QUARKS

The u-, d-, and s-quark masses are the $\overline{\mathrm{MS}}$ masses at the scale μ $=2 \mathrm{GeV}$. The c - and b-quark masses are the $\overline{\mathrm{MS}}$ masses renormalized at the $\overline{\mathrm{MS}}$ mass, i.e. $\bar{m}=\bar{m}(\mu=\bar{m})$. The t-quark mass is extracted from event kinematics (see the review "The Top Quark").
u $I\left(J^{P}\right)=\frac{1}{2}\left(\frac{1}{2}+\right)$

$$
\begin{array}{ll}
m_{u}=2.16 \pm 0.07 \mathrm{MeV}, \mathrm{CL}=90 \% & \text { Charge }=\frac{2}{3} \text { e } \quad I_{z}=+\frac{1}{2} \\
m_{u} / m_{d}=0.462 \pm 0.020, \mathrm{CL}=90 \%
\end{array}
$$

$\boldsymbol{d} \quad I\left(J^{P}\right)=\frac{1}{2}\left(\frac{1}{2}^{+}\right)$

$$
\begin{aligned}
& m_{d}=4.70 \pm 0.07 \mathrm{MeV}, \mathrm{CL}=90 \% \quad \text { Charge }=-\frac{1}{3} e \quad I_{z}=-\frac{1}{2} \\
& m_{s} / m_{d}=17-22 \\
& \bar{m}=\left(m_{u}+m_{d}\right) / 2=3.49 \pm 0.07 \mathrm{MeV}, \mathrm{CL}=90 \%
\end{aligned}
$$

s

$$
I\left(J^{P}\right)=0\left(\frac{1}{2}^{+}\right)
$$

$$
\begin{aligned}
& m_{s}=93.5 \pm 0.8 \mathrm{MeV}, \mathrm{CL}=90 \% \quad \text { Charge }=-\frac{1}{3} \text { e Strangeness }=-1 \\
& m_{s} /\left(\left(m_{u}+m_{d}\right) / 2\right)=27.33_{-0.14}^{+0.18}, \mathrm{CL}=90 \%
\end{aligned}
$$

c

$$
I\left(J^{P}\right)=0\left(\frac{1}{2}^{+}\right)
$$

$$
\begin{aligned}
& m_{c}=1.2730 \pm 0.0046 \mathrm{GeV}, \mathrm{CL}=90 \% \quad \text { Charge }=\frac{2}{3} e \quad \text { Charm }=+1 \\
& m_{b}-m_{c}=3.45 \pm 0.05 \mathrm{GeV}
\end{aligned}
$$

$\boldsymbol{b} \quad I\left(J^{P}\right)=0\left(\frac{1}{2}^{+}\right)$

$$
m_{b}=4.183 \pm 0.007 \mathrm{GeV}, \mathrm{CL}=90 \% \quad \text { Charge }=-\frac{1}{3} e \quad \text { Bottom }=-1
$$

$$
I\left(J^{P}\right)=0\left(\frac{1}{2}^{+}\right)
$$

$$
\text { Charge }=\frac{2}{3} e \quad \text { Top }=+1
$$

Mass (direct measurements) $m=172.57 \pm 0.29 \mathrm{GeV}[a, b] \quad(\mathrm{S}=1.5)$
Mass (from cross-section measurements) $m=162.5_{-1.5}^{+2.1} \mathrm{GeV}$ [a]
Mass (Pole from cross-section measurements) $m=172.4 \pm 0.7 \mathrm{GeV}$
$m_{t}-m_{\bar{t}}=-0.15 \pm 0.20 \mathrm{GeV} \quad(\mathrm{S}=1.1)$
Full width $\Gamma=1.42_{-0.15}^{+0.19} \mathrm{GeV} \quad(S=1.4)$
$\Gamma(W b) / \Gamma(W q(q=b, s, d))=0.957 \pm 0.034 \quad(S=1.5)$

t-quark EW Couplings

$$
\begin{aligned}
& F_{0}=0.693 \pm 0.013 \\
& F_{-}=0.315 \pm 0.010 \\
& F_{+}=-0.005 \pm 0.007 \\
& F_{V+A}<0.29, \mathrm{CL}=95 \%
\end{aligned}
$$

\boldsymbol{t} DECAY MODES	Fraction $\left(\Gamma_{i} / \Gamma\right)$	Confidence levelp (MeV / c)
$W q(q=b, s, d)$		-
$W b$	$(11.10 \pm 0.30) \%$	-
$e \nu_{e} b$	$(11.40 \pm 0.20) \%$	-
$\mu \nu_{\mu} b$	$(10.7 \pm 0.5) \%$	-
$\tau \nu_{\tau} b$	$(66.5 \pm 1.4) \%$	-
$q \bar{q} b$	$[c]<4.5$	$\times 10^{-5}$
$\gamma q(q=u, c)$		95%

$\Delta T \equiv 1$ weak neutral current ($T 1$) modes

$Z q(q=u, c)$	$T 1$	$[d]<1.2$	$\times 10^{-4}$	95%	-
$H u$	$T 1$	<1.9	$\times 10^{-4}$	95%	-
$H c$	$T 1$	<4.3	$\times 10^{-4}$	95%	-
$\ell^{+} \bar{q} \bar{q}^{\prime}\left(q=d, s, b ; q^{\prime}=u, c\right)$	$T 1$	<1.6	$\times 10^{-3}$	95%	-

Lepton Family number (LF) violating modes

$e^{ \pm} \mu^{\mp} c$	$L F$	<8.9	$\times 10^{-7}$
$e^{ \pm} \mu^{\mp} u$	$L F$	<7	$\times 10^{-8}$

b^{\prime} (4 ${ }^{\text {th }}$ Generation) Quark, Searches for

$$
\begin{array}{ll}
\text { Mass } m>190 \mathrm{GeV}, \mathrm{CL}=95 \% & \left(p \bar{p} \text {, quasi-stable } b^{\prime}\right) \\
\text { Mass } m>1390 \mathrm{GeV}, \mathrm{CL}=95 \% & \left(\mathrm{~B}\left(b^{\prime} \rightarrow Z b\right)=1\right) \\
\text { Mass } m>1350 \mathrm{GeV}, \mathrm{CL}=95 \% & \left(\mathrm{~B}\left(b^{\prime} \rightarrow W t\right)=1\right) \\
\text { Mass } m>1570 \mathrm{GeV}, \mathrm{CL}=95 \% & \left(\mathrm{~B}\left(b^{\prime} \rightarrow H b\right)=1\right) \\
\text { Mass } m>46.0 \mathrm{GeV}, \mathrm{CL}=95 \% & \left(e^{+} e^{-}, \text {all decays }\right)
\end{array}
$$

$t^{\prime}\left(4^{\text {th }}\right.$ Generation) Quark, Searches for

$$
\begin{array}{ll}
m\left(t^{\prime}(2 / 3)\right)>1280 \mathrm{GeV}, \mathrm{CL}=95 \% & \left(\mathrm{~B}\left(t^{\prime} \rightarrow Z t\right)=1\right) \\
m\left(t^{\prime}(2 / 3)\right)>1295 \mathrm{GeV}, \mathrm{CL}=95 \% & \left(\mathrm{~B}\left(t^{\prime} \rightarrow W b\right)=1\right) \\
m\left(t^{\prime}(2 / 3)\right)>1310 \mathrm{GeV}, \mathrm{CL}=95 \% & \left(\text { singlet } t^{\prime}\right) \\
m\left(t^{\prime}(2 / 3)\right)>1350 \mathrm{GeV}, \mathrm{CL}=95 \% & \left(t^{\prime}\right. \text { in a weak isospin dou- } \\
\left.\quad \text { blet }\left(t^{\prime}, b^{\prime}\right)\right) & \\
m\left(t^{\prime}(5 / 3)\right)>1.460 \times 10^{3} \mathrm{GeV}, \mathrm{CL}=95 \% & \left(t^{\prime}(5 / 3) \rightarrow t W^{+}\right)
\end{array}
$$

Free Quark Searches

All searches since 1977 have had negative results.

NOTES

[a] A discussion of the definition of the top quark mass in these measurements can be found in the review "The Top Quark."
[b] Based on published top mass measurements using data from Tevatron Run-I and Run-II and LHC at $\sqrt{s}=7 \mathrm{TeV}$. Including the most recent unpublished results from Tevatron Run-II, the Tevatron Electroweak Working Group reports a top mass of $173.2 \pm 0.9 \mathrm{GeV}$. See the note "The Top Quark' in the Quark Particle Listings of this Review.
[c] This limit is for $\Gamma(t \rightarrow \gamma q) / \Gamma(t \rightarrow W b)$.
[d] This limit is for $\Gamma(t \rightarrow Z q) / \Gamma(t \rightarrow W b)$.

