5.1 \pm 1.3 \pm 0.3$		¹ AAIJ	24AP	LHCB	pp at 13 TeV
$11.2^{+5.7}_{-5.0}\pm0.4$		² ABREU	94 P	DLPH	$e^+e^- ightarrow Z$
19 ± 7 ± 1	19	³ ADRIANI	93 J	L3	$e^+e^- ightarrow Z$

- 1 AAIJ 24AP reports $[\Gamma(\overline{b}\to\chi_{c1}(1P)\,\text{anything})/\Gamma_{\text{total}}]\times[B(\chi_{c1}(1P)\to\rho\overline{\rho})]=(3.88\pm0.91\pm0.36)\times10^{-7}$ which we divide by our best value $B(\chi_{c1}(1P)\to\rho\overline{\rho})=(7.6\pm0.4)\times10^{-5}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. 2 ABREU 94P reports $(1.4\pm0.6^{+0.4}_{-0.2})\times10^{-2}$ from a measurement of $[\Gamma(\overline{b}\to0.85)]$
- ²ABREU 94P reports $(1.4 \pm 0.6^{+0.4}_{-0.2}) \times 10^{-2}$ from a measurement of $[\Gamma(\overline{b} \to \chi_{c1}(1P) \, \text{anything})/\Gamma_{\text{total}}] \times [B(\chi_{c1}(1P) \to \gamma J/\psi(1S))]$ assuming $B(\chi_{c1}(1P) \to \gamma J/\psi(1S)) = (27.3 \pm 1.6) \times 10^{-2}$, which we rescale to our best value $B(\chi_{c1}(1P) \to \gamma J/\psi(1S)) = (34.3 \pm 1.3) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes no $\chi_{c2}(1P)$ and $\Gamma(Z \to b\overline{b})/\Gamma_{\text{hadron}} = 0.22$.
- ³ ADRIANI 93J reports $(2.4 \pm 0.9 \pm 0.2) \times 10^{-2}$ from a measurement of $[\Gamma(\overline{b} \to \chi_{c1}(1P) \text{ anything})/\Gamma_{\text{total}}] \times [B(\chi_{c1}(1P) \to \gamma J/\psi(1S))]$ assuming $B(\chi_{c1}(1P) \to \gamma J/\psi(1S)) = (27.3 \pm 1.6) \times 10^{-2}$, which we rescale to our best value $B(\chi_{c1}(1P) \to \gamma J/\psi(1S)) = (34.3 \pm 1.3) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(\chi_{c1}(1P))$ anything $\Gamma(J/\psi(1S))$ anything

 Γ_{53}/Γ_{50}

(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, , , , ,	, , ,			55, 55
VALUE	<u>EVTS</u>	DOCUMENT ID	TECN	COMMENT	
• • • We do not use th	e following	data for average	s, fits, limits,	etc. • • •	
$1.92 \!\pm\! 0.82$	121	¹ ADRIANI	93J L3	$e^+e^- ightarrow~Z$	

¹ ADRIANI 93J is a ratio of inclusive measurements from b decays at the Z using only the $J/\psi(1S) \rightarrow \mu^+\mu^-$ channel since some systematics cancel.

$\Gamma(\chi_{c1}(1P))$ anything $\Gamma(\chi_{c0}(1P))$ anything

 Γ_{53}/Γ_{52}

<u>VALUE</u>	DOCUMENT ID	TECN	COMMENT
1.06±0.22 OUR AVERAGE			
$1.7 \pm 0.7 \pm 0.1$	¹ AAIJ	24AP LHCB	pp at 13 TeV
$1.00\pm0.22\pm0.06$	² AAIJ	17BB LHCB	pp at 7, 8 TeV

https://pdg.lbl.gov

Page 20

¹ AAIJ 24AP reports $[\Gamma(\overline{b} \to \chi_{c1}(1P) \, \text{anything})/\Gamma(\overline{b} \to \chi_{c0}(1P) \, \text{anything})] / [B(\chi_{c0}(1P) \to p\overline{p})] \times [B(\chi_{c1}(1P) \to p\overline{p})] = 0.58 \pm 0.23 \pm 0.02$ which we multiply or divide by our best values $B(\chi_{c0}(1P) \to p\overline{p}) = (2.21 \pm 0.14) \times 10^{-4}$, $B(\chi_{c1}(1P) \to p\overline{p}) = (7.6 \pm 0.4) \times 10^{-5}$. Our first error is their experiment's error and our second error is the systematic error from using our best values.

² AAIJ 17BB reports $[\Gamma(\overline{b} \to \chi_{c1}(1P) \, \text{anything})/\Gamma(\overline{b} \to \chi_{c0}(1P) \, \text{anything})]$ / $[B(\chi_{c0}(1P) \to \phi\phi)] \times [B(\chi_{c1}(1P) \to \phi\phi)] = 0.50 \pm 0.11 \pm 0.01$ which we multiply or divide by our best values $B(\chi_{c0}(1P) \to \phi\phi) = (8.48 \pm 0.31) \times 10^{-4}$, $B(\chi_{c1}(1P) \to \phi\phi) = (4.26 \pm 0.21) \times 10^{-4}$. Our first error is their experiment's error and our second error is the systematic error from using our best values.

$\Gamma(\chi_{c1}(1P))$ anything $\Gamma(\eta_{c}(1S))$ anything

 Γ_{53}/Γ_{56}

(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, , ,			, -
<u>VALUE</u>	DOCUMENT ID	TECN	COMMENT	
0.31±0.07±0.08	¹ AAIJ	17BB LHCB	<i>pp</i> at 7, 8 TeV	

 1 AAIJ 17BB reports [$\Gamma(\overline{b} \to \chi_{c1}(1P) \, \text{anything}) / \Gamma(\overline{b} \to \eta_c(1S) \, \text{anything})] / \left[B(\eta_c(1S) \to \phi\phi) \right] \times \left[B(\chi_{c1}(1P) \to \phi\phi) \right] = 0.073 \pm 0.016 \pm 0.006$ which we multiply or divide by our best values $B(\eta_c(1S) \to \phi\phi) = (1.8 \pm 0.4) \times 10^{-3}, \; B(\chi_{c1}(1P) \to \phi\phi) = (4.26 \pm 0.21) \times 10^{-4}.$ Our first error is their experiment's error and our second error is the systematic error from using our best values.

$\Gamma(\chi_{c2}(1P))$ anything $\Gamma(\chi_{c2}(1P))$

 Γ_{54}/Γ

VALUE (units 10^{-3})DOCUMENT IDTECNCOMMENT1.6±1.1±0.11 AAIJ24AP LHCBpp at 13 TeV

 1 AAIJ 24AP reports $[\Gamma(\overline{b}\to\chi_{c2}(1P)\,\text{anything})/\Gamma_{\text{total}}]\times[\mathrm{B}(\chi_{c2}(1P)\to\,p\overline{p})]=(1.13\pm0.83\pm0.10)\times10^{-7}$ which we divide by our best value $\mathrm{B}(\chi_{c2}(1P)\to\,p\overline{p})=(7.3\pm0.4)\times10^{-5}.$ Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(\chi_{c2}(1P) \text{ anything})/\Gamma(\chi_{c0}(1P) \text{ anything})$

 Γ_{54}/Γ_{52}

VALUE	DOCUMENT ID	TECN	COMMENT
0.39±0.07 OUR AVERAGE			
$0.52 \pm 0.37 \pm 0.04$	¹ AAIJ	24AP LHCB	pp at 13 TeV
$0.39 \pm 0.07 \pm 0.03$	² AAIJ	17вв LHCВ	<i>pp</i> at 7, 8 TeV

- 1 AAIJ 2 reports $[\Gamma(\overline{b} \to \chi_{c2}(1P) \, \text{anything})/\Gamma(\overline{b} \to \chi_{c0}(1P) \, \text{anything})] / [B(\chi_{c0}(1P) \to p\overline{p})] \times [B(\chi_{c2}(1P) \to p\overline{p})] = 0.17 \pm 0.12 \pm 0.01$ which we multiply or divide by our best values $B(\chi_{c0}(1P) \to p\overline{p}) = (2.21 \pm 0.14) \times 10^{-4}, \, B(\chi_{c2}(1P) \to p\overline{p}) = (7.3 \pm 0.4) \times 10^{-5}.$ Our first error is their experiment's error and our second error is the systematic error from using our best values.
- ² AAIJ 17BB reports $[\Gamma(\overline{b} \to \chi_{c2}(1P) \, \text{anything})/\Gamma(\overline{b} \to \chi_{c0}(1P) \, \text{anything})]$ / $[B(\chi_{c0}(1P) \to \phi\phi)] \times [B(\chi_{c2}(1P) \to \phi\phi)] = 0.56 \pm 0.10 \pm 0.01$ which we multiply or divide by our best values $B(\chi_{c0}(1P) \to \phi\phi) = (8.48 \pm 0.31) \times 10^{-4}$, $B(\chi_{c2}(1P) \to \phi\phi) = (1.23 \pm 0.07) \times 10^{-3}$. Our first error is their experiment's error and our second error is the systematic error from using our best values.

$\Gamma(\chi_{c2}(1P))$ anything $\Gamma(\eta_c(1S))$ anything

 Γ_{54}/Γ_{56}

VALUE	DOCUMENT ID	TECN	COMMENT
$0.121 \pm 0.021 \pm 0.030$	¹ AAIJ	17BB LHCB	<i>pp</i> at 7, 8 TeV

 $^{^1}$ AAIJ 17BB reports [$\Gamma(\overline{b}\to\chi_{\mathcal{C}2}(1P) \, \text{anything})/\Gamma(\overline{b}\to\eta_{\mathcal{C}}(1S) \, \text{anything})] / \left[\mathrm{B}(\eta_{\mathcal{C}}(1S)\to\phi) \right] \times \left[\mathrm{B}(\chi_{\mathcal{C}2}(1P)\to\phi) \right] = 0.081 \pm 0.013 \pm 0.005 \, \text{which we multiply or divide by our best values } \mathrm{B}(\eta_{\mathcal{C}}(1S)\to\phi) = (1.8 \pm 0.4) \times 10^{-3}, \, \mathrm{B}(\chi_{\mathcal{C}2}(1P)\to\phi) = 0.001 \, \mathrm{B$

https://pdg.lbl.gov

Page 21

 $(1.23\pm0.07)\times10^{-3}$. Our first error is their experiment's error and our second error is the systematic error from using our best values.

$\Gamma(\chi_c(2P))$ anything,	$\chi_c \rightarrow$	$(\phi\phi)/\Gamma_{total}$				Γ ₅₅ /Γ
VALUE	CL%	DOCUMENT ID		TECN	COMMENT	
$<2.8 \times 10^{-7}$	95	AAIJ	17 BB	LHCB	<i>pp</i> at 7, 8 TeV	
$\Gamma(\eta_c(1S))$ anything	$/\Gamma(J/\psi)$	b(1S) anything)			Г	- ₅₆ /Γ ₅₀
VALUE		DOCUMENT ID		TECN	COMMENT	
0.49±0.04 OUR AVER	RAGE	1				
$0.49 \pm 0.03 \pm 0.05$		¹ AAIJ			pp at 13 TeV	
$0.48 \pm 0.03 \pm 0.06$		AAIJ	20H	THCB	pp at 13 TeV	
1 Using $\eta_{\mathcal{C}}(1S)$ and 1	$J/\psi(1S)$	decays to $p\overline{p}$.				
$\Gamma(\eta_c(2S))$ anything,	$\eta_c \rightarrow \epsilon$	$\phi \phi ig) / \Gamma ig(\eta_c (1S)$ any	thing	:)	Γ	₅₇ /Γ ₅₆
VALUE (units 10^{-5})		DOCUMENT ID		TECN	COMMENT	
7.3±2.1±1.7	_	1 AAIJ	17 BB	LHCB	<i>pp</i> at 7, 8 TeV	
$B(\eta_c(1S) \rightarrow \phi\phi)$	= (1.8 =	$\eta_{\rm C}(2S)$ anything, r $0.040\pm0.011\pm0.00$ $\pm0.4)\times10^{-3}$. Our flematic error from using	irst er	ror is th	eir experiment's	
$\Gamma(\chi_{c1}(3872)$ anythic	nσ. _{V-1}	$\rightarrow \phi \phi) / \Gamma_{\text{total}}$				Γ ₅₈ /Γ
•	CL%	DOCUMENT ID		TECN	COMMENT	- 30/ -
<4.5 × 10 ⁻⁷	95	AAIJ			pp at 7, 8 TeV	
					pp === 1, 0 ===	
$\Gamma(\chi_{c0}(3915))$ anything		,				Γ ₅₉ /Γ
	<u>CL%</u>					
$<3.1\times10^{-7}$	95	AAIJ	17 BB	LHCB	<i>pp</i> at 7, 8 TeV	
$\Gamma(\overline{s}\gamma)/\Gamma_{total}$						Γ_{60}/Γ
VALUE (units 10^{-4})	CL%	DOCUMENT ID		TECN	COMMENT	
$3.11 \pm 0.80 \pm 0.72$		¹ BARATE			$e^+e^- ightarrow Z$	
• • • We do not use t	he follow					
< 5.4	90	² ADAM				
<12	90	³ ADRIANI			$e^+e^- o Z$	
¹ BARATE 981 uses 1 ² ADAM 96D assume	lifetime tes $f_{D0} =$	tagged $Z ightarrow b \overline{b}$ same $f_{B^-} = 0.39$ and f_{B_S}	ple. = 0.	12.		
³ ADRIANI 93L resul	It is for \overline{L}	$ar{b} ightarrow ar{s} \gamma$ is performed	inclus	sively.		
$\Gamma(\overline{s}\overline{ u} u)/\Gamma_{total}$						Γ_{61}/Γ
	CL%	DOCUMENT ID		TECN	COMMENT	
	90	DOCUMENT ID BARATE	01E	ALEP	$e^+e^- o Z$	
		ging algorithms were ι	used.			
$\Gamma(K^{\pm} \text{ anything})/\Gamma_{t}$						Γ_{62}/Γ
<u>VALUE</u> 0.74±0.06 OUR AVER	PAGE	DOCUMENT ID		TECN	COMMENT	
$0.72 \pm 0.02 \pm 0.06$	MAGE	BARATE	081/	ΔIFD	$e^+e^- ightarrow~Z$	
$0.72 \pm 0.02 \pm 0.00$ $0.88 \pm 0.05 \pm 0.18$		ABREU			$e^+e^- \rightarrow Z$	
0.00 ± 0.00 ± 0.10		ADIALO	JJC	D E 1 1 1	5	
https://pdg.lbl.gov		Page 22		Creat	ced: 5/30/202	5 07:50

$\Gamma(K_S^0 \text{ anything})/\Gamma_{\text{total}}$	DOCUMENT ID		TECN	COMMENT	Γ ₆₃ /Γ
$0.290 \pm 0.011 \pm 0.027$	ABREU			$e^+e^- \rightarrow Z$	
$\Gamma(\pi^{\pm} \text{ anything})/\Gamma_{\text{total}}$	DOCUMENT ID		TECN	<u>COMMENT</u>	Γ ₆₄ /Γ
<u>VALUE</u> 3.97±0.02±0.21	BARATE				
					- /-
$\Gamma(\pi^0$ anything)/ Γ_{total}	DOCUMENT ID		TECN	COMMENT	Г ₆₅ /Г
	¹ ADAM			$e^+e^- \rightarrow Z$	
¹ ADAM 96 measurement obtaine <i>bb</i> events.		he rap	oidity dis	stribution of $\pi^{0'}$	s in $Z o$
$\Gamma(\phi)$ anything $\Gamma(\phi)$					Γ ₆₆ /Γ
<u>VALUE</u>				COMMENT -	
$0.0282 \pm 0.0013 \pm 0.0019$	ABBIENDI	002	OPAL	$e \mid e \rightarrow Z$	
$\Gamma(p/\overline{p}$ anything $)/\Gamma_{ m total}$					Г ₆₇ /Г
<u>VALUE</u> 0.131±0.011 OUR AVERAGE	DOCUMENT ID		TECN	COMMENT	
$0.131 \pm 0.004 \pm 0.011$	BARATE	98v	ALEP	$e^+e^- ightarrow~Z$	
$0.141 \pm 0.018 \pm 0.056$	ABREU	95 C	DLPH	$e^+e^- ightarrow Z$	
$\Gamma(\Lambda/\overline{\Lambda})$ anything $\Gamma(\Lambda/\overline{\Lambda})$	DOCUMENT ID		TECN	COMMENT	Γ ₆₈ /Γ
<u>VALUE</u> 0.059 ±0.006 OUR AVERAGE	DOCUMENT ID		TECIV	COMINIENT	
$0.0587 \pm 0.0046 \pm 0.0048$	ACKERSTAFF				
$0.059 \pm 0.007 \pm 0.009$	ABREU	95 C	DLPH	$e^+e^- o Z$	
$\Gamma(b$ -baryon anything)/ Γ_{total}	DOCUMENT ID		TECN	COMMENT	Γ ₆₉ /Γ
	¹ BARATE				
1 BARATE 98V assumes B($B_{_{m{S}}} ightarrow$	$pX) = 8 \pm 4\%$	and	B(<i>b</i> -bar	$yon \rightarrow pX) =$	$58\pm6\%$.
$\Gamma(\Xi_b^+ \text{ anything})/\Gamma(\overline{\Lambda}_b^0 \text{ anything})$	g)				Γ ₇₁ /Γ ₇₀
<u>VALUE (units 10⁻²)</u> 7.3±1.7 OUR AVERAGE	DOCUMENT ID		TECN	COMMENT	
	1 , , , , ,	1045	LUCB		T-\/
$6.7 \pm 0.5 \pm 2.1$ $8.2 \pm 0.7 \pm 2.6$	¹ AAIJ ¹ AAIJ	19AE	LHCB	pp at 7 and 6	iev
1 Measured from R $=$ [B(\overline{b} $ ightarrow$					$A \cap B(\overline{\Lambda}_{i}^{0} \rightarrow A)$
$J/\psi \overline{\Lambda}{}^0)]$ and assumes $\Gamma_{\Xi_h^+} \to$	~			~	~
$=_b^+$ flavor symmetry.	$J/\psi = \gamma \Lambda_b^0$	\mathbf{J}/ψ ,	/I ^o /		
$\Gamma(\text{charged anything})/\Gamma_{\text{total}}$					Γ ₇₂ /Γ
<u>VALUE</u>	DOCUMENT ID	00::	TECN D. D. D.	COMMENT -	
4.97 ± 0.03 ± 0.06 • • • We do not use the following •	¹ ABREU data for averages				
$5.84\pm0.04\pm0.38$	ABREU			Repl. by ABRI	EU 98H
				. ,	
https://pdg.lbl.gov	Page 23		Creat	ced: 5/30/202	25 07:50

 1 ABREU 98H measurement excludes the contribution from K^0 and Λ decay.

\(\Gamma\) (hadron⁺ hadron⁻) /\(\Gamma\)

 Γ_{73}/Γ

•	// total	,
$VALUE$ (units 10^{-5})	DOCUMENT ID TECN COMMENT	
$1.7^{+1.0}_{-0.7}\pm0.2$	1,2 BUSKULIC 96V ALEP $e^+e^- \rightarrow Z$	

 $^{^{1}}$ BUSKULIC 96V assumes PDG 96 production fractions for B^{0} , B^{+} , B_{s} , b baryons.

Γ(charmless) /Γ_{total}

 Γ_{74}/Γ

(Constitution) / Cital				- /-
VALUE	DOCUMENT ID	TECN	COMMENT	
0.007±0.021	1 ABREU 9	98D DLPH	$e^+e^- ightarrow Z$	

 $^{^{1}}$ ABREU 98D results are extracted from a fit to the b-tagging probability distribution based on the impact parameter. The expected hidden charm contribution of 0.026 \pm 0.004 has been subtracted.

$\Gamma(\mu^+\mu^-$ anything)/ $\Gamma_{ ext{total}}$ Test for $\Delta B=1$ weak neutral current

 Γ_{76}/Γ

	$-101 \Delta D = 1$	weak neutra	ii Cuii Ciit.			
<i>VALUE</i>		CL%	DOCUMENT ID		TECN	COMMENT
<3.2	× 10 ⁻⁴	90	ABBOTT	98 B	D0	<i>p</i> p 1.8 TeV
• • • \	We do not use th	e following	data for averages	s, fits,	limits, e	etc. • • •
< 5.0	$\times10^{-5}$	90	¹ ALBAJAR	91 C	UA1	$E_{\rm cm}^{p\overline{p}}=$ 630 GeV
< 0.02		95	ALTHOFF	84G	TASS	$E_{\rm cm}^{ee} = 34.5 \text{ GeV}$
< 0.007	7	95	ADEVA	83	MRKJ	<i>E</i> ^{ee} _{cm} = 30−38 GeV
< 0.007	7	95	BARTEL	83 B	JADE	E ^{ee} _{cm} = 33–37 GeV

 $^{^{}m 1}$ Both ABBOTT 98B and GLENN 98 claim that the efficiency quoted in ALBAJAR 91C was overestimated by a large factor.

$\left\lceil \Gamma(e^+e^- \, \text{anything}) + \Gamma(\mu^+\mu^- \, \text{anything}) \right\rceil / \Gamma_{\text{total}}$

 $(\Gamma_{75} + \Gamma_{76})/\Gamma$

Created: 5/30/2025 07:50

Test for $\Delta B = 1$ weak neutral current.

DOCUMENT ID TECN COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • •

MATTEUZZI 83 MRK2 E_{cm}^{ee} = 29 GeV < 0.008

$\Gamma(\nu\overline{\nu}_{anything})/\Gamma_{total}$

 Γ_{77}/Γ

DOCUMENT ID TECN COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • •

 $< 3.9 \times 10^{-4}$ 1 GROSSMAN 96 RVUE $e^{+}e^{-} \rightarrow Z$

 $^{^{2}}$ Average branching fraction of weakly decaying B hadrons into two long-lived charged hadrons, weighted by their production cross section and lifetimes.

 $^{^1}$ GROSSMAN 96 limit is derived from the ALEPH BUSKULIC 95 limit B($B^+
ightarrow ~ au^+
u_ au$) $< 1.8 \times 10^{-3}$ at CL=90% using conservative simplifying assumptions.

χ_b AT HIGH ENERGY

 χ_b is the average $B - \overline{B}$ mixing parameter at high-energy $\chi_b = f_d' \chi_d + f_s' \chi_s$ where f_d' and f_s' are the fractions of B^0 and B_s^0 hadrons in an unbiased sample of semileptonic b-hadron decays. We consider here $\overline{\chi}$ for hadrons produced in Z decays.

<i>VALUE</i> (units 10^{-2})	EVTS	DOCUMENT ID		TECN	COMMENT
12.59± 0.42 OUR EVAL		N (from LEP-SL	C 06,	eq. 5.39	9)
12.6 \pm 0.4 OUR AVE	RAGE				
$13.12 \pm 0.49 \pm 0.42$		¹ ABBIENDI			$e^+e^- \rightarrow Z$
$12.7 \pm 1.3 \pm 0.6$		² ABREU	01L		
$11.92\!\pm\ 0.68\!\pm\!0.51$		³ ACCIARRI	99 D		$e^+e^- \rightarrow Z$
$12.1 \pm 1.6 \pm 0.6$		⁴ ABREU	94J		
$11.4 \pm 1.4 \pm 0.8$		⁵ BUSKULIC	94G	ALEP	
12.9 ± 2.2		⁶ BUSKULIC	92 B	ALEP	
• • • We do not use the	e followi	ng data for averag	es, fit	s, limits,	etc. • • •
$13.2 \pm 0.1 \pm 2.4$		⁷ ABAZOV	06 S	D0	$p\overline{p}$ at 1.96 TeV
$15.2 \pm 0.7 \pm 1.1$		⁸ ACOSTA	04A	CDF	$p\overline{p}$ at 1.8 TeV
$13.1 \pm 2.0 \pm 1.6$		⁹ ABE	971	CDF	Repl. by ACOSTA 04A
$11.07\!\pm\ 0.62\!\pm\!0.55$		¹⁰ ALEXANDER	96	OPAL	Rep. by ABBIENDI 03P
$13.6 \pm 3.7 \pm 4.0$		¹¹ UENO	96	AMY	e^+e^- at 57.9 GeV
$14.4 \pm 1.4 {}^{+1.7}_{-1.1}$		¹² ABREU	94F	DLPH	Sup. by ABREU 94J
13.1 ± 1.4		¹³ ABREU	94J	DLPH	$e^+e^- ightarrow Z$
$12.3 \pm 1.2 \pm 0.8$		ACCIARRI	94 D	L3	Repl. by ACCIARRI 99D
$15.7 \pm 2.0 \pm 3.2$		¹⁴ ALBAJAR	94	UA1	$\sqrt{s}=630~{\rm GeV}$
$12.1 \ \ \begin{array}{c} + \ \ 4.4 \\ - \ \ 4.0 \end{array} \ \pm 1.7 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$.665	¹⁵ ABREU	93C	DLPH	Sup. by ABREU 94J
$14.3 \ \ \begin{array}{c} + \ 2.2 \\ - \ 2.1 \end{array} \pm 0.7$		¹⁶ AKERS	93 B	OPAL	Sup. by ALEXANDER 96
$14.5 \ \ \begin{array}{c} + \ \ 4.1 \\ - \ \ 3.5 \end{array} \ \pm 1.8$		¹⁷ ACTON	92 C	OPAL	$e^+e^- ightarrow Z$
$12.1 \pm 1.7 \pm 0.6$		¹⁸ ADEVA	92c	L3	Sup. by ACCIARRI 94D
$17.6 \pm 3.1 \pm 3.2$ 1		¹⁹ ABE	91 G	CDF	<i>p</i> p 1.8 TeV
$14.8 \pm 2.9 \pm 1.7$		²⁰ ALBAJAR	91 D	UA1	<i>p</i> p 630 GeV
$13.2 \pm 22.0 ^{+1.5}_{-1.2}$	823	²¹ DECAMP	91	ALEP	$e^+e^- ightarrow Z$
$17.8 \ \ ^{+}_{-} \ \ ^{4.9}_{4.0} \ \ \pm 2.0$		²² ADEVA	90 P	L3	$e^+e^- o Z$
$\begin{array}{ccc} 17 & +15 \\ -8 & \end{array}$	23,	²⁴ WEIR	90	MRK2	e^+e^- 29 GeV
$ \begin{array}{ccc} +29 \\ -15 \end{array} $		²³ BAND	88	MAC	$E_{cm}^{ee} = 29 \; GeV$
>2 at 90% <i>CL</i>		²³ BAND	88	MAC	$E_{\rm cm}^{ee} = 29 \text{ GeV}$
$12.1 ~\pm~ 4.7$	23,	²⁵ ALBAJAR	87c	UA1	*···
<12 at 90% <i>CL</i>	23,	²⁶ SCHAAD	85		$E_{\rm cm}^{\rm ee} = 29 \; {\rm GeV}$
1		-		_	Cili

 $^{^{1}}$ The average B mixing parameter is determined simultaneously with b and c forward-backward asymmetries in the fit.

² The experimental systematic and model uncertainties are combined in quadrature. ³ ACCIARRI 99D uses maximum-likelihood fits to extract χ_b as well as the A_{FB}^b in $Z \rightarrow$ $b\overline{b}$ events containing prompt leptons.

- 4 This ABREU 94J result is from 5182 $\ell\ell$ and 279 $\hbar\ell$ events. The systematic error includes 0.004 for model dependence.
- ⁵ BUSKULIC 94G data analyzed using ee, $e\mu$, and $\mu\mu$ events.
- ⁶ BUSKULIC 92B uses a jet charge technique combined with electrons and muons.
- 7 Uses the dimuon charge asymmetry. Averaged over the mix of b-flavored hadrons.
- ⁸ Measurement performed using events containing a dimuon or an e/μ pair.
- ⁹Uses di-muon events.
- 10 ALEXANDER 96 uses a maximum likelihood fit to simultaneously extract χ as well as the forward-backward asymmetries in $e^+e^- \rightarrow Z \rightarrow b\overline{b}$ and $c\overline{c}$.
- 11 UENO 96 extracted χ from the energy dependence of the forward-backward asymmetry.
- 12 ABREU 94F uses the average electric charge sum of the jets recoiling against a b-quark jet tagged by a high p_T muon. The result is for $\overline{\chi} = f_d \chi_d + 0.9 f_s \chi_s$.
- ¹³ This ABREU 94J result combines $\ell\ell$, $\Lambda\ell$, and jet-charge ℓ (ABREU 94F) analyses. It is for $\overline{\chi} = f_d \chi_d + 0.96 f_s \chi_s$.
- 14 ALBAJAR 94 uses dimuon events. Not independent of ALBAJAR 91D.
- 15 ABREU 93C data analyzed using ee, e μ , and $\mu\mu$ events.
- ¹⁶ AKERS 93B analysis performed using dilepton events.
- 17 ACTON 92C uses electrons and muons. Superseded by AKERS 93B.
- ¹⁸ ADEVA 92C uses electrons and muons.
- 19 ABE 91G measurement of χ is done with $e\mu$ and ee events.
- 20 ALBAJAR 91D measurement of χ is done with dimuons.
- 21 DECAMP 91 done with opposite and like-sign dileptons. Superseded by BUSKULIC 92B.
- 22 ADEVA 90P measurement uses ee, $\mu\mu$, and $e\mu$ events from 118k events at the Z. Superseded by ADEVA 92C.
- ²³ These experiments are not in the average because the combination of B_s and B_d mesons which they see could differ from those at higher energy.
- ²⁴ The WEIR 90 measurement supersedes the limit obtained in SCHAAD 85. The 90% CL are 0.06 and 0.38.
- 25 ALBAJAR 87C measured $\chi = (\overline{B}{}^0 \to B^0 \to \mu^+ X)$ divided by the average production weighted semileptonic branching fraction for B hadrons at 546 and 630 GeV.
- 26 Limit is average probability for hadron containing B quark to produce a positive lepton.

CP VIOLATION PARAMETERS in semileptonic b-hadron decays.

$\operatorname{Re}(\epsilon_b) / (1 + \epsilon_b ^2)$ CP impurity in semileptonic <i>b</i> -hadron decays.					
VALUE (units 10^{-3})	DOCUMENT ID		TECN	COMMENT	
• • • We do not use the follo	owing data for averag	es, fits,	limits,	etc. • • •	
$-6.2 \pm 5.2 \pm 4.7$ $-1.24 \pm 0.38 \pm 0.18$ $-1.97 \pm 0.43 \pm 0.23$ $-2.39 \pm 0.63 \pm 0.37$	¹ AABOUD ² ABAZOV ³ ABAZOV ⁴ ABAZOV	14 11∪		pp at 8 TeV $p\overline{p}$ at 1.96 TeV Repl. by ABAZOV 14 Repl. by ABAZOV 11U	
1 AABOUD 17E reports a measurement of charge asymmetry of ${\rm A}_{SL}^b=(-25\pm21\pm19)\times10^{-3}$ in lepton + jets $t\overline{t}$ events in which a b -hadron decays semileptonically to a soft muon. 2 ABAZOV 14 reports a measurement of like-sign dimuon charge asymmetry of ${\rm A}_{SL}^b=$					
$(-4.96\pm1.53\pm0.72)\times10^{-3}$ in semileptonic <i>b</i> -hadron decays. ³ ABAZOV 11U reports a measurement of like-sign dimuon charge asymmetry of $A^b_{SL}=(-7.87\pm1.72\pm0.93)\times10^{-3}$ in semileptonic <i>b</i> -hadron decays.					

⁴ABAZOV 10H reports a measurement of like-sign dimuon charge asymmetry of $A_{SL}^b = (-9.57 \pm 2.51 \pm 1.46) \times 10^{-3}$ in semileptonic *b*-hadron decays. Using the measured production ratio of B_d^0 and B_s^0 , and the asymmetry of B_d^0 $A_{SL}^d = (-4.7 \pm 4.6) \times 10^{-3}$ measured from *B*-factories, they obtain the asymmetry for B_s^0 as $A_{SL}^s = (-14.6 \pm 7.5) \times 10^{-3}$.

B-HADRON PRODUCTION FRACTIONS IN pp COLLISIONS AT Tevatron

The production fractions for b-hadrons in $p\overline{p}$ collisions at the Tevatron have been calculated from the best values of mean lifetimes, mixing parameters, and branching fractions in this edition by the Heavy Flavor Averaging Group (HFLAV) (see https://hflav.web.cern.ch/).

The values reported below assume:

$$f(\overline{b} \rightarrow B^+) = f(\overline{b} \rightarrow B^0)$$

$$f(\overline{b} \rightarrow B^+) + f(\overline{b} \rightarrow B^0) + f(\overline{b} \rightarrow B_s^0) + f(b \rightarrow b\text{-baryon}) = 1$$
The values are:
$$f(\overline{b} \rightarrow B^+) = f(\overline{b} \rightarrow B^0) = 0.344 \pm 0.021$$

$$f(\overline{b} \rightarrow B_s^0) = 0.115 \pm 0.013$$

$$f(b \rightarrow b\text{-baryon}) = 0.198 \pm 0.046$$

$$f(\overline{b} \rightarrow B_s^0) / f(\overline{b} \rightarrow B_d^0) = 0.334 \pm 0.041$$
and their correlation coefficients are:
$$cor(B_s^0, b\text{-baryon}) = -0.429$$

$$cor(B_s^0, B^+ = B^0) = +0.159$$

$$cor(b\text{-baryon}, B^+ = B^0) = -0.960$$

as obtained with the Tevatron average of time-integrated mixing parameter $\overline{\chi}=0.147\pm0.011.$

PRODUCTION ASYMMETRIES

$$\begin{split} &\mathsf{A}_C^{b\,\overline{b}} = \left[\mathsf{N}(\Delta \mathsf{y}>0) - \mathsf{N}(\Delta \mathsf{y}<0)\right] / \left[\mathsf{N}(\Delta \mathsf{y}>0) + \mathsf{N}(\Delta \mathsf{y}<0)\right] \text{ with } \Delta \mathsf{y} = \left|\mathsf{y}_{\overline{b}}\right| - \left|\mathsf{y}_{\overline{b}}\right| \\ &\mathsf{where} \ \mathsf{y}_{b/\overline{b}} \ \mathsf{is \ rapidity \ of} \ b \ \mathsf{or} \ \overline{b} \ \mathsf{quarks}. \end{split}$$

VALUE (units 10^{-2})	DOCUMENT ID	TECN	COMMENT		
Average is meaningless.					
$0.4 \pm 0.4 \pm 0.3$	¹ AAIJ	14AS LHCB	pp at 7 TeV		
$2.0 \pm 0.9 \pm 0.6$	² AAIJ	14AS LHCB	pp at 7 TeV		
$1.6 \pm 1.7 \pm 0.6$	³ AAIJ	14AS LHCB	pp at 7 TeV		
1 Measured for 40 $<$ M($b\overline{b}$) $<$ 75 GeV/ c^{2} .					
2 Measured for 75 $<$ M $(b\overline{b})$ $<$	105 GeV/c^2 .				
³ Measured for $M(b\overline{b}) > 105$ (GeV/c ² .				

$B^{\pm}/B^0/B_s^0/b$ -baryon ADMIXTURE REFERENCES

AAIJ	24AP	EPJ C84 1274	R. Aaij <i>et al.</i>	(LHCb	Collab.)
AAIJ	21Y	PR D104 032005	R. Aaij <i>et al.</i>		Collab.)
AAIJ	20G	EPJ C80 185	R. Aaij <i>et al.</i>		Collab.)
AAIJ	20H	EPJ C80 191	R. Aaij <i>et al.</i>	(LHCb	Collab.)
AAIJ	20V	PRL 124 122002	R. Aaij et al.		Collab.)
		PR D99 052006			
AAIJ			R. Aaij et al.		Collab.)
AAIJ	19AD	PR D100 031102	R. Aaij <i>et al.</i>	(LHCb	Collab.)
AAIJ	19AI	PR D100 112006	R. Aaij et al.	(LHCb	Collab.)
AABOUD	17E	JHEP 1702 071	M. Aaboud <i>et al.</i>	(ÀTLAS	
				` .	
AAIJ		EPJ C77 609	R. Aaij et al.	. ` .	Collab.)
AAD	15CM	PRL 115 262001	G. Aad <i>et al.</i>	(ATLAS	Collab.)
AAIJ	14AS	PRL 113 082003	R. Aaij et al.	(LHCb	Collab.)
ABAZOV	14	PR D89 012002	V.M. Abazov et al.	`	Collab.)
AAIJ	13P	JHEP 1304 001	R. Aaij et al.		Collab.)
AAIJ	12BD	EPJ C72 2100	R. Aaij <i>et al.</i>	(LHCb	Collab.)
Also		EPJ C80 49 (errat.)	R. Aaij et al.	(LHCb	Collab.)
AAIJ	12J	PR D85 032008	R. Aaji <i>et al.</i>		Collab.)
CHAIRCHYAN		JHEP 1202 011	S. Chatrchyan <i>et al.</i>		Collab.)
AAIJ	11F	PRL 107 211801	R. Aaij <i>et al.</i>	(LHCb	Collab.)
ABAZOV	11U	PR D84 052007	V.M. Abazov et al.		Collab.)
	10H	PRL 105 081801	V.M. Abazov <i>et al.</i>		
ABAZOV	1011			>	Collab.)
Also		PR D82 032001	V.M. Abazov <i>et al.</i>		Collab.)
PDG	10	JP G37 075021	K. Nakamura <i>et al.</i>	(PDG	Collab.)
AALTONEN	09E	PR D79 032001	T. Aaltonen et al.		Collab.)
AALTONEN	08N	PR D77 072003	T. Aaltonen et al.		Collab.)
ABAZOV	06S	PR D74 092001	V.M. Abazov <i>et al.</i>	(D0	Collab.)
LEP-SLC	06	PRPL 427 257	ALEPH, DELPHI, L3, OPAL, SLD and	working a	groups
ABBIENDI	041	EPJ C35 149	G. Abbiendi <i>et al.</i>		Collab.)
ABDALLAH	04E	EPJ C33 307	J. Abdallah <i>et al.</i>	(DELPHI	
ACOSTA	04A	PR D69 012002	D. Acosta <i>et al.</i>	(CDF	Collab.)
ABBIENDI	03M	EPJ C30 467	G. Abbiendi <i>et al.</i>		Collab.)
ABBIENDI	03P	PL B577 18	G. Abbiendi et al.	` .	Collab.)
				. `	
ABDALLAH	03E	PL B561 26	J. Abdallah <i>et al.</i>	(DELPHI	Collab.)
ABDALLAH	03K	PL B576 29	J. Abdallah <i>et al.</i>	(DELPHI	Collab.)
HEISTER	02G	EPJ C22 613	A. Heister et al.	(ALEPH	Collab.)
ABBIENDI	01Q	PL B520 1	G. Abbiendi <i>et al.</i>		Collab.)
				; <u> </u>	
ABBIENDI	01R	EPJ C21 399	G. Abbiendi <i>et al.</i>	. `	Collab.)
ABREU	01L	EPJ C20 455	P. Abreu <i>et al.</i>	(DELPHI	Collab.)
BARATE	01E	EPJ C19 213	R. Barate et al.	(ALEPH	Collab)
ABBIENDI	00E	EPJ C13 225	G. Abbiendi <i>et al.</i>		Collab.)
ABBIENDI	00Z	PL B492 13	G. Abbiendi <i>et al.</i>		Collab.)
ABREU	00	EPJ C12 225	P. Abreu <i>et al.</i>	(DELPHI	Collab.)
ABREU	00C	PL B496 43	P. Abreu et al.	(DELPHI	Collab.)
ABREU	00D	PL B478 14	P. Abreu <i>et al.</i>	(DELPHI	
ABREU	00R	PL B475 407	P. Abreu <i>et al.</i>	(DELPHI	Collab.)
ACCIARRI	00	EPJ C13 47	M. Acciarri et al.	(L3	Collab.)
AFFOLDER	00E	PRL 84 1663	T. Affolder et al.	(CDF	Collab.)
ABBIENDI	99J	EPJ C12 609	G. Abbiendi <i>et al.</i>		Collab.)
				` .	
ABE	99P	PR D60 092005	F. Abe <i>et al.</i>		Collab.)
ACCIARRI	99D	PL B448 152	M. Acciarri <i>et al.</i>	(L3	Collab.)
BARATE	99G	EPJ C6 555	R. Barate et al.	(ALEPH	Collab.)
ABBOTT	98B	PL B423 419	B. Abbott et al.		Collab.)
				(605	Collab.)
ABE	98B	PR D57 5382	F. Abe <i>et al.</i>	(CDF	Collab.)
ABREU	98D	PL B426 193	P. Abreu <i>et al.</i>	(DELPHI	Collab.)
ABREU	98H	PL B425 399	P. Abreu et al.	(DELPHI	Collab.)
ACCIARRI	98	PL B416 220	M. Acciarri <i>et al.</i>	` .	Collab.)
				`	
ACCIARRI	98K	PL B436 174	M. Acciarri et al.		Collab.)
ACKERSTAFF	98E	EPJ C1 439	K. Ackerstaff <i>et al.</i>	(OPAL	Collab.)
BARATE	981	PL B429 169	R. Barate et al.	(ÀLEPH	
BARATE	98Q	EPJ C4 387	R. Barate et al.	(ALEPH	
BARATE	98V	EPJ C5 205	R. Barate et al.	(ALEPH	
GLENN	98	PRL 80 2289	S. Glenn <i>et al.</i>	(CLEO	Collab.)
ABE	97I	PR D55 2546	F. Abe <i>et al.</i>		Collab.)
ACKERSTAFF	97F	ZPHY C73 397	K. Ackerstaff <i>et al.</i>		Collab.)
ACKERSTAFF	97N	ZPHY C74 423	K. Ackerstaff et al.	` .	Collab.)
ACKERSTAFF	97W	ZPHY C76 425	K. Ackerstaff <i>et al.</i>	(OPAL	Collab.)
ABREU	96E	PL B377 195	P. Abreu et al.	(DELPHI	Collab.)
ACCIARRI	96C	ZPHY C71 379	M. Acciarri <i>et al.</i>	` .	Collab.)
	300		/ Column of an	(13	conab.)

ADAM ADAM ALEXANDER BUSKULIC BUSKULIC BUSKULIC GROSSMAN	96 96D 96 96F 96V 96Y 96	ZPHY C69 561 ZPHY C72 207 ZPHY C70 357 PL B369 151 PL B384 471 PL B388 648 NP B465 369	W. Adam et al. W. Adam et al. G. Alexander et al. D. Buskulic et al. D. Buskulic et al. D. Buskulic et al. Y. Grossman, Z. Ligeti, E. Nardi	(DELPHI Collab.) (DELPHI Collab.) (OPAL Collab.) (ALEPH Collab.) (ALEPH Collab.) (ALEPH Collab.) (REHO, CIT)
Also PDG UENO ABE,K ABREU ABREU ADAM AKERS	96 96 95B 95C 95D 95 95	NP B480 753 (errat.) PR D54 1 PL B381 365 PRL 75 3624 PL B347 447 ZPHY C66 323 ZPHY C68 363 ZPHY C67 57	Y. Grossman, Z. Ligeti, E. Nardi R. M. Barnett et al. K. Ueno et al. K. Abe et al. P. Abreu et al. P. Abreu et al. W. Adam et al. R. Akers et al.	(PDG Collab.) (AMY Collab.) (SLD Collab.) (DELPHI Collab.) (DELPHI Collab.) (DELPHI Collab.) (OPAL Collab.)
BUSKULIC ABREU ABREU ABREU ACCIARRI ACCIARRI ALBAJAR	95 94F 94J 94L 94P 94C 94D 94	PL B343 444 PL B322 459 PL B332 488 ZPHY C63 3 PL B341 109 PL B332 201 PL B335 542 ZPHY C61 41	D. Buskulic et al. P. Abreu et al. P. Abreu et al. P. Abreu et al. P. Abreu et al. M. Acciarri et al. M. Acciarri et al. C. Albajar et al.	(ALEPH Collab.) (DELPHI Collab.) (DELPHI Collab.) (DELPHI Collab.) (DELPHI Collab.) (L3 Collab.) (L3 Collab.) (UA1 Collab.)
BUSKULIC ABE ABE ABREU ABREU ABREU ACTON ACTON	94G 93E 93J 93C 93D 93G 93C 93L	ZPHY C62 179 PL B313 288 PRL 71 3421 PL B301 145 ZPHY C57 181 PL B312 253 PL B307 247 ZPHY C60 217	D. Buskulic et al. K. Abe et al. F. Abe et al. P. Abreu et al. P. Abreu et al. P. Abreu et al. P.D. Acton et al. P.D. Acton et al.	(ALEPH Collab.) (VENUS Collab.) (CDF Collab.) (DELPHI Collab.) (DELPHI Collab.) (DELPHI Collab.) (OPAL Collab.) (OPAL Collab.)
ADRIANI ADRIANI ADRIANI AKERS BUSKULIC BUSKULIC ABREU ACTON	93J 93K 93L 93B 93B 93O 92	PL B317 467 PL B317 474 PL B317 637 ZPHY C60 199 PL B298 479 PL B314 459 ZPHY C53 567 PL B274 513	O. Adriani et al. O. Adriani et al. O. Adriani et al. R. Akers et al. D. Buskulic et al. D. Buskulic et al. P. Abreu et al. D.P. Acton et al.	(L3 Collab.) (L3 Collab.) (L3 Collab.) (L3 Collab.) (ADPAL Collab.) (ALEPH Collab.) (ALEPH Collab.) (DELPHI Collab.) (OPAL Collab.)
ACTON ADEVA ADRIANI BUSKULIC BUSKULIC BUSKULIC ABE ADEVA	92C 92C 92 92B 92F 92G 91G 91C	PL B276 379 PL B288 395 PL B288 412 PL B284 177 PL B295 174 PL B295 396 PRL 67 3351 PL B261 177	D.P. Acton et al. B. Adeva et al. O. Adriani et al. D. Buskulic et al. D. Buskulic et al. D. Buskulic et al. F. Abe et al. B. Adeva et al.	(OPAL Collab.) (L3 Collab.) (L3 Collab.) (ALEPH Collab.) (ALEPH Collab.) (ALEPH Collab.) (CDF Collab.) (L3 Collab.)
ADEVA ALBAJAR ALBAJAR ALEXANDER DECAMP DECAMP ADEVA BEHREND HAGEMANN	91H 91C 91D 91G 91 91C 90P 90D 90	PL B270 111 PL B262 163 PL B262 171 PL B266 485 PL B258 236 PL B257 492 PL B252 703 ZPHY C47 333 ZPHY C48 401	B. Adeva et al. C. Albajar et al. C. Albajar et al. G. Alexander et al. D. Decamp et al. D. Decamp et al. B. Adeva et al. H.J. Behrend et al. J. Hagemann et al.	(L3 Collab.) (UA1 Collab.) (UA1 Collab.) (UAL Collab.) (OPAL Collab.) (ALEPH Collab.) (ALEPH Collab.) (L3 Collab.) (CELLO Collab.) (JADE Collab.)
LYONS WEIR BRAUNSCH ONG BAND KLEM ONG ALBAJAR ASH	90 90 89B 89 88 88 88 87C 87	PR D41 982 PL B240 289 ZPHY C44 1 PRL 62 1236 PL B200 221 PR D37 41 PRL 60 2587 PL B186 247 PRL 58 640	L. Lyons, A.J. Martin, D.H. Saxon A.J. Weir et al. R. Braunschweig et al. R.A. Ong et al. H.R. Band et al. D.E. Klem et al. R.A. Ong et al. C. Albajar et al. W.W. Ash et al.	(OXF, BRIS+) (Mark II Collab.) (TASSO Collab.) (Mark II Collab.) (MAC Collab.) (DELCO Collab.) (Mark II Collab.) (UA1 Collab.) (MAC Collab.)
BARTEL BROM PAL AIHARA BARTEL SCHAAD	87 87 86 85 85J 85	ZPHY C33 339 PL B195 301 PR D33 2708 ZPHY C27 39 PL 163B 277 PL 160B 188	W. W. Ash et al. W. Bartel et al. J.M. Brom et al. T. Pal et al. H. Aihara et al. W. Bartel et al. T. Schaad et al.	(JADE Collab.) (JADE Collab.) (HRS Collab.) (DELCO Collab.) (TPC Collab.) (JADE Collab.) (Mark II Collab.)

ALTHOFF	84G	ZPHY C22 219	M. Althoff et al.	(TASSO Collab.)
ALTHOFF	84J	PL 146B 443	M. Althoff et al.	(TASSO Collab.)
KOOP	84	PRL 52 970	D.E. Koop et al.	(DELCO Collab.)
ADEVA	83	PRL 50 799	B. Adeva et al.	(Mark-J Collab.)
ADEVA	83B	PRL 51 443	B. Adeva <i>et al.</i>	(Mark-J Collab.)
BARTEL	83B	PL 132B 241	W. Bartel et al.	(JADE Collab.)
FERNANDEZ	83D	PRL 50 2054	E. Fernandez et al.	(MAC Collab.)
MATTEUZZI	83	PL 129B 141	C. Matteuzzi <i>et al.</i>	(Mark II Collab.)
NELSON	83	PRL 50 1542	M.E. Nelson et al.	(Mark II Collab.)