QUARKS

The u-, d-, and s-quark masses are the $\overline{\rm MS}$ masses at the scale μ = 2 GeV. The c- and b-quark masses are the $\overline{\rm MS}$ masses renormalized at the $\overline{\rm MS}$ mass, i.e. $\overline{m}=\overline{m}(\mu=\overline{m})$. The t-quark mass is extracted from event kinematics (see the review "The Top Quark").

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

 $m_u=2.16\pm0.07$ MeV, CL =90% Charge $=\frac{2}{3}$ e $I_z=+\frac{1}{2}$ $m_u/m_d=0.462\pm0.020$, CL =90%

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

 $m_d=4.70\pm0.07$ MeV, CL =90% Charge $=-\frac{1}{3}$ e $I_z=-\frac{1}{2}$ $m_s/m_d=17$ –22 $\overline{m}=(m_u+m_d)/2=3.49\pm0.07$ MeV, CL =90%

$$I(J^P) = 0(\frac{1}{2}^+)$$

 $m_s = 93.5 \pm 0.8$ MeV, CL = 90% Charge = $-\frac{1}{3}$ e Strangeness = -1 m_s / $((m_u+m_d)/2)=27.33^{+0.18}_{-0.14}$, CL = 90%

$$I(J^P)=0(\tfrac{1}{2}^+)$$

 $m_c=1.2730\pm0.0046$ GeV, CL =90% Charge $=\frac{2}{3}$ e Charm =+1 $m_b-m_c=3.45\pm0.05$ GeV

$$I(J^P)=0(\tfrac{1}{2}^+)$$

 $m_b=4.183\pm 0.007$ GeV, CL =90% Charge $=-\frac{1}{3}$ e Bottom =-1

Created: 5/31/2024 10:12

$$I(J^P)=0(\tfrac{1}{2}^+)$$

$$\mathsf{Charge} = \tfrac{2}{3} \ \mathsf{e} \qquad \quad \mathsf{Top} = +1$$

Mass (direct measurements) $m=172.57\pm0.29~{\rm GeV}^{\;[a,b]}~({\rm S}=1.5)$ Mass (from cross-section measurements) $m=162.5^{+2.1}_{-1.5}~{\rm GeV}^{\;[a]}$ Mass (Pole from cross-section measurements) $m=172.4\pm0.7~{\rm GeV}$ $m_t-m_{\overline{t}}=-0.15\pm0.20~{\rm GeV}~({\rm S}=1.1)$ Full width $\Gamma=1.42^{+0.19}_{-0.15}~{\rm GeV}~({\rm S}=1.4)$ $\Gamma(W\,b)/\Gamma(W\,q\,(q=b,\,s,\,d))=0.957\pm0.034~({\rm S}=1.5)$

t-quark EW Couplings

$$\begin{split} F_0 &= 0.693 \pm 0.013 \\ F_- &= 0.315 \pm 0.010 \\ F_+ &= -0.005 \pm 0.007 \\ F_{V+A} &< 0.29, \, \text{CL} = 95\% \end{split}$$

t DECAY MODES		Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
Wq(q = b, s, d)				_
Wb				_
$e u_e b$		$(11.10\pm0.30)\%$	0	_
μu_{μ} b		$(11.40\pm0.20)\%$	0	_
$ au u_{ au}$ b		$(10.7\ \pm 0.5\)\ \%$, 0	_
q q b	(66.5 ±1.4) % —			
$\gamma q(q=u,c)$		[c] < 4.5 ×	10 ⁻⁵ 95%	_
$\Delta T = 1$ weak neutral current (T1) modes				
Zq(q=u,c)	T1	$[d] < 1.2 \times$	10 ⁻⁴ 95%	_
Hu	T1	< 1.9 ×	10^{-4} 95%	_
Нс	T1	< 4.3 ×	10 ⁻⁴ 95%	_
$\ell^+ \overline{q} \overline{q}'(q=d,s,b; q'=u,c)$	T1	< 1.6 ×	10 ⁻³ 95%	_
Lepton Family number (LF) violating modes				
$e^{\pm}\mu^{\mp}c$	LF	< 8.9 ×	10^{-7}	_
$e^{\pm}\mu^{\mp}u$	LF	< 7 ×	10 ⁻⁸	_

Created: 5/31/2024 10:12

b' (4th Generation) Quark, Searches for

```
Mass m > 190 GeV, CL = 95% (p \overline{p}, \text{ quasi-stable } b')
Mass m > 1390 GeV, CL = 95% (B(b' \to Z b) = 1)
Mass m > 1350 GeV, CL = 95% (B(b' \to W t) = 1)
Mass m > 1570 GeV, CL = 95% (B(b' \to H b) = 1)
Mass m > 46.0 GeV, CL = 95% (e^+ e^-, \text{ all decays})
```

t' (4th Generation) Quark, Searches for

```
m(t'(2/3)) > 1280 GeV, CL = 95% (B(t' \rightarrow Zt) = 1) m(t'(2/3)) > 1295 GeV, CL = 95% (B(t' \rightarrow Wb) = 1) m(t'(2/3)) > 1310 GeV, CL = 95% (singlet t') m(t'(2/3)) > 1350 GeV, CL = 95% (t' in a weak isospin doublet (t',b')) m(t'(5/3)) > 1.460 \times 10^3 GeV, CL = 95% (t'(5/3) \rightarrow tW^+)
```

Free Quark Searches

All searches since 1977 have had negative results.

NOTES

- [a] A discussion of the definition of the top quark mass in these measurements can be found in the review "The Top Quark."
- [b] Based on published top mass measurements using data from Tevatron Run-I and Run-II and LHC at $\sqrt{s}=7$ TeV. Including the most recent unpublished results from Tevatron Run-II, the Tevatron Electroweak Working Group reports a top mass of 173.2 ± 0.9 GeV. See the note "The Top Quark' in the Quark Particle Listings of this *Review*.
- [c] This limit is for $\Gamma(t \to \gamma q)/\Gamma(t \to W b)$.
- [d] This limit is for $\Gamma(t \to Zq)/\Gamma(t \to Wb)$.

Created: 5/31/2024 10:12