р

Mass $m = 938.27208816 \pm 0.0000029$ MeV ^[a] $|m_p - m_{\overline{p}}|/m_p < 7 \times 10^{-10}$, CL = 90% ^[b] $|\frac{q_{\overline{p}}}{m_{\overline{p}}}|/(\frac{q_p}{m_p}) = 1.0000000003 \pm 0.00000000016$ $|q_p + q_{\overline{p}}|/e < 7 \times 10^{-10}$, CL = 90% ^[b] $|q_p + q_e|/e < 1 \times 10^{-21}$ ^[c] Magnetic moment $\mu = 2.7928473446 \pm 0.0000000008 \mu_N$ $(\mu_p + \mu_{\overline{p}}) / \mu_p = (0.002 \pm 0.004) \times 10^{-6}$ Electric dipole moment $d < 0.021 \times 10^{-23}$ e cm Electric polarizability $\alpha = (11.2 \pm 0.4) \times 10^{-4}$ fm³ Magnetic polarizability $\beta = (2.5 \pm 0.4) \times 10^{-4}$ fm³ (S = 1.2) Charge radius, μp Lamb shift = 0.84087 \pm 0.00039 fm ^[d] Charge radius = 0.8409 \pm 0.0004 fm ^[d] Magnetic radius = 0.851 \pm 0.026 fm ^[e] Mean life $\tau > 9 \times 10^{29}$ years, CL = 90% ($p \rightarrow$ invisible mode)

See the "Note on Nucleon Decay" in our 1994 edition (Phys. Rev. **D50**, 1173) for a short review.

The "partial mean life" limits tabulated here are the limits on τ/B_i , where τ is the total mean life and B_i is the branching fraction for the mode in question. For *N* decays, *p* and *n* indicate proton and neutron partial lifetimes.

	Partial me	an life		р
p DECAY MODES	(10 ³⁰ year	rs) Conf	idence level	(MeV/ <i>c</i>)
	Antilepton + me	son		
$N \rightarrow e^+ \pi$	> 5300 (n), $> 24000 (p)$	90%	459
$N \rightarrow \mu^+ \pi$	> 3500 (n), $> 16000 (p)$	90%	453
$N \rightarrow \nu \pi$	> 1100 (n), > 390 (<i>p</i>)	90%	459
$ ho ightarrow ~e^+ \eta$	> 10000		90%	309
$ ho ightarrow \ \mu^+ \eta$	> 4700		90%	297
$n \rightarrow \nu \eta$	> 158		90%	310
$N \rightarrow e^+ ho$	> 217 (<i>n</i>)	, > 720 (p)	90%	149
$N \rightarrow \mu^+ \rho$	> 228 (n)	, > 570 (<i>p</i>)	90%	113
$N \rightarrow \nu \rho$	> 19 (<i>n</i>),	> 162 (p)	90%	149
https://pdg.lbl.gov	Page 1	Created:	5/31/2024	10:12

p ightarrow	$e^+\omega$	> 1600	90%	143
p ightarrow	$\mu^+\omega$	> 2800	90%	105
$n \rightarrow$	$ u \omega$	> 108	90%	144
$N \rightarrow$	e^+K	> 17 (n), > 1000 (p)	90%	339
$N \rightarrow$	μ^+ K	>26~(n), >4500~(p)	90%	329
$N \rightarrow$	νΚ	$> 86 \ (n), > 5900 \ (p)$	90%	339
n –	$\rightarrow \nu K_S^0$	> 260	90%	338
p ightarrow	$e^+ K^* (892)^0$	> 84	90%	45
$N \rightarrow$	ν K*(892)	>78 (n), >51 (p)	90%	45
	An	tilepton + mesons		
p ightarrow	$e^+\pi^+\pi^-$	> 82	90%	448
$p \rightarrow$	$e^+ \pi^0 \pi^0$	> 147	90%	449
$n \rightarrow$	$e^+\pi^-\pi^0$	> 52	90%	449
p ightarrow	$\mu^+\pi^+\pi^-$	> 133	90%	425
p ightarrow	$\mu^+ \pi^0 \pi^0$	> 101	90%	427
n ightarrow	$\mu^+ \pi^- \pi^0$	> 74	90%	427
n ightarrow	$e^+ K^0 \pi^-$	> 18	90%	319
	I	_epton + meson		
n ightarrow	$e^{-}\pi^{+}$	> 65	90%	459
$n \rightarrow$	$\mu^-\pi^+$	> 49	90%	453
$n \rightarrow$	$e^- \rho^+$	> 62	90%	150
$n \rightarrow$	$\mu^- \rho^+$	> 7	90%	115
n ightarrow	$e^{-}K^{+}$	> 32	90%	340
n ightarrow	μ^- K $^+$	> 57	90%	330
	L	epton + mesons		
p ightarrow	$e^{-}\pi^{+}\pi^{+}$	> 30	90%	448
$n \rightarrow$	$e^{-}\pi^{+}\pi^{0}$	> 29	90%	449
p ightarrow	$\mu^-\pi^+\pi^+$	> 17	90%	425
$n \rightarrow$	$\mu^- \pi^+ \pi^0$	> 34	90%	427
p ightarrow	$e^{-}\pi^{+}K^{+}$	> 75	90%	320
ho ightarrow	$\mu^- \pi^+ K^+$	> 245	90%	279
	Anti	ilepton + photon(s)		
p ightarrow	$e^+\gamma$	> 670	90%	469
p ightarrow	$\mu^+\gamma$	> 478	90%	463
$n \rightarrow$	$ u\gamma$	> 550	90%	470
p ightarrow	$e^+ \gamma \gamma$	> 100	90%	469
n ightarrow	$ u \gamma \gamma$	> 219	90%	470
	Antile	oton + single massless		
p ightarrow	e ⁺ X	> 790	90%	_
ho ightarrow	$\mu^+ X$	> 410	90%	-

		Three (or more) leptons		
p ightarrow	$e^+ e^+ e^-$	> 34000	90%	469
p ightarrow	$e^+ \mu^+ \mu^-$	> 9200	90%	457
p ightarrow	$e^+ \nu \nu$	> 170	90%	469
$n \rightarrow$	$e^+ e^- \nu$	> 257	90%	470
$n \rightarrow$	$\mu^+ e^- u$	> 83	90%	464
$n \rightarrow$	$\mu^+ \mu^- \nu$	> 79	90%	458
p ightarrow	$\mu^+e^+e^-$	> 23000	90%	463
p ightarrow	$\mu^- e^+ e^+$	> 19000	90%	463
p ightarrow	$\mu^+ \mu^+ \mu^-$	> 10000	90%	439
p ightarrow	$\mu^+ \nu \nu$	> 220	90%	463
p ightarrow	$e^-\mu^+\mu^+$	> 11000	90%	457
$n \rightarrow$	3ν	$> 5 \times 10^{-4}$	90%	470
		Inclusive modes		
$N \rightarrow$	e ⁺ anything	> 0.6 (n, p)	90%	_

$N ightarrow \mu^+$ anything $N ightarrow e^+ \pi^0$ anything > 12 (n, p)> 0.6 (n, p)90% > 0.6 (n, p)90%

$\Delta B = 2$ dinucleon modes

The following are lifetime limits per iron nucleus.

$p p \rightarrow \pi^+ \pi^+$	> 72.2	90%	—
$pn \rightarrow \pi^+ \pi^0$	> 170	90%	_
$nn \rightarrow \pi^+\pi^-$	> 0.7	90%	_
$nn \rightarrow \pi^0 \pi^0$	> 404	90%	_
$pp \rightarrow K^+ K^+$	> 170	90%	_
$pp \rightarrow e^+ e^+$	> 5.8	90%	_
$pp \rightarrow e^+ \mu^+$	> 3.6	90%	_
$p p \rightarrow \mu^+ \mu^+$	> 1.7	90%	—
$pn \rightarrow e^+ \overline{\nu}$	> 260	90%	_
$pn \rightarrow \mu^+ \overline{\nu}$	> 200	90%	_
$pn \rightarrow \tau^+ \overline{ u}_{\tau}$	> 29	90%	_
$nn \rightarrow$ invisible	> 1.4	90%	_
$nn ightarrow u_{m{e}} \overline{ u}_{m{e}}$	> 1.4	90%	_
$nn ightarrow u_{\mu} \overline{ u}_{\mu}$	> 1.4	90%	—
$pn \rightarrow \text{ invisible}$	> 0.06	90%	—
$p p ightarrow ext{invisible}$	> 0.11	90%	_

p DECAY MODES

p DECAY MODES	Partial mean life (years)	Confidence level	р (MeV/ <i>c</i>)
$ \frac{\overline{p} \to e^- \gamma}{\overline{p} \to \mu^- \gamma} \\ \frac{\overline{p} \to e^- \pi^0}{\overline{p} \to e^- \pi^0} $	$> 7 \times 10^5$	90%	469
	$> 5 \times 10^4$	90%	463
	$> 4 \times 10^5$	90%	459

https://pdg.lbl.gov

_

_

$\overline{p} ightarrow$	$\mu^- \pi^0$	$> 5 \times 10^4$	90%	453
$\overline{p} ightarrow$	$e^-\eta$	$> 2 \times 10^4$	90%	309
$\overline{p} ightarrow$	$\mu^-\eta$	$> 8 \times 10^3$	90%	297
$\overline{p} ightarrow$	$e^-K_S^0$	> 900	90%	337
$\overline{p} ightarrow$	$\mu^- K_S^0$	$> 4 imes 10^3$	90%	326
$\overline{p} ightarrow$	$e^{-}K_{L}^{0}$	$> 9 \times 10^3$	90%	337
$\overline{p} ightarrow$	$\mu^- K_L^0$	$> 7 \times 10^3$	90%	326
$\overline{p} ightarrow$	$e^-\gamma\gamma$	$> 2 \times 10^4$	90%	469
$\overline{p} ightarrow$	$\mu^-\gamma\gamma$	$> 2 \times 10^4$	90%	463
$\overline{p} ightarrow$	$e^-\omega$	> 200	90%	143

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

Mass $m = 1.0086649160 \pm 0.000000005$ u Mass $m = 939.5654205 \pm 0.0000005$ MeV ^[a] $(m_n - m_{\overline{n}})/m_n = (9 \pm 5) \times 10^{-5}$ $m_n - m_p = 1.2933324 \pm 0.0000005$ MeV = 0.00138844919(45) uMean life $\tau = 878.4 \pm 0.5$ s (S = 1.8) $c au = 2.6335 imes 10^8$ km Magnetic moment $\mu = -1.9130427 \pm 0.0000005 \ \mu_N$ Electric dipole moment $d < 0.18 \times 10^{-25} e \,\mathrm{cm}, \,\mathrm{CL} = 90\%$ Mean-square charge radius $\langle r_n^2 \rangle = -0.1155 \pm 0.0017 \text{ fm}^2$ Magnetic radius $\sqrt{\langle r_M^2 \rangle} = 0.864^{+0.009}_{-0.008}$ fm Electric polarizability $\alpha = (11.8 \pm 1.1) \times 10^{-4} \text{ fm}^3$ Magnetic polarizability $\beta = (3.7 \pm 1.2) \times 10^{-4} \text{ fm}^3$ Charge $q = (-0.2 \pm 0.8) \times 10^{-21} e$ Mean $n\overline{n}$ -oscillation time > 8.6×10^7 s, CL = 90% (free *n*) Mean $n\overline{n}$ -oscillation time > 4.7×10^8 s, CL = 90% ^[f] (bound n) Mean nn'-oscillation time > 448 s, CL = 90% ^[g]

 $pe^-\nu_e$ decay parameters ^[h]

$$\begin{split} \lambda &\equiv g_A \ / \ g_V = -1.2754 \pm 0.0013 \quad (S = 2.7) \\ A &= -0.11958 \pm 0.00021 \quad (S = 1.2) \\ B &= 0.9807 \pm 0.0030 \\ C &= -0.2377 \pm 0.0026 \\ a &= -0.1049 \pm 0.0013 \quad (S = 1.8) \\ \phi_{AV} &= (180.017 \pm 0.026)^{\circ} \ ^{[i]} \\ D &= (-1.2 \pm 2.0) \times 10^{-4} \ ^{[j]} \\ R &= 0.004 \pm 0.013 \ ^{[j]} \\ Fierz interference term \ b &= 0.017 \pm 0.020 \end{split}$$

https://pdg.lbl.gov

n

n DECAY MODES	Frac	ction (Γ _i /Γ	-) Cor	nfidence level	р (MeV/c)
pe ⁻ $\overline{\nu}_e$	1	100	%		1
$pe^-\overline{\nu}_e\gamma$	[k] (9.2±0.7)	$) \times 10^{-3}$		1
hydrogen-atom $\overline{\nu}_e$	<	2.7	imes 10 ⁻³	95%	1.19
Charge co	onservation (Q) violat	ing mode	e	
$p\nu_e\overline{\nu}_e$	ହ <	8	× 10 ⁻²⁷	68%	1

N(1440) 1/2⁺

 $I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$

 $\begin{array}{l} \mbox{Re(pole position)} = 1360 \mbox{ to } 1380 \ (\approx 1370) \mbox{ MeV} \\ -2\mbox{Im(pole position)} = 180 \mbox{ to } 205 \ (\approx 190) \mbox{ MeV} \\ \mbox{Breit-Wigner mass} = 1410 \mbox{ to } 1470 \ (\approx 1440) \mbox{ MeV} \\ \mbox{Breit-Wigner full width} = 250 \mbox{ to } 450 \ (\approx 350) \mbox{ MeV} \end{array}$

N(1440) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)	
Νπ	55-75 %	398	
$N\eta$	<1 %	†	
$N\pi\pi$	17–50 %	347	
$arDelta(1232)\pi$, $\mathit{P} ext{-wave}$	6–27 %	147	
Nσ	11–23 %	-	
$p\gamma$, helicity= $1/2$	0.035-0.048 %	414	
$n\gamma$, helicity=1/2	0.02–0.04 %	413	

N(1520) 3/2⁻

 $I(J^P) = \tfrac{1}{2}(\tfrac{3}{2}^-)$

Re(pole position) = 1505 to 1515 (\approx 1510) MeV -2Im(pole position) = 105 to 120 (\approx 110) MeV Breit-Wigner mass = 1510 to 1520 (\approx 1515) MeV Breit-Wigner full width = 100 to 120 (\approx 110) MeV

N(1520) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
Νπ	55-65 %	453
$N\eta$	0.07-0.09 %	142
$N\pi\pi$	25–35 %	410
$\Delta(1232)\pi$	22–34 %	225
$arDelta(1232)\pi$, S -wave	15–23 %	225
$arDelta(1232)\pi$, $\mathit{D} ext{-wave}$	7–11 %	225
N ho	10–16 %	†
N ρ , S=3/2 , S-wave	10–16 %	†

0.2–0.4 %	†
<10 %	_
0.31–0.52 %	467
0.01-0.02 %	467
0.30–0.50 %	467
0.30–0.53 %	466
0.04–0.10 %	466
0.25–0.45 %	466
	0.2-0.4 % <10 % 0.31-0.52 % 0.01-0.02 % 0.30-0.50 % 0.30-0.53 % 0.04-0.10 % 0.25-0.45 %

N(1535) 1/2⁻

 $I(J^P) = \tfrac{1}{2}(\tfrac{1}{2}^-)$

 $\begin{array}{l} \mbox{Re(pole position)} = 1500 \mbox{ to } 1520 \ (\approx 1510) \mbox{ MeV} \\ -2\mbox{Im(pole position)} = 80 \mbox{ to } 130 \ (\approx 110) \mbox{ MeV} \\ \mbox{Breit-Wigner mass} = 1515 \mbox{ to } 1545 \ (\approx 1530) \mbox{ MeV} \\ \mbox{Breit-Wigner full width} = 125 \mbox{ to } 175 \ (\approx 150) \mbox{ MeV} \end{array}$

N(1535) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
Νπ	32–52 %	464
$N\eta$	30–55 %	176
$N\pi\pi$	4-31 %	422
$arDelta(1232)\pi$, D -wave	1-4 %	240
N ho	2–17 %	†
$N ho$, $S\!\!=\!\!1/2$, $S\!\!-\!\!\mathrm{wave}$	2–16 %	†
N $ ho$, S=3/2 , D-wave	<1~%	†
$N\sigma$	2–10 %	-
$N(1440)\pi$	5–12 %	†
$p\gamma$, helicity ${=}1/2$	0.15-0.30 %	477
$n\gamma$, helicity=1/2	0.01-0.25 %	477

N(1650) 1/2⁻

 $I(J^P) = \tfrac{1}{2}(\tfrac{1}{2}^-)$

 $\begin{array}{l} \mbox{Re(pole position)} = 1650 \mbox{ to } 1680 \ (\approx 1665) \mbox{ MeV} \\ -2\mbox{Im}(pole position) = 100 \mbox{ to } 170 \ (\approx 135) \mbox{ MeV} \\ \mbox{Breit-Wigner mass} = 1635 \mbox{ to } 1665 \ (\approx 1650) \mbox{ MeV} \\ \mbox{Breit-Wigner full width} = 100 \mbox{ to } 150 \ (\approx 125) \mbox{ MeV} \end{array}$

N(1650) DECAY MODES	Fraction (Γ_i /	Γ) <i>p</i> (MeV/ <i>c</i>)
Νπ	50–70 %	547
$N\eta$	15-35 %	348
ΛΚ	5–15 %	169
$N\pi\pi$	20–58 %	514
$arDelta(1232)\pi$, D -wave	6–18 %	345
https://pdg.lbl.gov	Page 6	Created: 5/31/2024 10:12

N ho	12–22 %	†
N $ ho$, S=1/2, S-wave	<4 %	†
N ho, S=3/2, D-wave	12–18 %	†
$N\sigma$	2–18 %	-
$N(1440)\pi$	6–26 %	150
$p\gamma$, helicity ${=}1/2$	0.04-0.20 %	558
$n\gamma$, helicity=1/2	0.003–0.17 %	557

N(1675) 5/2⁻

$$I(J^P) = \frac{1}{2}(\frac{5}{2})$$

 $\begin{array}{l} \mbox{Re(pole position)} = 1650 \mbox{ to } 1660 \ (\approx 1655) \mbox{ MeV} \\ -2\mbox{Im(pole position)} = 120 \mbox{ to } 150 \ (\approx 135) \mbox{ MeV} \\ \mbox{Breit-Wigner mass} = 1665 \mbox{ to } 1680 \ (\approx 1675) \mbox{ MeV} \\ \mbox{Breit-Wigner full width} = 130 \mbox{ to } 160 \ (\approx 145) \mbox{ MeV} \end{array}$

N(1675) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
Νπ	38–42 %	564
Nη	< 1 %	376
ΛΚ	<0.04 %	216
$N\pi\pi$	25–45 %	532
$arDelta(1232)\pi$, D -wave	23–37 %	366
$N \rho$	0.1-0.9 %	†
N $ ho$, S $=1/2$	<0.2 %	†
N $ ho$, S=3/2 , D-wave	0.1-0.7 %	†
Nσ	3–7 %	-
$p\gamma$	0-0.02 %	575
$p\gamma$, helicity ${=}1/2$	0-0.01 %	575
$p\gamma$, helicity= $3/2$	0-0.01 %	575
$n\gamma$	0-0.15 %	574
$n\gamma$, helicity ${=}1/2$	0-0.05 %	574
$n\gamma$, helicity=3/2	0-0.10 %	574

N(1680) 5/2⁺

$$I(J^P) = \frac{1}{2}(\frac{5}{2}^+)$$

 $\begin{array}{l} \mbox{Re(pole position)} = 1660 \mbox{ to } 1680 \ (\approx 1670) \mbox{ MeV} \\ -2\mbox{Im(pole position)} = 110 \mbox{ to } 135 \ (\approx 120) \mbox{ MeV} \\ \mbox{Breit-Wigner mass} = 1680 \mbox{ to } 1690 \ (\approx 1685) \mbox{ MeV} \\ \mbox{Breit-Wigner full width} = 115 \mbox{ to } 130 \ (\approx 120) \mbox{ MeV} \end{array}$

N(1680) DECAY MODES	Fraction (Γ_i /	Γ) <i>p</i> (MeV/ <i>c</i>)
Νπ	60–70 %	571
https://pdg.lbl.gov	Page 7	Created: 5/31/2024 10:12

Nη	<1 %	386
$N\pi\pi$	28–53 %	539
$\Delta(1232)\pi$	11–23 %	374
$arDelta(1232)\pi$, <i>P</i> -wave	4–10 %	374
$arDelta(1232)\pi$, <i>F</i> -wave	1–13 %	374
Nρ	8–11 %	†
$N ho$, $S\!\!=\!\!3/2$, $P\!\!-\!\mathrm{wave}$	6-8 %	†
$N ho$, $S\!\!=\!\!3/2$, $F\!\!-\!\mathrm{wave}$	2–3 %	†
Nσ	9–19 %	-
$p\gamma$	0.21-0.32 %	581
$p\gamma$, helicity ${=}1/2$	0.001–0.011 %	581
$p\gamma$, helicity $=3/2$	0.20-0.32 %	581
$n\gamma$	0.021-0.046 %	581
$n\gamma$, helicity ${=}1/2$	0.004–0.029 %	581
$n\gamma$, helicity=3/2	0.01-0.024 %	581

N(1700) 3/2⁻

 $I(J^P) = \tfrac{1}{2}(\tfrac{3}{2}^-)$

 $\begin{array}{l} \mbox{Re(pole position)} = 1650 \mbox{ to } 1750 \ (\approx 1700) \mbox{ MeV} \\ -2\mbox{Im(pole position)} = 100 \mbox{ to } 300 \ (\approx 200) \mbox{ MeV} \\ \mbox{Breit-Wigner mass} = 1650 \mbox{ to } 1800 \ (\approx 1720) \mbox{ MeV} \\ \mbox{Breit-Wigner full width} = 100 \mbox{ to } 300 \ (\approx 200) \mbox{ MeV} \end{array}$

N(1700) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
Νπ	7–17 %	594
$N\eta$	1–2 %	422
$N\omega$	10–34 %	†
ΛΚ	1-2 %	283
$N\pi\pi$	>89 %	564
$\Delta(1232)\pi$	55-85 %	402
$arDelta(1232)\pi$, $\mathit{S} ext{-wave}$	50-80 %	402
$arDelta(1232)\pi$, D -wave	4–14 %	402
N $ ho$, S=3/2, S-wave	32–44 %	74
$N\sigma$	2–14 %	-
$N(1440)\pi$	3–11 %	225
$N(1520)\pi$	<4 %	145
$p\gamma$	0.01-0.05 %	604
$p\gamma$, helicity ${=}1/2$	0.0-0.024 %	604
$p\gamma$, helicity=3/2	0.002-0.026 %	604
$n\gamma$	0.01-0.13 %	603
$n\gamma$, helicity ${=}1/2$	0.0-0.09 %	603
<i>n</i> γ , helicity=3/2	0.01-0.05 %	603

https://pdg.lbl.gov

Created: 5/31/2024 10:12

N(1710) 1/2⁺

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

 $\begin{array}{l} \mbox{Re(pole position)} = 1650 \mbox{ to } 1750 \ (\approx 1700) \mbox{ MeV} \\ -2\mbox{Im(pole position)} = 80 \mbox{ to } 160 \ (\approx 120) \mbox{ MeV} \\ \mbox{Breit-Wigner mass} = 1680 \mbox{ to } 1740 \ (\approx 1710) \mbox{ MeV} \\ \mbox{Breit-Wigner full width} = 80 \mbox{ to } 200 \ (\approx 140) \mbox{ MeV} \end{array}$

N(1710) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
Νπ	5–20 %	588
$N\eta$	10–50 %	412
$N\omega$	1–5 %	†
ΛΚ	5–25 %	269
ΣΚ	seen	138
$N\pi\pi$	14-48 %	557
$arDelta(1232)\pi$, $\mathit{P} ext{-wave}$	3–9 %	394
N $ ho$, S=1/2, P-wave	11–23 %	†
Nσ	<16 %	-
$N(1535)\pi$	9–21 %	113
$p\gamma$, helicity= $1/2$	0.002–0.08 %	598
$n\gamma$, helicity=1/2	0.0–0.02%	597

N(1720) 3/2⁺

 $I(J^P) = \frac{1}{2}(\frac{3}{2}^+)$

Re(pole position) = 1660 to 1710 (\approx 1680) MeV -2Im(pole position) = 150 to 300 (\approx 200) MeV Breit-Wigner mass = 1680 to 1750 (\approx 1720) MeV Breit-Wigner full width = 150 to 400 (\approx 250) MeV

N(1720) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
Νπ	8–14 %	594
$N\eta$	1–5 %	422
$N\omega$	12-40 %	†
ΛΚ	4–19 %	283
$N\pi\pi$	>50 %	564
$\Delta(1232)\pi$	47–89 %	402
$arDelta(1232)\pi$, $\mathit{P} ext{-wave}$	47–77 %	402
$arDelta(1232)\pi$, <i>F</i> -wave	<12 %	402
N $ ho$, S=1/2, P-wave	1-2 %	74
$N\sigma$	2–14 %	-

$N(1440)\pi$	<2 %	225
$N(1520)\pi$, S -wave	1–5 %	145
$p\gamma$	0.05–0.25 %	604
$p\gamma$, helicity ${=}1/2$	0.05–0.15 %	604
$p\gamma$, helicity=3/2	0.002–0.16 %	604
$n\gamma$	0.0–0.016 %	603
$n\gamma$, helicity ${=}1/2$	0.0–0.01 %	603
$n\gamma$, helicity=3/2	0.0–0.015 %	603

N(1875) 3/2⁻⁻

 $I(J^P) = \tfrac{1}{2}(\tfrac{3}{2}^-)$

was *N*(2080)

 $\begin{array}{l} \mbox{Re(pole position)} = 1850 \mbox{ to } 1950 \ (\approx 1900) \ \mbox{MeV} \\ -2\mbox{Im(pole position)} = 100 \mbox{ to } 220 \ (\approx 160) \ \mbox{MeV} \\ \mbox{Breit-Wigner mass} = 1850 \mbox{ to } 1920 \ (\approx 1875) \ \mbox{MeV} \\ \mbox{Breit-Wigner full width} = 120 \mbox{ to } 250 \ (\approx 200) \ \mbox{MeV} \end{array}$

N(1875) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
Νπ	3–11 %	695
$N\eta$	3–16 %	559
$N\omega$	15-25 %	371
ΛΚ	1-2 %	454
ΣΚ	0.3–1.1 %	384
$N\pi\pi$	>56 %	670
$\Delta(1232)\pi$	4-44 %	520
$arDelta(1232)\pi$, $\mathit{S} ext{-wave}$	2–21 %	520
$arDelta(1232)\pi$, D -wave	2–23 %	520
N $ ho$, S=3/2, S-wave	36–56 %	379
Nσ	16-60 %	-
$N(1440)\pi$	2-8 %	365
$N(1520)\pi$	<2 %	301
ΛK*(892)	<0.2 %	†
$p\gamma$	0.001-0.025 %	703
$p\gamma$, helicity ${=}1/2$	0.001-0.021 %	703
$p\gamma$, helicity=3/2	<0.003 %	703
$n\gamma$	<0.040 %	702
$n\gamma$, helicity ${=}1/2$	<0.007 %	702
$n\gamma$, helicity=3/2	<0.033 %	702

N(1880) 1/2⁺

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

 $\begin{array}{l} \mbox{Re(pole position)} = 1820 \mbox{ to } 1900 \ (\approx 1860) \mbox{ MeV} \\ -2\mbox{Im(pole position)} = 180 \mbox{ to } 280 \ (\approx 230) \mbox{ MeV} \\ \mbox{Breit-Wigner mass} = 1830 \mbox{ to } 1930 \ (\approx 1880) \mbox{ MeV} \\ \mbox{Breit-Wigner full width} = 200 \mbox{ to } 400 \ (\approx 300) \mbox{ MeV} \end{array}$

N(1880) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
Νπ	3–31 %	698
$N\eta$	1–55 %	563
$N\omega$	12–28 %	377
ΛΚ	1-3 %	459
ΣΚ	10-24 %	389
$N\pi\pi$	>32 %	673
$\Delta(1232)\pi$	5-42 %	524
N $ ho$, S=1/2, P-wave	19–45 %	385
Nσ	8–40 %	539
$N(1535)\pi$	4-12 %	293
<i>N a</i> ₀ (980)	1-5 %	†
Λ <i>K</i> *(892)	0.5–1.1 %	t
$p\gamma$, helicity ${=}1/2$	seen	706
$n\gamma$, helicity=1/2	0.002–0.63 %	705

N(1895) 1/2⁻

$$I(J^P) = \frac{1}{2}(\frac{1}{2})$$

was N(2090)

Re(pole position) = 1890 to 1930 (\approx 1910) MeV -2Im(pole position) = 80 to 140 (\approx 110) MeV Breit-Wigner mass = 1870 to 1920 (\approx 1895) MeV Breit-Wigner full width = 80 to 200 (\approx 120) MeV

N(1895) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
Νπ	2–18 %	707
$N\eta$	15-45 %	575
$N \eta'$	10-40 %	†
$N\omega$	16-40 %	395
ΛΚ	3–23 %	473
ΣΚ	6–20 %	405
$N\pi\pi$	17-74 %	683
$arDelta(1232)\pi$, $\mathit{D} ext{-wave}$	3–11 %	535

N ho	14–50 %	403
N $ ho$, S=1/2, S-wave	<18 %	403
N $ ho$, S=3/2, D-wave	14–32 %	403
$N\sigma$	<13 %	-
$N(1440)\pi$	2–12 %	382
Λ <i>K</i> *(892)	4–9 %	†
$p\gamma$, helicity ${=}1/2$	0.01-0.06 %	715
$n\gamma$, helicity=1/2	0.003–0.05 %	715

N(1900) 3/2⁺

 $I(J^P) = \tfrac{1}{2}(\tfrac{3}{2}^+)$

 $\begin{array}{l} \mbox{Re(pole position)} = 1900 \mbox{ to } 1940 \ (\approx 1920) \mbox{ MeV} \\ -2\mbox{Im(pole position)} = 90 \mbox{ to } 160 \ (\approx 130) \mbox{ MeV} \\ \mbox{Breit-Wigner mass} = 1890 \mbox{ to } 1950 \ (\approx 1920) \mbox{ MeV} \\ \mbox{Breit-Wigner full width} = 100 \mbox{ to } 320 \ (\approx 200) \mbox{ MeV} \end{array}$

N(1900) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
Νπ	1-20 %	723
$N\eta$	2–14 %	595
$N \eta'$	4-8 %	151
$N\omega$	7–13 %	424
ΛΚ	2–20 %	495
ΣΚ	3–7 %	431
$N\pi\pi$	>56 %	699
$\Delta(1232)\pi$	30–70 %	553
$arDelta(1232)\pi$, $\mathit{P} ext{-wave}$	9–25 %	553
$arDelta(1232)\pi$, <i>F</i> -wave	21–45 %	553
N $ ho$, S=1/2	25–40 %	432
Nσ	1-7 %	-
$N(1520)\pi$	7–23 %	341
$N(1535)\pi$	4–10 %	328
Λ <i>K</i> *(892)	< 0.2 %	†
$p\gamma$	0.001-0.025 %	731
$p\gamma$, helicity ${=}1/2$	0.001-0.021 %	731
$p\gamma$, helicity $=$ 3/2	<0.003 %	731
$n\gamma$	<0.040 %	730
$n\gamma$, helicity ${=}1/2$	<0.007 %	730
$n\gamma$, helicity=3/2	<0.033 %	730

N(2060) 5/2⁻⁻

$$I(J^P) = \frac{1}{2}(\frac{5}{2})$$

was N(2200)

 $\begin{array}{l} \mbox{Re(pole position)} = 2020 \mbox{ to } 2130 \ (\approx 2070) \mbox{ MeV} \\ -2\mbox{Im(pole position)} = 350 \mbox{ to } 430 \ (\approx 400) \mbox{ MeV} \\ \mbox{Breit-Wigner mass} = 2030 \mbox{ to } 2200 \ (\approx 2100) \mbox{ MeV} \\ \mbox{Breit-Wigner full width} = 300 \mbox{ to } 450 \ (\approx 400) \mbox{ MeV} \end{array}$

N(2060) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
Νπ	7–12 %	834
$N\eta$	2–38 %	729
$N\omega$	1–7 %	600
ΛΚ	10–20 %	644
ΣΚ	1–5 %	593
$N\pi\pi$	12–52 %	814
$arDelta(1232)\pi$, $\mathit{D} ext{-wave}$	4–10 %	680
N ho	5–33 %	605
N $ ho$, S=1/2, P-wave	<10 %	605
N $ ho$, $S\!\!=\!\!3/2$, $D\!\!-\!\mathrm{wave}$	5–23 %	605
$N\sigma$	3–9 %	-
$N(1440)\pi$	4–14 %	544
$N(1520)\pi$, $\it P$ -wave	9–21 %	490
$N(1680)\pi$, S -wave	8–22 %	353
Λ <i>K</i> *(892)	0.3–1.3 %	307
$p\gamma$	0.03-0.19 %	840
$p\gamma$, helicity ${=}1/2$	0.02-0.08 %	840
$p\gamma$, helicity $=3/2$	0.01-0.10 %	840
$n\gamma$	0.003–0.07 %	840
$n\gamma$, helicity ${=}1/2$	0.001–0.02 %	840
$n\gamma$, helicity=3/2	0.002-0.05 %	840

N(2100) 1/2⁺

$I(J^P) = \tfrac{1}{2}(\tfrac{1}{2}^+)$

 $\begin{array}{l} \mbox{Re(pole position)} = 2050 \mbox{ to } 2150 \ (\approx 2100) \mbox{ MeV} \\ -2\mbox{Im(pole position)} = 240 \mbox{ to } 340 \ (\approx 300) \mbox{ MeV} \\ \mbox{Breit-Wigner mass} = 2050 \mbox{ to } 2150 \ (\approx 2100) \mbox{ MeV} \\ \mbox{Breit-Wigner full width} = 200 \mbox{ to } 320 \ (\approx 260) \mbox{ MeV} \end{array}$

N(2100) DECAY MODES	Fraction (Γ _i	γ/Γ) p (MeV/c)
Νπ	8–32 %	834
$N\eta$	5–45 %	729
https://pdg.lbl.gov	Page 13	Created: 5/31/2024 10:12

5–11 %	451
10–25 %	600
<1.0 %	644
>55 %	814
6-14 %	680
35–70	605
14–35 %	-
26–34 %	478
3–11 %	307
0.001-0.13 %	840
0.004–0.09 %	840
	5-11 % 10-25 % <1.0 % >55 % 6-14 % 35-70 14-35 % 26-34 % 3-11 % 0.001-0.13 % 0.004-0.09 %

N(2120) 3/2⁻

 $I(J^P) = \frac{1}{2}(\frac{3}{2}^-)$

 $\begin{array}{l} \mbox{Re(pole position)} = 2050 \mbox{ to } 2150 \ (\approx 2100) \mbox{ MeV} \\ -2\mbox{Im(pole position)} = 200 \mbox{ to } 360 \ (\approx 280) \mbox{ MeV} \\ \mbox{Breit-Wigner mass} = 2060 \mbox{ to } 2160 \ (\approx 2120) \mbox{ MeV} \\ \mbox{Breit-Wigner full width} = 260 \mbox{ to } 360 \ (\approx 300) \mbox{ MeV} \end{array}$

N(2120) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
Νπ	5–15 %	846
$N\eta$	1-5 %	743
$N \eta'$	2-6 %	474
$N\omega$	4–20 %	617
ΛΚ	6–11 %	660
$N\pi\pi$	>27 %	827
$\Delta(1232)\pi$	>23 %	693
$arDelta(1232)\pi$, S -wave	15–70 %	693
$arDelta(1232)\pi$, D -wave	8–45 %	693
N $ ho$, S=3/2 , S-wave	< 3 %	622
Nσ	4–15 %	-
$N(1535)\pi$	7–23 %	494
Λ <i>K</i> *(892)	< 0.2 %	339
$p\gamma$	0.16–2.1 %	852
$p\gamma$, helicity ${=}1/2$	0.07–0.80 %	852
$p\gamma$, helicity ${=}3/2$	0.09–1.3 %	852
$n\gamma$	0.04-0.72 %	852
$n\gamma$, helicity ${=}1/2$	0.04–0.60 %	852
$n\gamma$, helicity=3/2	0.001-0.12 %	852

N(2190) 7/2⁻

$$I(J^P) = \frac{1}{2}(\frac{7}{2}^-)$$

 $\begin{array}{l} \mbox{Re(pole position)} = 1950 \mbox{ to } 2150 \ (\approx 2050) \mbox{ MeV} \\ -2\mbox{Im(pole position)} = 300 \mbox{ to } 500 \ (\approx 400) \mbox{ MeV} \\ \mbox{Breit-Wigner mass} = 2140 \mbox{ to } 2220 \ (\approx 2180) \mbox{ MeV} \\ \mbox{Breit-Wigner full width} = 300 \mbox{ to } 500 \ (\approx 400) \mbox{ MeV} \end{array}$

N(2190) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
Νπ	10-20 %	882
$N\eta$	1-5 %	785
$N\omega$	8–20 %	667
ΛΚ	0.2–0.8 %	705
$N\pi\pi$	22–51 %	864
$arDelta(1232)\pi$, $\mathit{D} ext{-wave}$	19–31 %	734
N ho, S=3/2, D-wave	< 11 %	672
Nσ	3–9 %	-
Λ <i>K</i> *(892)	0.2–0.8 %	423
$p\gamma$	<0.08 %	888
$p\gamma$, helicity ${=}1/2$	<0.06 %	888
$p\gamma$, helicity ${=}3/2$	<0.02 %	888
$n\gamma$	<0.04 %	888
$n\gamma$, helicity ${=}1/2$	<0.01 %	888
$n\gamma$, helicity=3/2	<0.03 %	888

N(2220) 9/2⁺

$$I(J^P) = \frac{1}{2}(\frac{9}{2}^+)$$

Re(pole position) = 2130 to 2200 (\approx 2150) MeV -2Im(pole position) = 360 to 480 (\approx 400) MeV Breit-Wigner mass = 2200 to 2300 (\approx 2250) MeV Breit-Wigner full width = 350 to 500 (\approx 400) MeV

N(2220) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
Νπ	15–30 %	924

N(2250) 9/2⁻

 $I(J^P) = \frac{1}{2}(\frac{9}{2}^-)$

 $\begin{array}{l} \mbox{Re(pole position)} = 2100 \mbox{ to } 2200 \ (\approx 2150) \ \mbox{MeV} \\ -2\mbox{Im(pole position)} = 350 \mbox{ to } 500 \ (\approx 420) \ \mbox{MeV} \\ \mbox{Breit-Wigner mass} = 2250 \mbox{ to } 2320 \ (\approx 2280) \ \mbox{MeV} \\ \mbox{Breit-Wigner full width} = 300 \mbox{ to } 600 \ (\approx 500) \ \mbox{MeV} \end{array}$

N(2250) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
Νπ	5–15 %	941
$N\eta$	<5 %	852
ΛΚ	1–3 %	777

Breit-Wigner mass = 2550 to 2750 (\approx 2600) MeV Breit-Wigner full width = 500 to 800 (\approx 650) MeV

N(2600) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
Νπ	3–8 %	1126

 $I(J^P) = \frac{3}{2}(\frac{3}{2}^+)$

)

 $\begin{array}{l} \mbox{Re(pole position)} = 1209 \mbox{ to } 1211 \ (\approx 1210) \ \mbox{MeV} \\ -2\mbox{Im(pole position)} = 98 \mbox{ to } 102 \ (\approx 100) \ \mbox{MeV} \\ \mbox{Breit-Wigner mass (mixed charges)} = 1230 \ \mbox{to } 1234 \ (\approx 1232) \\ \mbox{MeV} \\ \mbox{Breit-Wigner full width (mixed charges)} = 114 \ \mbox{to } 120 \ \ (\approx 117) \\ \mbox{MeV} \end{array}$

Δ(1232) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
Νπ	99.4 %	229
$N\gamma$	0.55–0.65 %	259
$N\gamma$, helicity ${=}1/2$	0.11-0.13 %	259
$N\gamma$, helicity= $3/2$	0.44-0.52 %	259
p e ⁺ e ⁻	$(4.2\pm0.7) imes10^{-5}$	259

∆(1600) 3/2⁺

$$I(J^P) = \tfrac{3}{2}(\tfrac{3}{2}^+)$$

 $\begin{array}{l} \mbox{Re(pole position)} = 1470 \mbox{ to } 1590 \ (\approx 1520) \mbox{ MeV} \\ -2\mbox{Im(pole position)} = 150 \mbox{ to } 320 \ (\approx 280) \mbox{ MeV} \\ \mbox{Breit-Wigner mass} = 1500 \mbox{ to } 1640 \ (\approx 1570) \mbox{ MeV} \\ \mbox{Breit-Wigner full width} = 200 \mbox{ to } 300 \ (\approx 250) \mbox{ MeV} \end{array}$

Δ(1600) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
Νπ	8–24%	492
$N\pi\pi$	58-84 %	454
$\Delta(1232)\pi$	58-82 %	276
$arDelta(1232)\pi$, $\mathit{P} ext{-wave}$	72–82%	276
$arDelta(1232)\pi$, <i>F</i> -wave	<2%	276
$N(1440)\pi$	17–27%	†
$N\gamma$	0.001-0.035 %	505
N γ , helicity ${=}1/2$	0.0-0.02 %	505
$N\gamma$, helicity=3/2	0.001-0.015 %	505

∆(1620) 1/2[−]

 $I(J^P) = \frac{3}{2}(\frac{1}{2}^{-})$

 $\begin{array}{l} \mbox{Re(pole position)} = 1590 \mbox{ to } 1610 \ (\approx 1600) \mbox{ MeV} \\ -2\mbox{Im(pole position)} = 80 \mbox{ to } 140 \ (\approx 110) \mbox{ MeV} \\ \mbox{Breit-Wigner mass} = 1590 \mbox{ to } 1630 \ (\approx 1610) \mbox{ MeV} \\ \mbox{Breit-Wigner full width} = 110 \mbox{ to } 150 \ (\approx 130) \mbox{ MeV} \end{array}$

Δ(1620) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
Νπ	25–35 %	520
$N\pi\pi$	>67 %	484
$arDelta(1232)\pi$, D -wave	44–72 %	311
N ho	23–32%	†
N $ ho$, S=1/2, S-wave	23–32%	ť
N ho, S=3/2, D-wave	<0.04%	†
$N(1440)\pi$	<9 %	98
$N\gamma$, helicity=1/2	0.03–0.10 %	532

∆(1700) 3/2⁻

 $I(J^P) = \tfrac{3}{2}(\tfrac{3}{2}^-)$

 $\begin{array}{l} \mbox{Re(pole position)} = 1640 \mbox{ to } 1690 \ (\approx 1665) \ \mbox{MeV} \\ -2\mbox{Im(pole position)} = 200 \mbox{ to } 300 \ (\approx 250) \ \mbox{MeV} \\ \mbox{Breit-Wigner mass} = 1690 \mbox{ to } 1730 \ (\approx 1710) \ \mbox{MeV} \\ \mbox{Breit-Wigner full width} = 220 \mbox{ to } 380 \ (\approx 300) \ \mbox{MeV} \end{array}$

Δ(1700) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
Νπ	10–20 %	588
$N\pi\pi$	>31 %	557
$\Delta(1232)\pi$	9–70 %	394
$\Delta(1232)\pi$, <i>S</i> -wave	5–54 %	394
$\Delta(1232)\pi$, D -wave	4–16 %	394
N $ ho$, S=3/2, S-wave	22–32%	t
$N(1520)\pi$, P -wave	1–5 %	133
$N(1535)\pi$	0.5–1.5 %	113
$\Delta(1232)\eta$	3–7 %	†
$N\gamma$	0.22-0.60 %	598
$N\gamma$, helicity ${=}1/2$	0.12-0.30 %	598
$N\gamma$, helicity=3/2	0.10-0.30 %	598

∆(1900) 1/2[−]

 $I(J^P) = \tfrac{3}{2}(\tfrac{1}{2}^-)$

 $\begin{array}{l} \mbox{Re(pole position)} = 1830 \mbox{ to } 1900 \ (\approx 1865) \mbox{ MeV} \\ -2\mbox{Im(pole position)} = 180 \mbox{ to } 300 \ (\approx 240) \mbox{ MeV} \\ \mbox{Breit-Wigner mass} = 1840 \mbox{ to } 1920 \ (\approx 1860) \mbox{ MeV} \\ \mbox{Breit-Wigner full width} = 180 \mbox{ to } 320 \ (\approx 250) \mbox{ MeV} \end{array}$

۵(1900) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
Νπ	4–12%	685
ΣΚ	seen	367
$N\pi\pi$	> 52%	660
$arDelta(1232)\pi$, $\mathit{D} ext{-wave}$	30–70%	509
$N \rho$	22–60 %	360
N $ ho$, S=1/2, S-wave	11–35%	360
N $ ho$, S=3/2, D-wave	11–25%	360
$N(1440)\pi$	3–32%	353
$N(1520)\pi$	2–10%	288
$\Delta(1232)\eta$	< 2%	251
$N\gamma$, helicity=1/2	0.06–0.43 %	693

∆(1905) 5/2⁺

 $I(J^P) = \tfrac{3}{2}(\tfrac{5}{2}^+)$

 $\begin{array}{l} \mbox{Re(pole position)} = 1750 \mbox{ to } 1800 \ (\approx 1770) \mbox{ MeV} \\ -2\mbox{Im(pole position)} = 260 \mbox{ to } 340 \ (\approx 300) \mbox{ MeV} \\ \mbox{Breit-Wigner mass} = 1855 \mbox{ to } 1910 \ (\approx 1880) \mbox{ MeV} \\ \mbox{Breit-Wigner full width} = 270 \mbox{ to } 400 \ (\approx 330) \mbox{ MeV} \end{array}$

۵(1905) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
Νπ	9–15%	698
$N\pi\pi$	>65%	673
$\Delta(1232)\pi$	>48%	524
$arDelta(1232)\pi$, <i>P</i> -wave	8–43%	524
$arDelta(1232)\pi$, <i>F</i> -wave	40–58%	524
N $ ho$, S=3/2, P-wave	17–35%	385
$N(1535)\pi$	< 1 %	293
$N(1680)\pi$, P -wave	5–15%	133
$\Delta(1232)\eta$	2-6%	282
$N\gamma$	0.012-0.036 %	706
N γ , helicity ${=}1/2$	0.002-0.006 %	706
$N\gamma$, helicity=3/2	0.01-0.03 %	706

∆(1910) 1/2⁺

$$I(J^P) = \frac{3}{2}(\frac{1}{2}^+)$$

 $\begin{array}{l} \mbox{Re(pole position)} = 1800 \mbox{ to } 1900 \ (\approx 1850) \mbox{ MeV} \\ -2\mbox{Im(pole position)} = 200 \mbox{ to } 500 \ (\approx 350) \mbox{ MeV} \\ \mbox{Breit-Wigner mass} = 1850 \mbox{ to } 1950 \ (\approx 1900) \mbox{ MeV} \\ \mbox{Breit-Wigner full width} = 200 \mbox{ to } 400 \ (\approx 300) \mbox{ MeV} \end{array}$

Δ(1910) DECAY MODES	Fraction (Γ_i/Γ)	р (MeV/c)
Νπ	10-30%	710
ΣΚ	4–14%	410
$\Delta(1232)\pi$	34–66%	539
$N(1440)\pi$	3–45%	386
$\Delta(1232)\eta$	5–13%	310
$N\gamma$, helicity=1/2	0.0-0.02 %	718

∆(1920) 3/2⁺

 $I(J^P) = \frac{3}{2}(\frac{3}{2}^+)$

 $\begin{array}{l} \mbox{Re(pole position)} = 1850 \mbox{ to } 1950 \ (\approx 1900) \ \mbox{MeV} \\ -2\mbox{Im}(pole position) = 200 \mbox{ to } 400 \ (\approx 300) \ \mbox{MeV} \\ \mbox{Breit-Wigner mass} = 1870 \mbox{ to } 1970 \ (\approx 1920) \ \mbox{MeV} \\ \mbox{Breit-Wigner full width} = 240 \mbox{ to } 360 \ (\approx 300) \ \mbox{MeV} \end{array}$

△(1920) DECAY MODES	Fraction (Γ _i	/Γ) <i>p</i> (MeV/ <i>c</i>)
Νπ	5–20 %	723
ΣΚ	2-6 %	431
$N\pi\pi$	>46 %	699
$\Delta(1232)\pi$	>46 %	553
https://pdg.lbl.gov	Page 19	Created: 5/31/2024 10:12

$arDelta(1232)\pi$, $\mathit{P} ext{-wave}$	2–28 %	553
$arDelta(1232)\pi$, F-wave	44–72 %	553
$N(1440)\pi$, P -wave	4-86 %	403
$N(1520)\pi$, S -wave	<5 %	341
$N(1535)\pi$	<2 %	328
<i>N a</i> ₀ (980)	seen	41
$\Delta(1232)\eta$	5–17 %	336
$N\gamma$	0.01–0.84 %	731
$N\gamma$, helicity ${=}1/2$	0.0-0.42 %	731
N γ , helicity=3/2	0.01–0.42 %	731

∆(1930) 5/2[−]

 $I(J^P) = \frac{3}{2}(\frac{5}{2}^-)$

 $\begin{array}{l} \mbox{Re(pole position)} = 1820 \mbox{ to } 1880 \ (\approx 1850) \mbox{ MeV} \\ -2\mbox{Im(pole position)} = 300 \mbox{ to } 450 \ (\approx 320) \mbox{ MeV} \\ \mbox{Breit-Wigner mass} = 1900 \mbox{ to } 2000 \ (\approx 1950) \mbox{ MeV} \\ \mbox{Breit-Wigner full width} = 200 \mbox{ to } 400 \ (\approx 300) \mbox{ MeV} \end{array}$

Δ(1930) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
Νπ	5–15 %	742
$N\gamma$	0.0-0.01 %	749
$N\gamma$, helicity ${=}1/2$	0.0-0.005 %	749
$N\gamma$, helicity=3/2	0.0-0.004 %	749

∆(1950) 7/2⁺

$$I(J^P) = \frac{3}{2}(\frac{7}{2}^+)$$

Re(pole position) = 1870 to 1890 (\approx 1880) MeV -2Im(pole position) = 220 to 260 (\approx 240) MeV Breit-Wigner mass = 1915 to 1950 (\approx 1930) MeV Breit-Wigner full width = 235 to 335 (\approx 285) MeV

Δ(1950) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
Νπ	35–45 %	729
ΣΚ	0.3–0.5 %	441
$N\pi\pi$	37–77 %	706
$arDelta(1232)\pi$, <i>F</i> -wave	1-9 %	560
$N(1680)\pi$, P -wave	3–9 %	191
$\Delta(1232)\eta$	< 0.6 %	349
$N\gamma$	0.06-0.14 %	737
$N\gamma$, helicity ${=}1/2$	0.03-0.05 %	737
$N\gamma$, helicity=3/2	0.04–0.09 %	737

https://pdg.lbl.gov

Created: 5/31/2024 10:12

∆(2200) 7/2[−]

$$I(J^P) = \frac{3}{2}(\frac{7}{2}^-)$$

 $\begin{array}{l} \mbox{Re(pole position)} = 2050 \mbox{ to } 2150 \ (\approx 2100) \mbox{ MeV} \\ -2\mbox{Im(pole position)} = 260 \mbox{ to } 420 \ (\approx 340) \mbox{ MeV} \\ \mbox{Breit-Wigner mass} = 2150 \mbox{ to } 2250 \ (\approx 2200) \mbox{ MeV} \\ \mbox{Breit-Wigner full width} = 200 \mbox{ to } 500 \ (\approx 350) \mbox{ MeV} \end{array}$

Δ(2200) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
Νπ	2-8 %	894
ΣΚ	1-7 %	672
$N\pi\pi$	>45 %	876
$\Delta \pi$	>45 %	747
$arDelta \pi$, D -wave	>40 %	747
$arDelta \pi$, $\mathit{G} ext{-wave}$	5–25 %	747
$arDelta\eta$, D -wave	seen	614

$$I(J^P) = \frac{3}{2}(\frac{11}{2}^+)$$

 $\begin{array}{l} \mbox{Re(pole position)} = 2300 \mbox{ to } 2500 \ (\approx 2400) \mbox{ MeV} \\ -2\mbox{Im(pole position)} = 350 \mbox{ to } 550 \ (\approx 450) \mbox{ MeV} \\ \mbox{Breit-Wigner mass} = 2300 \mbox{ to } 2600 \ (\approx 2450) \mbox{ MeV} \\ \mbox{Breit-Wigner full width} = 300 \mbox{ to } 700 \ (\approx 500) \mbox{ MeV} \end{array}$

۵(2420) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
Νπ	5–10 %	1040

$$A \text{ BARYONS} (S = -1, I = 0) A^0 = uds$$

Λ

$$I(J^P) = 0(\frac{1}{2}^+)$$

Mass $m = 1115.683 \pm 0.006$ MeV $(m_A - m_{\overline{A}}) / m_A = (-0.1 \pm 1.1) \times 10^{-5}$ (S = 1.6) Mean life $\tau = (2.617 \pm 0.010) \times 10^{-10}$ s (S = 1.5) $(\tau_A - \tau_{\overline{A}}) / \tau_A = (0.9 \pm 3.2) \times 10^{-3}$ $c\tau = 7.845$ cm Magnetic moment $\mu = -0.613 \pm 0.004 \ \mu_N$ Electric dipole moment $d < 1.5 \times 10^{-16} \ e \text{ cm}$, CL = 95%

Decay parameters

$p\pi^ \alpha = 0.747 \pm 0.009$ (S = 2.5)	
$\overline{p}\pi^+$ $lpha_+ = -0.757 \pm 0.004$	
$\overline{lpha}_0 {\sf FOR} \overline{\it \Lambda} ightarrow \overline{\it n} \pi^0 = - 0.692 \pm 0.017$	
$lpha_\gamma$ FOR $arLambda o ~$ $n\gamma = -0.16 \pm 0.11$	
$p\pi^- \qquad \phi = (-6.5 \pm 3.5)^\circ$	
" $\gamma_{-}=0.76$ ^[/]	
" $\Delta_{-}=(8\pm4)^{\circ}$ $^{[\prime]}$	
$\overline{\alpha}_0 / \alpha_+ \text{ in } \overline{\Lambda} \rightarrow \overline{n} \pi^0, \overline{\Lambda} \rightarrow \overline{p} \pi^+ = 0.913 \pm 0.030$	
$R = \left G_E/G_M\right \text{ in } \Lambda o \ p\pi^-$, $\overline{\Lambda} o \ \overline{p}\pi^+ = 0.96 \pm 0$.14
$\Delta \Phi = \Phi_E - \Phi_M \text{ in } \Lambda \rightarrow \ p \pi^-, \overline{\Lambda} \rightarrow \ \overline{p} \pi^+ = 37 \pm$	13 degrees
$n\pi^0$ $\alpha_0 = 0.75 \pm 0.05$	
$p e^- \overline{ u}_e \qquad g_A/g_V = -0.718 \pm 0.015 \ ^{[h]}$	

A DECAY MODES		Fraction (Γ _i /Γ)	Confidence level	р (MeV/c)
$p\pi^-$		(64.1 ± 0.5)%		101
$n\pi^0$		(35.9 ± 0.5)%		104
$n\gamma$		(8.3 \pm 0.7) $ imes$ 1	10-4	162
$p\pi^-\gamma$	[<i>n</i>]	(8.5 ± 1.4) $ imes$ 1	10-4	101
$pe^-\overline{\nu}_e$		$(8.34\pm0.14) \times 10^{-10}$	10^{-4}	163
$p\mu^-\overline{ u}_\mu$		$(1.51\pm0.19) \times 10^{-1}$	10-4	131

Lepton (L) and/or Baryon (B) number violating decay modes

$\pi^+ e^-$	L,B	< 6	imes 10 ⁻⁷	90%	549
$\pi^+\mu^-$	L,B	< 6	imes 10 ⁻⁷	90%	544
$\pi^- e^+$	L,B	< 4	imes 10 ⁻⁷	90%	549
$\pi^- \mu^+$	L,B	< 6	imes 10 ⁻⁷	90%	544
$K^+ e^-$	L,B	< 2	imes 10 ⁻⁶	90%	449
$K^+ \mu^-$	L,B	< 3	imes 10 ⁻⁶	90%	441
$K^- e^+$	L,B	< 2	imes 10 ⁻⁶	90%	449
$K^-\mu^+$	L,B	< 3	imes 10 ⁻⁶	90%	441
$K_S^0 \nu$	L,B	< 2	imes 10 ⁻⁵	90%	447
$\overline{p}\pi^+$	В	< 9	imes 10 ⁻⁷	90%	101
invisible		< 7.4	$\times 10^{-5}$	90%	_

A(1405) 1/2⁻

$$I(J^P) = 0(\frac{1}{2}^{-})$$

Mass
$$m = 1405.1^{+1.3}_{-1.0}$$
 MeV
Full width $\Gamma = 50.5 \pm 2.0$ MeV
Below $\overline{K}N$ threshold

https://pdg.lbl.gov

Created: 5/31/2024 10:12

۸(1405) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
Σπ	100 %	155
Л(1520) 3/2 [—]	$I(J^P) = 0(\frac{3}{2}^-)$	
Mass $m=1518$ to Full width $\Gamma=15$	1520 ($pprox$ 1519) MeV $^{[o]}$ to 17 ($pprox$ 16) MeV $^{[o]}$	
A(1520) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
NK	(45 ±1)%	242
$\Sigma \pi$	$(42 \pm 1) \%$	268
$\Lambda \pi \pi$	$(10 \pm 1) \%$	259
$\sum \pi \pi$	$(0.9 \pm 0.1)\%$	168
$\Lambda\gamma$	$(0.85\pm0.15)\%$	350
Λ(1600) 1/2 ⁺	$I(J^{P}) = 0(\frac{1}{2}^{+})$	
Mass $m = 1570$ to	1630 (\approx 1600) MeV	
Full width I $= 150$	to 250 (\approx 200) MeV	
A(1600) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
NK	15–30 %	343
$\Sigma \pi$	10–60 %	338
$\Lambda\sigma$	(19±4) %	-
$\Sigma(1385)\pi$	(9±4) %	158
$A(1670) 1/2^{-1}$	$l(I^{P}) = 0(\frac{1}{2})$	
/(10/0) 1/2	$(3^{-}) = 3(\frac{1}{2}^{-})$	
Mass $m = 1670$ to	1678 ($pprox$ 1674) MeV	
Full width $\Gamma = 25$	to 35 (\approx 30) MeV	
Λ(1670) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
NK	20–30 %	418
$\Sigma \pi$	25–55 %	398
$\Lambda\eta$	10–25 %	88
$\Sigma(1385)\pi$, <i>D</i> -wave	$(6.0\pm2.0)\%$	235
$10 \text{ m}^{-1}(692), \ 3=3/2, \ D\text{-wave}$	$(5 \pm 4)\%$	Ť
10	(2∪ ±8)%	-

https://pdg.lbl.gov

Created: 5/31/2024 10:12

A(1690) 3/2⁻

$$I(J^P)=0(\tfrac{3}{2}^-)$$

Mass m = 1685 to 1695 (≈ 1690) MeV Full width $\Gamma = 60$ to 80 (≈ 70) MeV

A(1690) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)	
NK	20–30 %	433	
$\Sigma \pi$	20–40 %	410	
$\Lambda\sigma$	(5.0±2.0) %	-	
$\Lambda\pi\pi$	\sim 25 %	419	
$\Sigma \pi \pi$	\sim 20 %	358	
$\Sigma(1385)\pi$, <i>S</i> -wave	(9 ±5)%	251	
$\Sigma(1385)\pi$, D -wave	(3.0±2.0) %	251	

A(1800) 1/2⁻

 $I(J^P) = 0(\tfrac{1}{2}^-)$

Mass m = 1750 to 1850 (≈ 1800) MeV Full width $\Gamma = 150$ to 250 (≈ 200) MeV

A(1800) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
NK	25–40 %	528
$\Sigma \pi$	seen	494
$\Lambda\sigma$	$(15 \pm 4)\%$	-
$\Sigma(1385)\pi$	seen	349
$\Lambda\eta$	0.01 to 0.10	326
<i>NK</i> [*] (892)	seen	†

A(1810) 1/2⁺

 $I(J^P) = 0(\frac{1}{2}^+)$

Mass m = 1740 to 1840 (≈ 1790) MeV Full width $\Gamma = 50$ to 170 (≈ 110) MeV

A(1810) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
NK	0.05 to 0.35	520
$\Sigma \pi$	$(16 \pm 5)\%$	487
$\Sigma(1385)\pi$	$(40 \pm 15)\%$	340
<i>NK</i> [*] (892)	30–60 %	†

Λ(1820) 5/2⁺

 $I(J^P) = 0(\tfrac{5}{2}^+)$

Mass m = 1815 to 1825 (≈ 1820) MeV Full width $\Gamma = 70$ to 90 (≈ 80) MeV

A(1820) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
NK	55-65 %	545
$\Sigma \pi$	8–14 %	509
$\Sigma(1385)\pi$	5–10 %	366
$N\overline{K}^{*}(892)$, S=3/2, P-wave	(3.0±1.0) %	†

 $I(J^P) = 0(\tfrac{5}{2}^-)$

Mass m = 1820 to $1830 \ (\approx 1825)$ MeV Full width $\Gamma = 60$ to $120 \ (\approx 90)$ MeV

A(1830) DECAY MODES	Fraction (Γ_i/Γ)	Scale factor	р (MeV/c)
NK	0.04 to 0.08		549
$\Sigma \pi$	35–75 %		512
$\Sigma(1385)\pi$	>15 %		370
$\Sigma(1385)\pi$, D -wave	(40 ±15) %	3.2	370

Λ(1890) 3/2⁺

$$I(J^P) = 0(\frac{3}{2}^+)$$

Mass m = 1870 to 1910 (≈ 1890) MeV Full width $\Gamma = 80$ to 160 (≈ 120) MeV

A(1890) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
NK	0.24 to 0.36	599
$\Sigma \pi$	3–10 %	560
$\Sigma(1385)\pi$	seen	423
$\Sigma(1385)\pi$, <i>P</i> -wave	(6.0 ±3.0) %	423
$\Sigma(1385)\pi$, <i>F</i> -wave	(4.0 ±2.0) %	423
N K *(892)	seen	236

Λ(2100) 7/2⁻

$$I(J^P) = 0(\tfrac{7}{2}^-)$$

Mass m = 2090 to 2110 (≈ 2100) MeV Full width $\Gamma = 100$ to 250 (≈ 200) MeV

A(2100) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)	
NK	25–35 %	751	
$\Sigma \pi$	\sim 5 %	705	
$\Lambda\eta$	<3 %	617	
ΞK	<3 %	491	
$\Lambda\omega$	<8 %	443	
$\Sigma(1385)\pi$, <i>G</i> -wave	(1.0 ± 1.0) %	584	
$N\overline{K}^*(892)$	10-20 %	515	
$N\overline{K}^{*}(892)$, $S\!\!=\!\!3/2$, D -wave	(4.0±2.0) %	515	

Λ(2110) 5/2⁺

$$I(J^P) = 0(\frac{5}{2}^+)$$

Mass m = 2050 to 2130 (≈ 2090) MeV Full width $\Gamma = 200$ to 300 (≈ 250) MeV

A(2110) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)	
NK	5–25 %	744	
$\Sigma \pi$	10-40 %	698	
$\Lambda\omega$	seen	432	
$\Lambda \omega$, S=3/2 , P-wave	(5.0±2.0) %	432	
$\Sigma(1385)\pi$	seen	576	
<i>NK</i> [*] (892)	10-60 %	505	

A(2350) 9/2⁺

 $I(J^P) = 0(\tfrac{9}{2}^+)$

Mass m = 2340 to 2370 (≈ 2350) MeV Full width $\Gamma = 100$ to 250 (≈ 150) MeV

Fraction (Γ_i/Γ)	p (MeV/c)
\sim 12 %	915
\sim 10 %	867
	Fraction (Γ_i/Γ) ~ 12 % ~ 10 %

 $\begin{array}{l} \text{Mass } m = 1109.37 \pm 0.07 \text{ MeV} \quad (S = 2.2) \\ \text{Mean life } \tau = (0.8018 \pm 0.0026) \times 10^{-10} \text{ s} \\ c\tau = 2.404 \text{ cm} \\ (\tau_{\Sigma^+} - \tau_{\overline{\Sigma}^-}) / \tau_{\Sigma^+} = -0.0006 \pm 0.0012 \\ \text{Magnetic moment } \mu = 2.458 \pm 0.010 \ \mu_N \quad (S = 2.1) \\ (\mu_{\Sigma^+} + \mu_{\overline{\Sigma}^-}) / \mu_{\Sigma^+} = 0.014 \pm 0.015 \\ \Gamma(\Sigma^+ \to n\ell^+\nu) / \Gamma(\Sigma^- \to n\ell^-\overline{\nu}_\ell) < 0.043 \end{array}$

Decay parameters

Σ+

 $ne^+\nu_e$

$p\pi^0$	$lpha_{0} = -0.982 \pm 0.014$
$\overline{p}\pi^0$	$\overline{lpha}_0=0.99\pm0.04$
$(\alpha_0 + \overline{\alpha}_0) /$	$(\alpha_0 - \overline{\alpha}_0) = 0.00 \pm 0.04$
$p\pi^0$	$\phi_0 = (36 \pm 34)^\circ$
н	$\gamma_{0}=$ 0.16 $^{[\prime]}$
11	$\Delta_0 = (187 \pm 6)^\circ \ ^{[/]}$
$n\pi^+$	$lpha_+ =$ (4.89 \pm 0.26) $ imes$ 10 $^{-2}$
н	$\phi_+ = (167 \pm 20)^\circ ({\sf S} = 1.1)$
$\overline{\alpha}_{-}$ FOR $\overline{\Sigma}^{-}$	$\bar{n} \to \ \overline{n} \pi^- = (-5.7 \pm 0.5) imes 10^{-2}$
$\overline{\alpha}_{-} / \overline{\alpha}_{0} =$	$(-5.7\pm0.6) imes10^{-2}$
$(\alpha_+ + \overline{\alpha})$	$/ (\alpha_{+} - \overline{\alpha}_{-}) = (-8 \pm 6) \times 10^{-2}$
"	$\gamma_+=-$ 0.97 $^{[\prime]}$
"	$\Delta_+ = (-73 {+ 133 \atop - 10})^\circ {^{[I]}}$
$p\gamma$	$lpha_\gamma = -$ 0.69 \pm 0.05

Σ^+ decay modes	Fraction (Γ_i/Γ) Confidence level	р (MeV/c)
$p\pi^0$	(51.57±0.30) %	189
$n\pi^+$	(48.31±0.30) %	185
$p\gamma$	$(1.23\pm0.05) imes10^{-3}$	225
$n\pi^+\gamma$	[n] (4.5 ± 0.5) $ imes 10^{-4}$	185
$\Lambda e^+ \nu_e$	(2.3 ± 0.4) $\times 10^{-5}$	71

 $\Delta S = \Delta Q$ (SQ) violating modes or $\Delta S = 1$ weak neutral current (S1) modes $SQ < 5 \times 10^{-6}$

https://pdg.lbl.gov Page 27 Created: 5/31/2024 10:12

90%

224

Citation: S. Navas et al. (Particle Data Group), Phys. Rev. D 110, 030001 (2024)

Σ0

$$I(J^P) = 1(\frac{1}{2}^+)$$

 $\begin{array}{l} \text{Mass } m = 1192.642 \pm 0.024 \ \text{MeV} \\ m_{\Sigma^{-}} - m_{\Sigma^{0}} = 4.807 \pm 0.035 \ \text{MeV} \quad (\text{S} = 1.1) \\ m_{\Sigma^{0}} - m_{\Lambda} = 76.959 \pm 0.023 \ \text{MeV} \\ \text{Mean life } \tau = (7.4 \pm 0.7) \times 10^{-20} \ \text{s} \\ c\tau = 2.22 \times 10^{-11} \ \text{m} \\ \text{Transition magnetic moment } \left| \mu_{\Sigma\Lambda} \right| = 1.61 \pm 0.08 \ \mu_{N} \end{array}$

Σ^0 DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	р (MeV/c)
$\overline{\Lambda\gamma}$	100 %		74
$\Lambda\gamma\gamma$	< 3 %	90%	74
$\Lambda e^+ e^-$	[p] 5 × 10 ⁻³		74

Σ-

$$I(J^P) = \mathbb{1}(\frac{1}{2}^+)$$

$$\begin{array}{ll} \mbox{Mass } m = 1197.449 \pm 0.029 \mbox{ MeV } (S = 1.1) \\ m_{\Sigma^-} - m_{\Sigma^+} = 8.08 \pm 0.08 \mbox{ MeV } (S = 1.9) \\ m_{\Sigma^-} - m_{\Lambda} = 81.766 \pm 0.029 \mbox{ MeV } (S = 1.1) \\ \mbox{Mean life } \tau = (1.479 \pm 0.011) \times 10^{-10} \mbox{ s } (S = 1.3) \\ c\tau = 4.434 \mbox{ cm} \\ \mbox{Magnetic moment } \mu = -1.160 \pm 0.025 \mbox{ } \mu_N \quad (S = 1.7) \\ \Sigma^- \mbox{ charge radius } = 0.78 \pm 0.10 \mbox{ fm} \end{array}$$

Decay parameters

$n\pi^{-}$	$lpha_{-}=-$ 0.068 \pm 0.008
"	$\phi=(10\pm15)^\circ$
"	$\gamma_{-}=$ 0.98 $^{[\prime]}$
"	$\Delta_{-} = (249^{+\ 12}_{-\ 120})^{\circ}\ ^{[I]}$
$ne^-\overline{\nu}_e$	$g_A/g_V = 0.340 \pm 0.017 \; ^{[h]}$
"	$f_2(0)/f_1(0) = 0.97 \pm 0.14$
"	$D=0.11\pm0.10$
$\Lambda e^- \overline{\nu}_e$	$g_V/g_A = 0.01 \pm 0.10$ ^[h] (S = 1.5)
"	$g_{WM}/g_{A} = 2.4 \pm 1.7$ ^[h]

Σ^- DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>р</i> (MeV/c)
$n\pi^-$	(99.848±0.005)) %	193
$n\pi^-\gamma$	$[n]$ (4.6 ± 0.6) × 10 ⁻⁴	193
$ne^-\overline{\nu}_e$	(1.017 ± 0.034)) × 10 ⁻³	230
$n\mu^-\overline{ u}_\mu$	(4.5 ± 0.4)) × 10 ⁻⁴	210
$\Lambda e^- \overline{\nu}_e$	(5.73 ± 0.27)) $ imes$ 10 $^{-5}$	79
$\Sigma^+ X$	< 1.2	$\times 10^{-4}$ 90%	_
Lepton num	nber (<i>L</i>) violating mo	odes	
pe ⁻ e ⁻ L	< 6.7	$\times 10^{-5}$ 90%	231
$Σ(1385) 3/2^+$ $Σ(1385)^+ mass m =$ $Σ(1385)^0 mass m =$ $Σ(1385)^- mass m =$ $Σ(1385)^+ full width$ $Σ(1385)^0 full width$ $Σ(1385)^- full width$ Below $\overline{K} N$ three	$I(J^P) = 1(\frac{3}{2})$ 1382.83 ± 0.34 MeV 1383.7 ± 1.0 MeV 1387.2 ± 0.5 MeV $\Gamma = 36.2 \pm 0.7$ MeV $\Gamma = 36 \pm 5$ MeV $\Gamma = 39.4 \pm 2.1$ MeV shold	(S = 1.9) (S = 1.4) (S = 2.2) (S = 1.7)	
Σ(1385) DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	р (MeV/c)
Λπ	(87.0 ±1.5) %	/ 0	208
$\Sigma \pi$	(11.7 ± 1.5) %	/o	129
$\Lambda\gamma$	$(1.25^{+0.13})$	6	241
Σ^+	(-70 + 17)	· 10-3	100
$\sum_{i=1}^{n} \gamma_{i}$	$(7.0 \pm 1.7) \times$	10^{-4} 90%	100
	× -·· · /·		1/0
Σ(1660) 1/2 ⁺	$I(J^P) = 1(\frac{1}{2})$	+)	

Re(pole position) = $1585 \pm 20 \text{ MeV}$ -2lm(pole position) = $290^{+140}_{-40} \text{ MeV}$ Mass m = 1640 to $1680 \ (\approx 1660) \text{ MeV}$ Full width $\Gamma = 100$ to $300 \ (\approx 200) \text{ MeV}$

Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
0.05 to 0.15 ($pprox$ 010)	405
$(35 \pm 12)\%$	440
(37 ± 10)%	387
	Fraction (Γ_i/Γ) 0.05 to 0.15 (\approx 010) (35 ±12)% (37 ±10)%

```
https://pdg.lbl.gov
```

Created: 5/31/2024 10:12

Σσ	$(20 \pm 8)\%$	_
Λ(1405)π	(4.0 ± 2.0) %	199

$$I(J^P) = 1(\frac{3}{2}^-)$$

Mass m = 1665 to 1685 (≈ 1675) MeV Full width $\Gamma = 40$ to 100 (≈ 70) MeV

Σ (1670) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
NK	0.06 to 0.12	419
$\Lambda\pi$	5–15 %	452
$\Sigma \pi$	30–60 %	398
$\Sigma \sigma$	(7.0 ±3.0) %	_

Σ(1750) 1/2⁻⁻

Σ(1670) 3/2⁻⁻

 $I(J^P) = \mathbb{1}(\tfrac{1}{2}^-)$

Mass m = 1700 to 1800 (≈ 1750) MeV Full width $\Gamma = 100$ to 200 (≈ 150) MeV

$\Sigma(1750)$ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
NK	0.06 to 0.12	486
$\Lambda\pi$	$(14 \pm 5)\%$	507
$\Sigma \pi$	(16 ±4)%	456
$\Sigma \eta$	15–55 %	98
$\Sigma(1385)\pi$, D -wave	< 1 %	305
$\Lambda(1520)\pi$	(2.0 $\pm 1.0)$ %	175
<i>NK</i> [*] (892), <i>S</i> =1/2	(8 ±4)%	†

Σ(1775) 5/2⁻ $I(J^P) = 1(\frac{5}{2})$

Mass m = 1770 to 1780 (≈ 1775) MeV Full width $\Gamma = 105$ to 135 (≈ 120) MeV

$\Sigma(1775)$ DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
NK	37–43%	508
$\Lambda\pi$	14–20%	525
$\Sigma \pi$	2–5%	475
$\Sigma(1385)\pi$	8–12%	327
$\Lambda(1520)\pi$, P -wave	17–23%	202

https://pdg.lbl.gov

Created: 5/31/2024 10:12

$$I(J^P) = \mathbb{1}(\frac{3}{2}^-)$$

was $\Sigma(1940)$

Mass m = 1870 to 1950 (≈ 1910) MeV Full width $\Gamma = 150$ to 300 (≈ 220) MeV

Σ(1910) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
NK	0.01 to 0.05 ($pprox$ 0.02)	615
$\Lambda\pi$	$(6 \pm 4)\%$	619
$\Sigma \pi$	(86 ± 21) %	574
$\Sigma(1385)\pi$	seen	439
$\Lambda(1520)\pi$	seen	329
$\Delta(1232)\overline{K}$	(3.0 \pm 1.0) %	377
$N\overline{K}^*(892)$	seen	274
$N\overline{K}^{*}(892)$, $S\!\!=\!\!1/2$, $D\!\!-\!\mathrm{wave}$	(1.0 \pm 1.0) %	274

Σ(1915) 5/2⁺

 $I(J^P) = \mathbb{1}(\tfrac{5}{2}^+)$

Mass m = 1900 to 1935 (≈ 1915) MeV Full width $\Gamma = 80$ to 160 (≈ 120) MeV

Σ (1915) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
NK	0.05 to 0.15	618
$\Lambda\pi$	(6.0 ±2.0) %	623
$\Sigma \pi$	(10.0 ±2.0) %	577
$\Sigma(1385)\pi$, <i>P</i> -wave	(2.0 ±2.0) %	443
$\Sigma(1385)\pi$, <i>F</i> -wave	(4.0 ±2.0) %	443
$\Lambda(1520)\pi$, D -wave	(8.0 ±2.0) %	334
$N\overline{K}^{*}(892)$, $S\!\!=\!\!1/2$, $F\!\!-\!\mathrm{wave}$	(5.0 \pm 3.0) %	282
$N\overline{K}^{*}(892)$, $S\!\!=\!\!3/2$, $F\!$ -wave	(5.0 ±2.0) %	282
$\Delta \overline{K}$, <i>P</i> -wave	(16 ± 5) %	383
$\Delta \overline{K}$, <i>F</i> -wave	(5.0 \pm 3.0) %	383

Σ(2030) 7/2⁺

$$I(J^P) = 1(\frac{7}{2}^+)$$

Mass m = 2025 to 2040 (≈ 2030) MeV Full width $\Gamma = 150$ to 200 (≈ 180) MeV

Σ(2030) DECAY MODES	Fraction (Г	-/Γ) p (MeV/c)
NK	17–23 %	702
https://pdg.lbl.gov	Page 31	Created: 5/31/2024 10:12

$\Lambda\pi$	17–23 %	700
$\Sigma \pi$	5–10 %	657
ΞK	<2 %	422
$\Sigma(1385)\pi$	5–15 %	532
$\Sigma(1385)\pi$, <i>F</i> -wave	(1.0±1.0) %	532
$\Lambda(1520)\pi$	10–20 %	431
$\Delta(1232)\overline{K}$	10–20 %	498
${\it \Delta}(1232)\overline{\it K}$, $\it F$ -wave	(15 ± 5)%	498
${\it \Delta}(1232)\overline{\it K}$, $\it H$ -wave	(1.0±1.0) %	498
$N\overline{K}^{*}(892)$, $S\!\!=\!\!3/2$, $F\!\!-\!\mathrm{wave}$	(14 ±8)%	439

$\frac{\Xi \text{ BARYONS}}{(S=-2, I=1/2)}$ $\Xi^0 = uss, \quad \Xi^- = dss$

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

P is not yet measured; + is the quark model prediction.

Mass $m = 1314.86 \pm 0.20$ MeV $m_{\Xi^-} - m_{\Xi^0} = 6.85 \pm 0.21$ MeV Mean life $\tau = (2.90 \pm 0.09) \times 10^{-10}$ s $c\tau = 8.71$ cm Magnetic moment $\mu = -1.250 \pm 0.014 \ \mu_N$

Decay parameters

 $\begin{array}{lll} & \Lambda \pi^{0} & \alpha = -0.349 \pm 0.009 \\ \alpha \ {\rm FOR} \ \overline{\Xi}^{0} \rightarrow \ \overline{\Lambda} \pi^{0} = 0.379 \pm 0.004 \\ & & \phi = (0.3 \pm 0.6)^{\circ} \\ \phi \ {\rm ANGLE} \ {\rm FOR} \ \overline{\Xi}^{0} \rightarrow \ \overline{\Lambda} \pi^{0} \ {\rm with} \ {\rm tan} \phi = \beta/\gamma = -0.3 \pm 0.6 \\ & {\rm degrees} \\ \Delta \phi_{CP}(\overline{\Xi}^{0}) = (\ \phi_{\overline{\Xi}^{0}} + \phi_{\pm 0} \)/2 = 0.0 \pm 0.4 \ {\rm degrees} \\ A_{CP} \ {\rm FOR} \ \overline{\Xi}^{0} \rightarrow \ \overline{\Lambda} \pi^{0}, \ \overline{\Xi}^{0} \rightarrow \ \overline{\Lambda} \pi^{0} = (-5 \pm 7) \times 10^{-3} \\ & & \gamma = 0.85 \ [l] \\ & & \Delta = (218^{+12}_{-19})^{\circ} \ [l] \\ A\gamma & \alpha = -0.70 \pm 0.07 \\ Ae^{+} e^{-} \ \alpha = -0.8 \pm 0.2 \\ \Sigma^{0} \gamma & \alpha = -0.69 \pm 0.06 \\ \Sigma^{+} e^{-} \overline{\nu}_{e} & g_{1}(0)/f_{1}(0) = 1.22 \pm 0.05 \\ \Sigma^{+} e^{-} \overline{\nu}_{e} & f_{2}(0)/f_{1}(0) = 2.0 \pm 0.9 \end{array}$

E ⁰ DECAY MODES		Fraction (Γ_i	/Γ) Confide	nce level	р (MeV/ <i>c</i>)
$\Lambda \pi^0$		$(99.524\pm$	0.012) %		135
$\Lambda\gamma$		(1.17 \pm	0.07) $ imes$ 10 $^{-3}$		184
$\Lambda e^+ e^-$		(7.6 \pm	0.6) $ imes 10^{-6}$		184
$\Sigma^0 \gamma$		(3.33 \pm	0.10) $ imes$ 10 $^{-3}$		117
$\Sigma^+ e^- \overline{\nu}_e$		(2.52 \pm	0.08) $ imes 10^{-4}$		120
$\Sigma^+ \mu^- \overline{ u}_\mu$		(2.33 \pm	0.35) $ imes$ 10 $^{-6}$		64
	$\Delta S = \Delta Q (SQ)$ $\Delta S = 2 \text{ forb}$) violating (bidden (<i>S2</i>)	modes or modes		
$\Sigma^{-}e^{+}\nu_{e}$	SQ	< 1.6	$\times 10^{-4}$	90%	112
$\Sigma^{-}\mu^{+}\nu_{\mu}$	SQ	< 9	imes 10 ⁻⁴	90%	49
$p\pi^-$	52	< 8	imes 10 ⁻⁶	90%	299
$pe^-\overline{\nu}_e$	<i>S2</i>	< 1.3	imes 10 ⁻³		323
$p\mu^-\overline{ u}_\mu$	<i>S2</i>	< 1.3	$\times 10^{-3}$		309

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

P is not yet measured; + is the quark model prediction.

 $\begin{array}{l} \text{Mass } m = 1321.71 \pm 0.07 \ \text{MeV} \\ (m_{\Xi^{-}} - m_{\overline{\Xi}^{+}}) \ / \ m_{\Xi^{-}} = (-3 \pm 9) \times 10^{-5} \\ \text{Mean life } \tau = (1.639 \pm 0.015) \times 10^{-10} \ \text{s} \\ c\tau = 4.91 \ \text{cm} \\ (\tau_{\Xi^{-}} - \tau_{\overline{\Xi}^{+}}) \ / \ \tau_{\Xi^{-}} = -0.01 \pm 0.07 \\ \text{Magnetic moment } \mu = -0.6507 \pm 0.0025 \ \mu_{N} \\ (\mu_{\Xi^{-}} + \mu_{\overline{\Xi}^{+}}) \ / \ \mu_{\Xi^{-}} | = +0.01 \pm 0.05 \\ \end{array}$

Decay parameters

$$\begin{array}{ll} \Lambda \pi^{-} & \alpha = -0.390 \pm 0.007 \quad ({\rm S} = 2.0) \\ \alpha(\overline{\Xi}^{+}) \mbox{ for } \overline{\Xi}^{+} \to \overline{\Lambda} \pi^{+} = 0.371 \pm 0.007 \\ (\alpha + \overline{\alpha}) \ / \ (\alpha - \overline{\alpha}) \mbox{ for } \overline{\Xi}^{-} \to \Lambda \pi^{-}, \ \overline{\Xi}^{+} \to \overline{\Lambda} \pi^{+} = (6 \pm 14) \times 10^{-3} \\ [\alpha(\overline{\Xi}^{-})\alpha_{-}(\Lambda) - \alpha(\overline{\Xi}^{+})\alpha_{+}(\overline{\Lambda})] \ / \ [\mbox{ sum }] = (0 \pm 7) \times 10^{-4} \\ " & \phi = (-1.2 \pm 1.0)^{\circ} \quad ({\rm S} = 1.4) \\ \phi \mbox{ ANGLE FOR } \overline{\Xi}^{+} \to \overline{\Lambda} \pi^{+} \quad (\mbox{tan} \phi = \beta/\gamma) = (-1.2 \pm 1.2)^{\circ} \\ \Delta \Phi_{CP} = (\Phi_{-} + \Phi_{+})/2 = (-0.3 \pm 0.8)^{\circ} \\ " & \gamma = 0.89 \ [l] \\ " & \Delta = (175.9 \pm 1.5)^{\circ} \ [l] \\ \Lambda e^{-} \overline{\nu}_{e} & g_{A}/g_{V} = -0.25 \pm 0.05 \ [h] \end{array}$$

<u>=</u> DECAY MODES		Fraction (Γ_i/Γ)	Confiden	ice level	р (MeV/c)
$ \frac{\Lambda \pi^{-}}{\Sigma^{-} \gamma} $		(99.887 ± 0.035) (1.27 ± 0.23)) % $) \times 10^{-4}$		140 118
$\Lambda u^- \overline{u}$		(3.03 ± 0.31)	1×10^{-4}		190
$\nabla^0 e^{-\frac{1}{\mu}}$		(3.3 - 2.2)	10^{-5}		103
Σe^{ν_e} $\Sigma^0 \mu^- \overline{\nu}$		(8.7 ±1.7)	$\times 10^{-4}$	90%	70
$\Xi^{0}e^{-}\overline{\nu}_{e}$		< 2.59	$\times 10^{-4}$	90%	7
$\Delta S =$	2 forl	bidden (<i>S2</i>) mode	2S		
$n\pi^{-}$	<i>S2</i>	< 1.9	imes 10 ⁻⁵	90%	304
$ne^-\overline{\nu}_e$	<i>S2</i>	< 3.2	imes 10 ⁻³	90%	327
$n\mu^-\overline{ u}_\mu$	<i>S2</i>	< 1.5	%	90%	314
$p\pi^-\pi^-$	<i>S2</i>	< 4	imes 10 ⁻⁴	90%	223
$p\pi^-e^-\overline{\nu}_e$	<i>S2</i>	< 4	$\times 10^{-4}$	90%	305
$ ho \pi^- \mu^- \overline{ u}_\mu$	<i>S2</i>	< 4	imes 10 ⁻⁴	90%	251
$p\mu^-\mu^-$	L	< 4	$\times 10^{-8}$	90%	272
$\Xi(1530) 3/2^+$ $\Xi(1530)^0 \text{ mass } m$ $\Xi(1530)^- \text{ mass } m$ $\Xi(1530)^0 \text{ full widt}$ $\Xi(1530)^- \text{ full widt}$	= 15 = 15 h Γ =	$I(J^P) = \frac{1}{2}(\frac{3}{2})$ 31.80 ± 0.32 MeV 35.0 ± 0.6 MeV = 9.1 ± 0.5 MeV - 9.9 ^{+1.7} MeV	(S = 1	1.3)	
$\Xi(1530) 3/2^+$ $\Xi(1530)^0 \text{ mass } m$ $\Xi(1530)^- \text{ mass } m$ $\Xi(1530)^0 \text{ full widt}$ $\Xi(1530)^- \text{ full widt}$	= 15 = 15 h Γ = h Γ =	$I(J^P) = \frac{1}{2}(\frac{3}{2})$ 31.80 ± 0.32 MeV 35.0 ± 0.6 MeV = 9.1 ± 0.5 MeV = 9.9 ^{+1.7} _{-1.9} MeV	+) V (S = 1	1.3)	p
$\Xi(1530) 3/2^+$ $\Xi(1530)^0 \text{ mass } m$ $\Xi(1530)^- \text{ mass } m$ $\Xi(1530)^0 \text{ full widt}$ $\Xi(1530)^- \text{ full widt}$ $\Xi(1530) \text{ DECAY MODES}$	= 15 = 15 h Γ = h Γ =	$I(J^P) = \frac{1}{2}(\frac{3}{2})$ 31.80 \pm 0.32 MeV 35.0 \pm 0.6 MeV = 9.1 \pm 0.5 MeV = 9.9 ^{+1.7} _{-1.9} MeV Fraction (Γ_i/Γ)	+) V (S =) Confiden	1.3) ace level	р (MeV/c)
$ \underline{=}(1530) \ 3/2^{+} $ $ \underline{=}(1530)^{0} \text{ mass } m $ $ \underline{=}(1530)^{-} \text{ mass } m $ $ \underline{=}(1530)^{0} \text{ full widt} $ $ \underline{=}(1530)^{-} \text{ full widt} $ $ \underline{=}(1530) \text{ DECAY MODES} $ $ \underline{=} \pi $	= 15 = 15 h Γ = h Γ =	$I(J^{P}) = \frac{1}{2}(\frac{3}{2})$ $31.80 \pm 0.32 \text{ MeV}$ $35.0 \pm 0.6 \text{ MeV}$ $= 9.1 \pm 0.5 \text{ MeV}$ $= 9.9^{+1.7}_{-1.9} \text{ MeV}$ Fraction (Γ_{i}/Γ) 100 %	+) V (S = Confiden	1.3) ace level	р (MeV/c) 158
$ \begin{array}{c} \Xi(1530) \ 3/2^+\\ \\ \Xi(1530)^0 \ \text{mass} \ m\\ \Xi(1530)^- \ \text{mass} \ m\\ \Xi(1530)^0 \ \text{full widt}\\ \\ \Xi(1530)^- \ \text{full widt}\\ \\ \end{array} $ $ \begin{array}{c} \Xi(1530) \ DECAY \ MODES\\ \\ \Xi\pi\\ \\ \Xi\gamma \end{array} $	= 15 = 15 h Γ = h Γ =	$I(J^P) = \frac{1}{2}(\frac{3}{2})$ $31.80 \pm 0.32 \text{ MeV}$ $35.0 \pm 0.6 \text{ MeV}$ $= 9.1 \pm 0.5 \text{ MeV}$ $= 9.9^{+1.7}_{-1.9} \text{ MeV}$ Fraction (Γ_i/Γ) 100 % < 3.7 %	+) V (S = Confiden	1.3) ace level 90%	р (MeV/c) 158 202
$ \underline{=}(1530) \ 3/2^{+} $ $ \underline{=}(1530)^{0} \ \text{mass } m \\ \underline{=}(1530)^{-} \ \text{mass } m \\ \underline{=}(1530)^{0} \ \text{full widt} \\ \underline{=}(1530)^{-} \ \text{full widt} \\ \underline{=}(1530)^{$	= 15 = 15 h Γ = h Γ =	$I(J^{P}) = \frac{1}{2}(\frac{3}{2})$ $31.80 \pm 0.32 \text{ MeV}$ $35.0 \pm 0.6 \text{ MeV}$ $= 9.1 \pm 0.5 \text{ MeV}$ $= 9.9^{+1.7}_{-1.9} \text{ MeV}$ $\frac{\text{Fraction } (\Gamma_{i}/\Gamma)}{100 \%}$ $< 3.7 \%$ $I(J^{P}) = \frac{1}{2}(?)$	(S = 1 Confiden	1.3) nce level 90%	р (MeV/c) 158 202
	= 15 = 15 h Γ = h Γ = 10 N ± 15	$I(J^{P}) = \frac{1}{2}(\frac{3}{2})$ $31.80 \pm 0.32 \text{ MeV}$ $35.0 \pm 0.6 \text{ MeV}$ $= 9.1 \pm 0.5 \text{ MeV}$ $= 9.9^{+1.7}_{-1.9} \text{ MeV}$ Fraction (Γ_i/Γ) 100 % < 3.7 % $I(J^{P}) = \frac{1}{2}(?)$ MeV [o] MeV	+) V (S = 1 Confiden ?)	1.3) nce level 90%	р (MeV/c) 158 202

ΛK	seen	240
$\Sigma \overline{K}$	seen	70
$\Xi\pi$	seen	311
$\Xi^{-}\pi^{+}\pi^{-}$	possibly seen	213

https://pdg.lbl.gov

Created: 5/31/2024 10:12

Ξ(1820) 3/2⁻⁻

$$I(J^P) = \tfrac{1}{2}(\tfrac{3}{2}^-)$$

 $\begin{array}{l} {\sf Mass} \ m = 1823 \pm 5 \ {\sf MeV} \ ^{[o]} \\ {\sf Full \ width} \ {\sf \Gamma} = 24 {+15 \atop -10} \ {\sf MeV} \ ^{[o]} \end{array}$

Ξ(1820) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
ΛK	large	402
$\Sigma \overline{K}$	small	324
$\equiv \pi$	small	421
$\Xi(1530)\pi$	small	237

$$I(J^P) = \frac{1}{2}(?^?)$$

Mass $m = 1950 \pm 15$ MeV $^{[o]}$ Full width $\Gamma = 60 \pm 20$ MeV $^{[o]}$

E(1950) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
ΛK	seen	522
$\Sigma \overline{K}$	possibly seen	460
$\Xi\pi$	seen	519

Ξ(2030)

Ξ(1950)

$$I(J^P) = \frac{1}{2}(\geq \frac{5}{2}?)$$

Mass $m = 2025 \pm 5$ MeV ^[o] Full width $\Gamma = 20^{+15}_{-5}$ MeV ^[o]

E(2030) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)	
$\Lambda\overline{K}$	\sim 20 %	585	
$\Sigma \overline{K}$	\sim 80 %	529	
$\equiv \pi$	small	574	
$\Xi(1530)\pi$	small	416	
$\Lambda \overline{K} \pi$	small	499	
$\Sigma \overline{K} \pi$	small	428	

$$\Omega \text{ BARYONS} (S = -3, I = 0)$$

Ω-

$$I(J^P) = 0(\frac{3}{2}^+)$$

 $J^P = \frac{3}{2}^+$ is the quark-model prediction; and J = 3/2 is fairly well established.

$$\begin{array}{l} \text{Mass } m = 1672.45 \pm 0.29 \ \text{MeV} \\ (m_{\Omega^{-}} - m_{\overline{\Omega}^{+}}) \ / \ m_{\Omega^{-}} = (-1 \pm 8) \times 10^{-5} \\ \text{Mean life } \tau = (0.821 \pm 0.011) \times 10^{-10} \ \text{s} \\ c\tau = 2.461 \ \text{cm} \\ (\tau_{\Omega^{-}} - \tau_{\overline{\Omega}^{+}}) \ / \ \tau_{\Omega^{-}} = 0.00 \pm 0.05 \\ \text{Magnetic moment } \mu = -2.02 \pm 0.05 \ \mu_{N} \end{array}$$

Decay parameters

 $\begin{array}{l} \alpha(\Omega^{-}) \ \alpha_{-}(\Lambda) \ \text{FOR} \ \Omega^{-} \rightarrow \ \Lambda K^{-} = 0.0115 \pm 0.0015 \\ \Lambda K^{-} \qquad \alpha = 0.0154 \pm 0.0020 \\ \Lambda K^{-}, \ \overline{\Lambda} K^{+} \ (\alpha + \overline{\alpha})/(\alpha - \overline{\alpha}) = -0.02 \pm 0.13 \\ \overline{\Xi}^{0} \pi^{-} \qquad \alpha = 0.09 \pm 0.14 \\ \overline{\Xi}^{-} \pi^{0} \qquad \alpha = 0.05 \pm 0.21 \end{array}$

Ω^- decay modes	Fra	ction (Γ_i/Γ)	Scale fa Confidence	actor/ e level (N	р ЛeV/c)
$\overline{\Lambda K^{-}}$	()	67.7 ±0.7)%	, 0		211
$\Xi^0 \pi^-$	(2	24.3 ± 0.7) %	0	5=1.5	294
$\Xi^{-}\pi^{0}$	(8.55±0.33) %	0		289
$\Xi^{-}\pi^{+}\pi^{-}$	(3.7 $^{+0.7}_{-0.6}$) $ imes$	10 ⁻⁴		189
$\Xi(1530)^{0}\pi^{-}$	<	7 ×	10 ⁻⁵ CL	=90%	17
$\Xi^0 e^- \overline{\nu}_e$	(5.6 ± 2.8) $ imes$	10 ⁻³		319
$\Xi^{-}\gamma$	<	4.6 ×	10 ⁻⁴ CL	=90%	314
	$\Delta S = 2$ forbidde	n (<i>S2</i>) mode	s		
$\Lambda\pi^-$	<i>S2</i> <	2.9 ×	10 ⁻⁶ CL	=90%	449

Ω(2012)⁻

$$I(J^P) = 0(?^-)$$

Mass $m = 2012.4 \pm 0.9$ MeV Full width $\Gamma = 6.4^{+3.0}_{-2.6}$ MeV

Branching fractions are given relative to the one **DEFINED AS 1**.

Confidence level	р (MeV/c)
	403
	392
90%	245
90%	230
90%	226
90%	224
	20nfidence level 90% 90% 90% 90%

$$I(J^{P}) = 0(?^{?})$$

Mass $m = 2252 \pm 9$ MeV Full width $\Gamma = 55 \pm 18$ MeV

$\Omega(2250)^-$ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\overline{\Xi^-\pi^+K^-}$	seen	532
${\it \Xi}(1530)^{0}{\it K}^{-}$	seen	437

CHARMED BARYONS

$$(C=+1)$$

 $\Lambda_c^+ = udc, \ \Sigma_c^{++} = uuc, \ \Sigma_c^+ = udc, \ \Sigma_c^0 = ddc, \ \Xi_c^+ = usc, \ \Xi_c^0 = dsc, \ \Omega_c^0 = ssc$

 Λ_c^+

$$I(J^P) = 0(\frac{1}{2}^+)$$

Mass $m = 2286.46 \pm 0.14$ MeV Mean life $\tau = (202.6 \pm 1.0) \times 10^{-15}$ s $c\tau = 60.75 \ \mu$ m

Decay asymmetry parameters

 $\begin{array}{ll} \Lambda \pi^+ & \alpha = -0.755 \pm 0.006 \\ \alpha \text{ FOR } \Lambda_c^+ \rightarrow & \Lambda \rho^+ = -0.76 \pm 0.07 \end{array}$

https://pdg.lbl.gov

Created: 5/31/2024 10:12

$$\begin{split} \Sigma^{+}\pi^{0} & \alpha = -0.484 \pm 0.027 \\ \alpha \text{ FOR } \Lambda_{c}^{+} \to \Sigma^{+}\eta = -0.99 \pm 0.06 \\ \alpha \text{ FOR } \Lambda_{c}^{+} \to \Sigma^{0}\pi^{+} = -0.466 \pm 0.07 \\ \alpha \text{ FOR } \Lambda_{c}^{+} \to \Sigma^{0}\pi^{+} = -0.466 \pm 0.018 \\ \alpha \text{ FOR } \Lambda_{c}^{+} \to \Sigma^{0}(1385)^{+}\pi^{0} = -0.92 \pm 0.09 \\ \alpha \text{ FOR } \Lambda_{c}^{+} \to \Sigma^{(}(1385)^{0}\pi^{+} = -0.79 \pm 0.11 \\ \Lambda \ell^{+}\nu_{\ell} & \alpha = -0.875 \pm 0.033 \\ \alpha \text{ FOR } \Lambda_{c}^{+} \to \rho K_{S}^{0} = 0.2 \pm 0.5 \\ \alpha \text{ FOR } \Lambda_{c}^{+} \to \lambda K^{+} = -0.58 \pm 0.05 \\ \alpha \text{ FOR } \Lambda_{c}^{+} \to \lambda K^{+} = -0.58 \pm 0.20 \\ \alpha \text{ FOR } \Lambda_{c}^{+} \to \Lambda^{(}(1405)\pi^{+} = 0.58 \pm 0.28 \\ \alpha \text{ FOR } \Lambda_{c}^{+} \to \Lambda^{(}(1520)\pi^{+} = 0.93 \pm 0.09 \\ \alpha \text{ FOR } \Lambda_{c}^{+} \to \Lambda^{(}(1520)\pi^{+} = 0.82 \pm 0.08 \\ \alpha \text{ FOR } \Lambda_{c}^{+} \to \Lambda^{(}(1600)\pi^{+} = 0.82 \pm 0.08 \\ \alpha \text{ FOR } \Lambda_{c}^{+} \to \Lambda^{(}(1600)\pi^{+} = 0.55 \pm 0.04 \\ \alpha \text{ FOR } \Lambda_{c}^{+} \to \Lambda^{(}(1600)\pi^{+} = 0.55 \pm 0.04 \\ \alpha \text{ FOR } \Lambda_{c}^{+} \to \Lambda^{(}(1600)^{++}K^{-} = 0.55 \pm 0.04 \\ \alpha \text{ FOR } \Lambda_{c}^{+} \to \Lambda^{(}(1600)^{++}K^{-} = 0.55 \pm 0.04 \\ \alpha \text{ FOR } \Lambda_{c}^{+} \to \Lambda^{(}(1600)^{++}K^{-} = 0.22 \pm 0.08 \\ \alpha \text{ FOR } \Lambda_{c}^{+} \to \Lambda^{(}(1600)^{++}K^{-} = 0.22 \pm 0.08 \\ \alpha \text{ FOR } \Lambda_{c}^{+} \to \Lambda^{(}(1403)^{0}p = 0.34 \pm 0.14 \\ (\alpha + \overline{\alpha})/(\alpha - \overline{\alpha}) \text{ in } \Lambda_{c}^{+} \to \Lambda^{\pi^{+}}, \overline{\Lambda_{c}}^{-} \to \overline{\Lambda}\pi^{-} = 0.020 \pm 0.016 \\ (\alpha + \overline{\alpha})/(\alpha - \overline{\alpha}) \text{ in } \Lambda_{c}^{+} \to \Lambda^{e^{+}}\nu_{e}, \overline{\Lambda}_{c}^{-} \to \overline{\Sigma}^{0}\pi^{-} = -0.02 \pm 0.014 \\ (\alpha + \overline{\alpha})/(\alpha - \overline{\alpha}) \text{ in } \Lambda_{c}^{+} \to \Lambda^{e^{+}}\nu_{e}, \overline{\Lambda}_{c}^{-} \to \overline{\Sigma}^{0}K^{-} = 0.1 \pm 0.4 \\ \Lambda_{CP}(\Lambda X) \text{ in } \Lambda_{c} \to \Lambda K^{+}, \overline{\Lambda}_{c} \to \overline{\Lambda}K^{-} = -0.23 \pm 0.11 \\ (\alpha + \overline{\alpha})/(\alpha - \overline{\alpha}) \text{ in } \Lambda_{c}^{+} \to \Sigma^{0}K^{+}, \overline{\Lambda}_{c} \to \overline{\Sigma}^{0}K^{-} = 0.1 \pm 0.4 \\ \Lambda_{CP}(\Lambda K^{+}) \text{ in } \Lambda_{c} \to \Lambda K^{+}, \overline{\Lambda}_{c} \to \overline{\Sigma}^{0}K^{-} = 0.03 \pm 0.05 \\ \Delta \Lambda_{CP} = \Lambda_{CP}(\Lambda_{c}^{+} \to \rho K^{+}K^{-}) - \Lambda_{CP}(\Lambda_{c}^{+} \to \rho \pi^{+}\pi^{-}) = \\ (0.3 \pm 1.1)\%$$

Branching fractions marked with a footnote, e.g. [a], have been corrected for decay modes not observed in the experiments. For example, the submode fraction $\Lambda_c^+ \rightarrow p \overline{K}^*(892)^0$ seen in $\Lambda_c^+ \rightarrow p K^- \pi^+$ has been multiplied up to include $\overline{K}^*(892)^0 \rightarrow \overline{K}^0 \pi^0$ decays.

Λ_c^+ DECAY MODES	F	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	р (MeV/c)
Hadronic modes v	vith a <i>p</i>	or <i>n</i> : $S = -1$ f	inal states	
pK ⁰ _S	-	$(1.59\pm~0.07)~\%$	S=1.1	873
$p \tilde{K} - \pi^+$		(6.24± 0.28) %	S=1.4	823
$p \overline{K}_{0}^{*}(700)^{0}$		(1.9 \pm 0.6) \times	10 ⁻³	715
$p\overline{K^{*}}(892)^{0}$	[q]	$(1.39\pm\ 0.07)~\%$		685
$p\overline{K}_{0}^{*}(1430)$		(9.2 \pm 1.8) $ imes$	10 ⁻³	†
$\Delta(1232)^{++}K^{-}$		$(1.76\pm\ 0.09)$ %		710
$\Delta(1600)^{++}K^{-}$		(2.8 \pm 1.0) \times	10 ⁻³	_
$\Delta(1700)^{++} K^{-}$		(2.4 \pm 0.6) $ imes$	10 ⁻³	_
$\Lambda(1405)^{0}\pi^{+}$		(4.8 \pm 1.9) $ imes$	10 ⁻³	-
$\Lambda(1520)\pi^+$	[q]	(1.16 \pm 0.16) $ imes$	10 ⁻³	628
$\Lambda(1600)\pi^+$		(3.2 \pm 1.2) \times	10 ⁻³	571
$\Lambda(1670)\pi^+$		(7.4 \pm 2.1) $ imes$	10-4	516
$\Lambda(1690)\pi^+$		(7.4 \pm 2.2) \times	10-4	504
$\Lambda(2000)\pi^+$		(6.0 \pm 0.7) $ imes$	10^{-3}	234
$pK^-\pi^+$ nonresonant		(3.5 \pm 0.4) %		823
$pK_{S}^{0}\pi^{0}$		$(1.96\pm 0.12)\%$		823
$nK_S^0\pi^+$		($1.82\pm~0.25$) %		821
$nK^{-}\pi^{+}\pi^{+}$		($1.90\pm~0.12$) %		756
$p\overline{K}^0\eta$		(8.8 \pm 0.6) $ imes$	10^{-3} S=1.1	568
$pK_S^0\pi^+\pi^-$		($1.59\pm~0.11$) %	S=1.1	754
$p K^- \pi^+ \pi^0$		(4.43± 0.28) %	S=1.5	759
$pK^{*}(892)^{-}\pi^{+}$	[q]	(1.4 \pm 0.5) %		580
$p(K^{-}\pi^{+})_{nonresonant}\pi^{0}$		(4.6 \pm 0.8) %		759
$\Delta(1232)\overline{K}^*(892)$		seen	_	419
$pK^{-}2\pi^{+}\pi^{-}$		(1.4 \pm 0.9) $ imes$	10-3	671
$pK^{-}\pi^{+}2\pi^{0}$		(10 \pm 5) \times	10^{-3}	678

Hadronic modes with a p or n: S = 0 final states

$p\pi^0$	< 8	imes 10 ⁻⁵	CL=90%	945
$n\pi^+$	(6.6 \pm	1.3) $\times10^{-4}$		944
pη	($1.57\pm$	$0.12) \times 10^{-3}$		856
$p\eta'$	(4.8 \pm	0.9) $ imes$ 10 $^{-4}$		639
$p\omega(782)^0$	($1.11\pm$	$0.21) \times 10^{-3}$		751
$p\pi^+\pi^-$	($4.59\pm$	$0.25) \times 10^{-3}$		927
p f ₀ (980)	$\left[q ight]$ (3.4 \pm	2.3) $ imes$ 10 $^{-3}$		614
$n\pi^+\pi^0$	(6.4 \pm	0.9) $ imes$ 10 $^{-3}$		927
$n\pi^+\pi^-\pi^+$	(4.5 \pm	0.8) $ imes$ 10 $^{-3}$		895
$p2\pi^+2\pi^-$	(2.2 \pm	1.4) $ imes$ 10 $^{-3}$		852
р K ⁺ K ⁻	($1.06\pm$	$0.05) \times 10^{-3}$		616

$oldsymbol{ ho}\phi$	$[q]$ ($1.06\pm$ 0.	$14) \times 10^{-3}$		590
$ ho {\it K}^+ {\it K}^-$ non- ϕ	$(5.2 \pm 1.)$	1) $ imes$ 10 $^{-4}$		616
$pK_S^0K_S^0$	($2.35\pm$ 0.	$18) \times 10^{-4}$		610
$p\phi\pi^0$	(10 ± 4)	$) imes 10^{-5}$		460
$pK^+K^-\pi^0$ nonresonant	< 6.3	imes 10 ⁻⁵	CL=90%	494

Hadronic modes with a hyperon: S = -1 final states

$\Lambda \pi^+$	$(1.29\pm~0.05)~\%$	S=1.1	864
$\Lambda(1670)\pi^+$, $\Lambda(1670) ightarrow \eta\Lambda$	$(3.5 \pm 0.5) \times 10^{-3}$		_
$\Lambda \pi^+ \pi^0$	(7.02± 0.35) %	S=1.1	844
Λho^+	$(4.0 \pm 0.5)\%$		636
$\Sigma(1385)^+ \pi^0$, $\Sigma^+ \rightarrow \Lambda \pi^+$	$(5.0 \pm 0.7) \times 10^{-3}$		_
$\Sigma(1385)^0 \pi^+, \ \Sigma^0 \rightarrow \Lambda \pi^0$	$(5.6 \pm 0.8) \times 10^{-3}$		_
$\Lambda \pi^{-2} \pi^{+}$	(3.61± 0.26) %	S=1.4	807
$\Sigma(1385)^+\pi^+\pi^-$, $\Sigma^{*+} ightarrow$	$(1.0 \pm 0.5)\%$		688
$\Sigma(1385)^-2\pi^+$, $\Sigma^{*-} ightarrow$	(7.6 \pm 1.4) $\times10^{-3}$		688
$\Lambda \pi^+ a^0$	(14 + 06)%		524
$\Sigma(1385)^+ a^0 \Sigma^{*+} \rightarrow \Lambda \pi^+$	$(1.4 \pm 0.0) / 0$ $(5 \pm 4) \times 10^{-3}$		363
$\Lambda \pi^- 2\pi^+$ nonresonant	$(3 \pm 4) \times 10$	CI 90%	807
$\Lambda \pi^{-} \pi^{0} 2 \pi^{+}$ total	(22 + 08)%	CL_9070	757
$\Lambda \pi^+ n$	$[a] (184\pm 0.11)\%$	S=1.1	691
$\Sigma(1385)^{+}n$	$[a] (91 + 20) \times 10^{-3}$	5-1.1	570
$\Lambda \pi^+ \omega$	$[a] (15 \pm 05)\%$		517
$\Lambda \pi^- \pi^0 2 \pi^+$, no <i>n</i> or ω	$< 8 \times 10^{-3}$	CI = 90%	757
$\Lambda K^+ \overline{K}^0$	$(5.6 + 1.1) \times 10^{-3}$	S=1.9	443
$\Xi(1690)^0 K^+$, $\Xi^{*0} \to \Lambda \overline{K}^0$	$(1.6 + 0.5) \times 10^{-3}$		286
$\Sigma^0 \pi^+$	$(1.27\pm0.06)\%$	S=1.1	825
$\Sigma^0 \pi^+ \eta$	$(7.5 \pm 0.8) \times 10^{-3}$		635
$\Sigma^+ \pi^0$	(1.24± 0.09) %		827
$\Sigma^+ \eta$	$(3.2 \pm 0.5) \times 10^{-3}$		713
$\Sigma^+ \eta'$	$(4.1 \pm 0.8) \times 10^{-3}$		391
$\Sigma^+\pi^+\pi^-$	(4.47± 0.22) %	S=1.2	804
$\Sigma^+ ho^0$	< 1.7 %	CL=95%	575
$\Sigma^{-}2\pi^{+}$	$(1.86\pm\ 0.18)~\%$		799
$\Sigma^0 \pi^+ \pi^0$	(3.5 \pm 0.4) %		803
$\Sigma^+ \pi^0 \pi^0$	$(1.54\pm~0.14)~\%$		806
$\Sigma^0 \pi^- 2\pi^+$	($1.10\pm~0.30)~\%$		763
$\Sigma^+ \omega$	($1.69\pm~0.20)$ %		569
$\Sigma^{-}\pi^{0}2\pi^{+}$	(2.1 \pm 0.4) %		762
$\Sigma^+ K^+ K^-$	($3.59\pm~0.35) imes10^{-3}$	S=1.1	349
$\Sigma^+\phi$	[q] (3.9 \pm 0.5) $ imes$ 10 $^{-3}$	S=1.1	295
$arepsilon(1690)^{0}{\it K}^{+}$, $arepsilon^{*0} ightarrow$	(1.01 \pm 0.25) $ imes$ 10 $^{-3}$		286
$\Sigma^+ K^-$			

$\Sigma^+ K^+ K^-$ nonresonant	< 8	imes 10 ⁻⁴	CL=90%	349
$\Xi^0 K^+$	(5.5 ± 0.5)	.7) $ imes$ 10 ⁻³		653
$\Xi^{-}K^{+}\pi^{+}$	(6.2 ± 0)	.5) $ imes$ 10 $^{-3}$	S=1.1	565
$\Xi(1530)^0 K^+$	(4.3 ± 0)	.9) $ imes$ 10 $^{-3}$	S=1.1	473

Hadronic modes with a hyperon: S = 0 final states

(6.42 ± 0)	$(0.31) \times 10^{-4}$		781
< 5	imes 10 ⁻⁴	CL=90%	637
(3.70 ± 0)	$(0.31) \times 10^{-4}$		735
(4.7 \pm 1	4) $ imes 10^{-4}$		736
< 2.5	imes 10 ⁻⁴	CL=90%	574
($2.00\pm$ 0	$(0.26) \times 10^{-3}$		670
$\left[q ight]$ (3.5 \pm 1	1.0) $ imes$ 10 $^{-3}$		470
< 1.1	imes 10 ⁻³	CL=90%	581
< 1.2	imes 10 ⁻³	CL=90%	664
	$(\begin{array}{ccc} 6.42 \pm \ 0 \\ < 5 \\ (\begin{array}{c} 3.70 \pm \ 0 \\ (\begin{array}{c} 4.7 \pm \ 1 \\ < 2.5 \\ (\begin{array}{c} 2.00 \pm \ 0 \\ < 1.1 \\ < 1.2 \end{array})$	$\begin{array}{ccccccc} (& 6.42 \pm & 0.31) \times 10^{-4} \\ < & 5 & \times 10^{-4} \\ (& 3.70 \pm & 0.31) \times 10^{-4} \\ (& 4.7 \ \pm \ 1.4 \) \times 10^{-4} \\ < & 2.5 & \times 10^{-4} \\ (& 2.00 \pm \ 0.26) \times 10^{-3} \\ [q] & (& 3.5 \ \pm \ 1.0 \) \times 10^{-3} \\ < & 1.1 & \times 10^{-3} \\ < & 1.2 & \times 10^{-3} \end{array}$	$\begin{array}{cccccccc} (& 6.42 \pm & 0.31) \times 10^{-4} \\ < & 5 & \times 10^{-4} & \text{CL} = 90\% \\ & (& 3.70 \pm & 0.31) \times 10^{-4} \\ & (& 4.7 \pm & 1.4 &) \times 10^{-4} \\ < & 2.5 & \times 10^{-4} & \text{CL} = 90\% \\ & (& 2.00 \pm & 0.26) \times 10^{-3} \\ & (& 3.5 \pm & 1.0 &) \times 10^{-3} \\ < & 1.1 & \times 10^{-3} & \text{CL} = 90\% \\ < & 1.2 & \times 10^{-3} & \text{CL} = 90\% \end{array}$

Doubly Cabibbo-suppressed modes

 $(1.11\pm 0.17) \times 10^{-4}$ 823

Semileptonic modes

$\Lambda e^+ \nu_e$	$(3.56\pm0.13)\%$		871
$\Lambda \pi^+ \pi^- e^+ \nu_e$	$< 3.9 \times 10^{-4}$	CL=90%	843
$pK^-e^+\nu_e$	(8.8 \pm 1.8) $\times10^{-4}$		874
$p K_S^0 \pi^- e^+ \nu_e$	$< 3.3 \times 10^{-4}$	CL=90%	821
$\Lambda(1520) e^+ \nu_e$	(1.0 \pm 0.5) $\times10^{-3}$		639
$\Lambda(1405)^0 e^+ \nu_e$, $\Lambda^0 \to p K^-$	(4.2 \pm 1.9) $\times10^{-4}$		—
$\Lambda \mu^+ u_{\mu}$	($3.48\pm~0.17)$ %		867

Inclusive modes

e ⁺ anything	(4.06± 0.13) % -
p anything	(50 \pm 16)% -
n anything	(32.6 \pm 1.6) % $-$
Λ anything	(38.2 + 2.9)% -
K_S^0 anything	(9.9 \pm 0.7) % $-$
3prongs	(24 ± 8)% -

$\Delta C = 1$ weak neutral current (C1) modes, or Lepton Family number (LF), or Lepton number (L), or Baryon number (B) violating modes

p e^+ e^-	C1	< 5.5	$ imes$ 10 $^{-6}$ C	L=90%	951
$p \mu^+ \mu^-$ non-resonant	C1	< 7.7	imes 10 ⁻⁸ C	L=90%	937
$p e^+ \mu^-$	LF	< 9.9	imes 10 ⁻⁶ C	L=90%	947
$pe^-\mu^+$	LF	< 1.9	$ imes$ 10 $^{-5}$ C	L=90%	947

https://pdg.lbl.gov

 $pK^+\pi^-$

Citation: S. Navas et al. (Particle Data Group), Phys. Rev. D 110, 030001 (2024)

$\overline{p}2\mu^+$	L,B	< 9.4	× 10 ⁻⁶	CL=90%	937
$\overline{p}e^+\mu^+$	L,B	< 1.6	imes 10 ⁻⁵	CL=90%	947
$\Sigma^{-}\mu^{+}\mu^{+}$	L	< 7.0	imes 10 ⁻⁴	CL=90%	812
$\Sigma^+\gamma$	Rad	diative modes < 2.5	$\times 10^{-4}$	CL=90%	834
$p\gamma_D$	E	xotic modes [r] < 8.0	$\times 10^{-5}$	CL=90%	_

Λ_c(2595)⁺

$$I(J^P) = 0(\frac{1}{2})$$

The spin-parity follows from the fact that $\Sigma_c(2455)\pi$ decays, with little available phase space, are dominant. This assumes that $J^P = 1/2^+$ for the $\Sigma_c(2455)$.

Mass $m = 2592.25 \pm 0.28$ MeV $m - m_{\Lambda_c^+} = 305.79 \pm 0.24$ MeV Full width $\Gamma = 2.6 \pm 0.6$ MeV

 $\Lambda_c^+ \pi \pi$ and its submode $\Sigma_c(2455)\pi$ — the latter just barely — are the only strong decays allowed to an excited Λ_c^+ having this mass; and the submode seems to dominate.

$\Lambda_c(2595)^+$ DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$\Lambda_{c}^{+}\pi^{+}\pi^{-}$	[s] —	117
$\Sigma_{c}(2455)^{++}\pi^{-}$	24 \pm 7 %	3
$\Sigma_{c}(2455)^{0}\pi^{+}$	24 \pm 7 %	3
$\Lambda_c^+ \pi^+ \pi^-$ 3-body	18 \pm 10 %	117
$\Lambda_c^+ \pi^0$	[t] not seen	258
$\Lambda_c^+ \gamma$	not seen	288

Λ_c(2625)⁺

$$I(J^P) = 0(\frac{3}{2})$$

 J^P has not been measured; $\frac{3}{2}^-$ is the quark-model prediction.

 $\begin{array}{l} {\rm Mass} \,\, m = 2628.00 \pm 0.15 \,\, {\rm MeV} \\ m - m_{\Lambda_c^+} = 341.54 \pm 0.05 \,\, {\rm MeV} \\ {\rm Full \ width} \,\, \Gamma \ < \ 0.52 \,\, {\rm MeV}, \,\, {\rm CL} = 90\% \end{array}$

 $\Lambda_c^+ \pi \pi$ and its submode $\Sigma(2455)\pi$ are the only strong decays allowed to an excited Λ_c^+ having this mass.

$\Lambda_c(2625)^+$ DECAY MODES	Fraction (Γ_i/Γ)		Confidence level	р (MeV/c)
$\Lambda_c^+ \pi^+ \pi^-$	[<i>u</i>] 66.67	%		184
$\Sigma_{c}(2455)^{++}\pi^{-}$	(3.42±0	0.27) %		103
$\Sigma_{c}(2455)^{0}\pi^{+}$	(3.46±0	0.31) %		103
$\Lambda_c^+ \pi^+ \pi^-$ 3-body	large			184
$\Lambda_c^+ \pi^0$	[t] < 60	%	90%	293
$\Lambda_c^+ \gamma$	< 35	%	90%	319

$$I(J^{\boldsymbol{P}}) = 0(\tfrac{3}{2}^+)$$

Mass $m = 2856.1^{+2.3}_{-6.0}$ MeV Full width $\Gamma = 68^{+12}_{-22}$ MeV

$\Lambda_c(2860)^+$ DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
D ⁰ p	seen	259

 $\Lambda_{c}(2860)^{+}$

 $I(J^P) = 0(\frac{5}{2}^+)$

 $\begin{array}{l} {\rm Mass} \ m = 2881.63 \pm 0.24 \ {\rm MeV} \\ m \ - \ m_{{\cal A}^+_c} = 595.17 \pm 0.28 \ {\rm MeV} \\ {\rm Full \ width} \ \Gamma = 5.6^{+0.8}_{-0.6} \ {\rm MeV} \end{array}$

$\Lambda_c(2880)^+$ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\Lambda_c^+ \pi^+ \pi^-$	seen	471
$\Sigma_{c}(2455)^{0,++}\pi^{\pm}$	seen	376
$\Sigma_{c}(2520)^{0,++}\pi^{\pm}$	seen	317
р D ⁰	seen	316

 $I(J^{P}) = 0(\frac{3}{2}^{-})$ $J^{P} = 3/2^{-} \text{ is favored, but is not certain}$ $Mass \ m = 2939.6^{+1.3}_{-1.5} \text{ MeV}$ Full width $\Gamma = 20^{+6}_{-5} \text{ MeV}$

Л _с (2940) ⁺ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
<i>p D</i> ⁰	seen	420
$\Sigma_{c}(2455)^{0,++}\pi^{\pm}$	seen	_
Σ _c (2455)	$I(J^P) = 1(\frac{1}{2}^+)$	
$\begin{split} & \sum_{c} (2455)^{++} \text{mass } \mu \\ & \sum_{c} (2455)^{+} \text{mass } \mu \\ & \sum_{c} (2455)^{0} \text{mass } \mu \\ & m_{\sum_{c} (2455)^{++}} - \mu \\ & m_{\sum_{c} (2455)^{+}} - m \\ & m_{\sum_{c} (2455)^{++}} - m \\ & m_{\sum_{c} (2455)^{++}} - m \\ & \sum_{c} (2455)^{++} \text{full wi} \\ & \sum_{c} (2455)^{+} \text{ full wi} \\ & \sum_{c} (2455)^{0} \text{ full wi} \end{split}$	$m = 2453.97 \pm 0.14 \text{ MeV}$ $m = 2452.65^{+0.22}_{-0.16} \text{ MeV}$ $m = 2453.75 \pm 0.14 \text{ MeV}$ $m_{\Lambda_c^+} = 167.510 \pm 0.017 \text{ MeV}$ $m_{\Lambda_c^+} = 166.19^{+0.16}_{-0.08} \text{ MeV}$ $= 167.290 \pm 0.017 \text{ MeV}$ $m_{\Sigma_c(2455)^0} = 0.220 \pm 0.013$ $p_{\Sigma_c(2455)^0} = -1.10^{+0.16}_{-0.08} \text{ MeV}$ $dth \ \Gamma = 1.89^{+0.09}_{-0.18} \text{ MeV} (S)$ $dth \ \Gamma = 2.3 \pm 0.4 \text{ MeV}$ $dth \ \Gamma = 1.83^{+0.11}_{-0.19} \text{ MeV} (S)$	V MeV EV S = 1.1) S = 1.2)
Σ_c (2455) DECAY MODES	Fraction (Γ_{c}/Γ)	ρ (MeV/c)
$1_c^+ \pi$	≈ 100 %	94
Σ _c (2520)	$I(J^P) = 1(\frac{3}{2}^+)$	
J^P has not been meas	ured; $\frac{3}{2}^+$ is the quark-model	prediction.
$\Sigma_c(2520)^{++}$ mass μ $\Sigma_c(2520)^+$ mass μ $\Sigma_c(2520)^0$ mass μ $m_{\Sigma_c(2520)^{++}} - \mu$ $m_{\Sigma_c(2520)^+} - m$ $m_{\Sigma_c(2520)^0} - m$ $m_{\Sigma_c(2520)^{++}} - \mu$	$m = 2518.41 \pm 0.22 \text{ MeV}$ $m = 2517.4^{+0.7}_{-0.5} \text{ MeV}$ $m = 2518.48 \pm 0.21 \text{ MeV}$ $m_{\Lambda_c^+} = 231.95 \pm 0.18 \text{ MeV}$ $m_{\Lambda_c^+} = 230.9^{+0.7}_{-0.5} \text{ MeV}$ $m_{\Lambda_c^+} = 232.02 \pm 0.15 \text{ MeV}$ $m_{\Sigma_c}(2520)^0 = 0.01 \pm 0.15 \text{ MeV}$	(S = 1.3) (S = 1.2) (S = 1.8) (S = 1.4) leV

$$\Sigma_c(2520)^{++} \text{ full width } \Gamma = 14.78^{+0.30}_{-0.40} \text{ MeV}$$

$$\Sigma_c(2520)^{+} \text{ full width } \Gamma = 17.2^{+4.0}_{-2.2} \text{ MeV}$$

$$\Sigma_c(2520)^0$$
 full width $\Gamma = 15.3^{+0.4}_{-0.5}$ MeV

 $\Lambda_{\rm C}^+\,\pi$ is the only strong decay allowed to a $\varSigma_{\rm C}$ having this mass.

Σ _c (2520) DECAY MOI	DES Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$\Lambda_c^+ \pi$	pprox 100 %	179
Σ _c (2800)	$I(J^{P}) = 1(?^{?})$	
$ \sum_{c} (2800) \sum_{c} (2800) \sum_{c} (2800) \sum_{c} (2800) m_{\Sigma_{c}} (2800) m_{\Sigma_{c}} (2800) \sum_{c} (2800) \Sigma_{c} (2800) $.3) 1.3)
Σ _c (2800) DECAY MOI	DES Fraction (Γ_i/Γ)	p (MeV/c)
$\Lambda_c^+ \pi$	seen	443
$\mathbf{F}_{\mathbf{c}}^{+}$	$I(J^P)=rac{1}{2}(rac{1}{2}^+)$ been measured; $rac{1}{2}^+$ is the quark-mod	el prediction.
Mass m Mean life $c au=c$	= 2467.71 \pm 0.23 MeV (S = 1.3) e $ au$ = (453 \pm 5) $ imes$ 10 ⁻¹⁵ s = 135.8 μ m	
Branching frac for decay mode mode fraction been multiplied	tions marked with a footnote, e.g. [a], have es not observed in the experiments. For exa $\Xi_c^+ \rightarrow \Sigma^+ \overline{\kappa}^* (892)^0$ seen in $\Xi_c^+ \rightarrow \Sigma$ d up to include $\overline{\kappa}^* (892)^0 \rightarrow \overline{\kappa}^0 \pi^0$ decays	been corrected imple, the sub- $K^{+}\pi^{+}$ has
$=_{c}^{+}$ decay modes	Fraction (Γ_i/Γ) Co	Scale factor/ <i>p</i> onfidence level (MeV/ <i>c</i>)
$ p 2K_{S}^{0} \\ \Lambda \overline{K}{}^{0} \pi^{+} \\ \Sigma (1385)^{+} \overline{K}{}^{0} $	Cabibbo-favored $(S = -2)$ decays (2.5±1.3) × 10 ⁻³ [q] (2.9±2.0) %	766 852 746
https://pdg.lbl.gov	Page 45 Create	d: 5/31/2024 10:12

$\Lambda K^{-} 2\pi^{+}$	$(9~\pm4~) imes10^{-3}$		787
$\Lambda \overline{K}^*(892)^0 \pi^+$	[q] < 5	CL=90%	608
$\Sigma(1385)^+ K^- \pi^+$	$[q] < 6 10^{-3}$	CL=90%	678
$\Sigma^+ K^- \pi^+$	(2.7 ± 1.2) %		810
$\Sigma^+\overline{K}^*(892)^0$	[q] (2.3±1.1) %		658
$\Sigma^0 K^- 2\pi^+$	(8 ± 5) $ imes 10^{-3}$		735
$\equiv^0 \pi^+$	(1.6 ± 0.8) %		876
$\Xi^{-}2\pi^{+}$	(2.9±1.3) %		851
$\Xi(1530)^{0}\pi^{+}$	$[q] < 2.9 imes 10^{-3}$	CL=90%	749
$\Xi(1620)^0 \pi^+$	seen		_
$\Xi(1690)^0 \pi^+$	seen		644
$\equiv^{0}\pi^{+}\pi^{0}$	(6.7±3.5) %		856
$\Xi^0 \pi^- 2\pi^+$	(5.0±2.6) %		818
$\Xi^0 e^+ \nu_e$	(7 ±4)%		884
$\Omega^- K^+ \pi^+$	$(2.0\pm1.5) imes10^{-3}$		399
Cabibbe	o-suppressed decays		
$p K^- \pi^+$	$(6.2\pm3.0) imes10^{-3}$	S=1.5	944
$p\overline{K}^*(892)^0$	[q] (3.3±1.7) × 10 ⁻³		828
$\Sigma^+ \pi^+ \pi^-$	(1.4 ± 0.8) %		922
$\Sigma^{-}2\pi^{+}$	$(5.1\pm3.4) imes10^{-3}$		918
$\Sigma^+ K^+ K^-$	$(4.3\pm2.5) imes10^{-3}$		579
$\Sigma^+ \phi$	$[q] < 3.2 imes 10^{-3}$	CL=90%	549
$arepsilon(1690)^0 K^+$, $arepsilon^0 o arepsilon^+$, $arepsilon^0 o arepsilon^+$	$< 1.3 \times 10^{-3}$	CL=90%	501
$p\phi(10\overline{2}0)$	$(1.2\pm0.6) imes10^{-4}$		751

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

 J^P has not been measured; $\frac{1}{2}^+$ is the quark-model prediction.

Mass
$$m = 2470.44 \pm 0.28$$
 MeV (S = 1.2)
 $m_{\Xi_c^0} - m_{\Xi_c^+} = 2.72 \pm 0.23$ MeV (S = 1.1)
Mean life $\tau = (150.4 \pm 2.8) \times 10^{-15}$ s (S = 1.4)
 $c\tau = 45.1 \ \mu$ m

Decay asymmetry parameters

 $\Xi^{-}\pi^{+} \qquad \alpha = -0.64 \pm 0.05$ $\alpha \text{ FOR } \overline{\Xi}{}^{0}_{c} \rightarrow \overline{\Xi}{}^{+}\pi^{-} = 0.61 \pm 0.05$ $\alpha \text{ FOR } \overline{\Xi}{}^{0}_{c} \rightarrow \Lambda \overline{K}{}^{*}(892)^{0} = 0.15 \pm 0.22$ $\alpha \text{ FOR } \overline{\Xi}{}^{0}_{c} \rightarrow \Sigma^{+} K{}^{*}(892)^{-} = -0.52 \pm 0.30$

https://pdg.lbl.gov

Ξ⁰_c

Ξ_c^0 DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	р (MeV/c)	
Cabibbo-	favored decays			
$pK^-K^-\pi^+$	$(4.9 \pm 1.0) \times 1$	0-3	676	
$pK^{-}\overline{K}^{*}(892)^{0}, \ \overline{K}^{*0} \rightarrow K^{-}\pi^{+}$	$(2.0 \pm 0.6) \times 1$	0-3	413	
$pK^-K^-\pi^+$ (no \overline{K}^{*0})	$(3.0 \pm 0.8) \times 1$	0-3	676	
ΛK_{S}^{0}	$(3.2 \pm 0.6) imes 1$	0 ⁻³	906	
$\Lambda \kappa^{-} \pi^{+}$	(1.45±0.28) %		856	
$\Lambda \overline{K}^*(892)^0$	$(2.6 \pm 0.6) imes 1$	0 ⁻³	717	
$\Lambda \overline{K}{}^{0}\pi^{+}\pi^{-}$	seen		786	
$\Lambda K^{-} \pi^{+} \pi^{+} \pi^{-}$	seen		703	
$\Sigma^0 K_S^0$	(5.4 ± 1.4) $ imes 1$	0 ⁻⁴	864	
$\Sigma^+ K^-$	$(1.8 \ \pm 0.4$ $) imes 1$	0 ⁻³	868	
$\Sigma^0 \overline{K}^* (892)^0$	(9.9 ± 1.9) $ imes 1$	0-3	658	
Σ^+ $K^*(892)^-$	(4.9 ± 1.3) $ imes 1$	0-3	661	
$\Xi^{-}\pi^{+}$	(1.43±0.27) %		875	
$\Xi^{-}\pi^{+}\pi^{+}\pi^{-}$	(4.8 ± 2.3) %		816	
$\Xi^{0}\phi, \phi \rightarrow K^{+}K^{-}$	(5.2 ± 1.2) $ imes 1$	0 ⁻⁴	-	
$\Xi^0 K^+ K^-$ nonresonant	(5.6 ± 1.2) $ imes 1$	0-4	444	
$\Omega^- K^+$	(4.2 ± 0.9) $ imes 1$	0-3	522	
$\Xi^- e^+ \nu_e$	(1.05 ± 0.20) %		882	
$\Xi^-\mu^+ u_\mu$	(1.01 ± 0.21) %		878	
$\Xi^0 \gamma$	< 1.7 × 1	0 ⁻⁴ 90%	885	
Cabibbo-suppressed decays				
$\Lambda_{c}^{+}\pi^{-}$	(5.5 ± 1.1) $ imes 1$	0-3	115	
$\Xi^- K^+$	$(3.9 \pm 1.1) \times 1$	0-4	789	
$\Lambda K^+ K^-$ (no ϕ)	$(4.1 \pm 1.3) \times 1$	0 ⁻⁴	648	
$\Lambda\phi$	$(4.9 \pm 1.3) \times 1$	0 ⁻⁴	621	
$\Xi_c^{\prime+}$	$I(J^P) = \frac{1}{2}(\frac{1}{2})$	+)		

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

 $I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$ J^P has not been measured; $\frac{1}{2}^+$ is the quark-model prediction.

$$\begin{array}{ll} \text{Mass } m = 2578.2 \pm 0.5 \ \text{MeV} & (\text{S} = 1.1) \\ m_{\Xi_c^{\prime +}} - m_{\Xi_c^+} = 110.5 \pm 0.4 \ \text{MeV} \\ m_{\Xi_c^{\prime +}} - m_{\Xi_c^{\prime 0}} = -0.5 \pm 0.6 \ \text{MeV} \end{array}$$

The $\Xi_c^{\prime+} - \Xi_c^+$ mass difference is too small for any strong decay to occur.

Ξ_c (2645) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c	
$\overline{\Xi_c^0}\pi^+$	seen	102	
$\Xi_c^+ \pi^-$	seen	106	

*Ξ*_c(2790) $I(J^P) = \frac{1}{2}(\frac{1}{2}^{-})$ J^P has not been measured; $\frac{1}{2}^-$ is the quark-model prediction. $\Xi_c(2790)^+$ mass = 2791.9 \pm 0.5 MeV $\Xi_c(2790)^0$ mass = 2793.9 \pm 0.5 MeV $m_{\Xi_c(2790)^+} - m_{\Xi_c'^0} = 213.20 \pm 0.22 \text{ MeV}$ $m_{\Xi_c(2790)^0} - m_{\Xi_c'^+} = 215.70 \pm 0.22 \text{ MeV}$ $m_{\Xi_c(2790)^+} - m_{\Xi_c(2790)^0} = -2.0 \pm 0.7 \text{ MeV}$ $\Xi_c(2790)^+ \text{ width} = 8.9 \pm 1.0 \text{ MeV}$ $\Xi_c(2790)^0$ width $= 10.0 \pm 1.1$ MeV $\Xi_c(2790)$ DECAY MODES Fraction (Γ_i/Γ) p (MeV/c) $\Xi_c'\pi$ $\Lambda_c^+K^$ seen seen

Ξ _c (2815)	$I(J^{\boldsymbol{P}}) = \frac{1}{2}(\frac{3}{2}^{-})$	
J^P has not be	een measured; $\frac{3}{2}^{-}$ is the quark-mode	el prediction.
	⁺ mass $m = 2816.51 \pm 0.25$ MeV ⁰ mass $m = 2819.79 \pm 0.30$ MeV $_{15)^+} - m_{\Xi_c^+} = 348.80 \pm 0.10$ MeV $_{15)^0} - m_{\Xi_c^0} = 349.35 \pm 0.11$ MeV $_{15)^+} - m_{\Xi_c(2815)^0} = -3.27 \pm 0.27$ ⁺ full width Γ = 2.43 ± 0.26 MeV ⁰ full width Γ = 2.54 ± 0.25 MeV	(S = 1.2) (S = 1.1) MeV

The $\Xi_c \pi \pi$ modes are consistent with being entirely via $\Xi_c(2645)\pi$.

$\underline{=}_{c}(2815)$ DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$\overline{\Xi_c'}\pi$	seen	188
$\Xi_{c}(2645)\pi$	seen	102
$\equiv^0_c \gamma$	seen	325

https://pdg.lbl.gov

159

98

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

was $\Xi_c(2980)$

$$\begin{split} & \Xi_c (2970)^+ \ m = 2964.3 \pm 1.5 \ \text{MeV} \quad (\text{S} = 3.9) \\ & \Xi_c (2970)^0 \ m = 2967.1 \pm 1.7 \ \text{MeV} \quad (\text{S} = 6.7) \\ & m_{\Xi_c (2970)^+} - m_{\Xi_c^+} = 496.6 \pm 1.5 \ \text{MeV} \quad (\text{S} = 3.7) \\ & m_{\Xi_c (2970)^0} - m_{\Xi_c^0} = 496.7 \pm 1.8 \ \text{MeV} \quad (\text{S} = 5.3) \\ & m_{\Xi_c (2970)^+} - m_{\Xi_c (2970)^0} = -2.8 \pm 1.9 \ \text{MeV} \quad (\text{S} = 4.8) \\ & \Xi_c (2970)^+ \ \text{width} \ \Gamma = 20.9^{+2.4}_{-3.5} \ \text{MeV} \quad (\text{S} = 1.2) \end{split}$$

$\underline{=_{c}}(2970)$ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\overline{\Lambda_{c}^{+}\overline{K}\pi}$	seen	223
$\Sigma_c(2455)\overline{K}$	seen	122
$\Lambda_c^+\overline{K}$	not seen	410
$\Lambda_c^+ K^-$	seen	410
$\Xi_c 2\pi$	seen	381
$\Xi_c'\pi$	seen	_
$\Xi_c(2645)\pi$	seen	274

*Ξ*_c(3055)

 $I(J^P) = ?(?^?)$

Mass $m = 3055.9 \pm 0.4$ MeV Full width $\Gamma = 7.8 \pm 1.9$ MeV

Ξ_c (3055) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)	
$\Sigma^{++} K^{-}$	seen	-	
ΛD^+	seen	316	

*Ξ*_c(3080)

$$I(J^P) = \frac{1}{2}(?^?)$$

$$\begin{split} \Xi_c(3080)^+ & m = 3077.2 \pm 0.4 \text{ MeV} \\ \Xi_c(3080)^0 & m = 3079.9 \pm 1.4 \text{ MeV} \quad (\text{S} = 1.3) \\ \Xi_c(3080)^+ & \text{width } \Gamma = 3.6 \pm 1.1 \text{ MeV} \quad (\text{S} = 1.5) \\ \Xi_c(3080)^0 & \text{width } \Gamma = 5.6 \pm 2.2 \text{ MeV} \end{split}$$

Ξ_c (3080) DECAY MODES	Fraction (Γ	p(MeV/c)
$\overline{\Lambda_{c}^{+}\overline{K}\pi}$	seen	415
$\Sigma_c(2455)\overline{K}$	seen	342
$\Sigma_c(2455)^{++}$ K $^-$	seen	342
https://pdg.lbl.gov	Page 50	Created: 5/31/2024 10:12

$\Sigma_{c}(2520)^{++}K^{-}$	seen	239
$\Sigma_c(2455)\overline{K} + \Sigma_c(2520)\overline{K}$	seen	-
$\Lambda_c^+ \overline{K}$	not seen	536
$\Lambda_c^+ \overline{K} \pi^+ \pi^-$	not seen	144
ΛD^+	seen	362

$$I(J^P) = 0(\frac{1}{2}^+)$$

 J^P has not been measured; $\frac{1}{2}^+$ is the quark-model prediction.

Mass $m = 2695.2 \pm 1.7$ MeV (S = 1.3) Mean life $\tau = (273 \pm 12) \times 10^{-15}$ s $c\tau = 82 \ \mu$ m

No absolute branching fractions have been measured. The following are branching ratios relative to $\Omega^-\,\pi^+$.

Ω_c^0 DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	р (MeV/c)
Cabibbo-favored ($S = -$	-3) decays — relat	ive to $\varOmega^-\pi^+$	
$\Omega^{-}\pi^{+}$	DEFINED AS 1		821
$\Omega^{-}\pi^{+}\pi^{0}$	1.80 ± 0.33		797
$\Omega^- ho^+$	>1.3	90%	532
$\Omega^{-}\pi^{-}2\pi^{+}$	0.31 ± 0.05		753
$\Omega^- e^+ \nu_e$	1.98 ± 0.15		829
$\Omega^- \mu^+ \nu_\mu$	1.94 ± 0.21		824
$\Xi^0 \overline{K}^0$	1.64 ± 0.29		950
$\Xi^0 \kappa^- \pi^+$	1.20 ± 0.18		901
${ar =}^0 {\overline K}{}^{*0}$, ${\overline K}{}^{*0} ightarrow ~K^- \pi^+$	0.68 ± 0.16		764
$\Omega(2012)^-\pi^+$, $\Omega(2012)^- ightarrow$	0.12 ± 0.05		_
$\Xi^{-}\overline{K}^{\overline{0}}\pi^{+}$	2.12 ± 0.28		895
$\Omega(2012)^-\pi^+$, $\Omega(2012)^- ightarrow$	0.12 ± 0.06		_
$\Xi^{-}\kappa^{-}2\pi^{+}$	0.63 ± 0.09		830
$\Xi(1530)^{0}K^{-}\pi^{+}, \ \Xi^{*0} \rightarrow \pi^{+}$	$0.21\!\pm\!0.06$		757
$\Xi^{-}\overline{\overline{K}}^{*0}\pi^{+}$	0.34 ± 0.11		653
$pK^-K^-\pi^+$	seen		864
$\Sigma^+ K^- K^- \pi^+$	<0.32	90%	689
$\Lambda \overline{K}^0 \overline{K}^0$	1.72 ± 0.35		837

$\Xi^{-}\pi^{+}$	0.25 ± 0.06		_
$\Omega^- K^+$	<0.29	90%	-

https://pdg.lbl.gov

 Ω_c^0

Created: 5/31/2024 10:12

https://pdg.lbl.gov

Created: 5/31/2024 10:12

$\Omega_c(3090)^0$	$I(J^{P}) = ?(?^{?})$
Mass $m = 3090.15 \pm 0.$ Full width $\Gamma = 8.5^{+0.8}_{-1.7}$	26 MeV MeV
Ω_c (3090) ⁰ DECAY MODES	Fraction (Γ_i/Γ)
$\Xi_c^+ \kappa^-$	seen
$\Omega_{c}(3120)^{0}$	$I(J^{P}) = ?(?^{?})$
Mass $m = 3118.98^{+0.27}_{-0.39}$ Full width $\Gamma < 2.5$ Me	$rac{7}{5}$ MeV V, CL $= 95\%$
$\Omega_{c}(3120)^{0}$ DECAY MODES	Fraction (Γ_i/Γ)
$\Xi_c^+ \kappa^-$	seen
$\Omega_{c}(3185)^{0}$	$I(J^{P}) = ?(?^{?})$
Mass $m = 3185^{+7.6}_{-1.9}$ Me Full width $\Gamma = 50^{+12}_{-21}$ M	eV 1eV
$\Omega_{c}(3185)^{0}$ DECAY MODES	Fraction (Γ_i/Γ)
$\overline{\Xi_c^+ \kappa^-}$	seen
$\Omega_{c}(3327)^{0}$	$I(J^{P}) = ?(?^{?})$
Mass $m = 3327.1^{+1.2}_{-1.8}$ Mass $m = 20^{+14}_{-5}$ M	MeV 1eV
$\Omega_c(3327)^0$ DECAY MODES	Fraction (Γ_i/Γ)
$\Xi_c^+ K^-$	seen

https://pdg.lbl.gov

p (MeV/*c*)

p (MeV/*c*)

p (MeV/c)

p (MeV/*c*)

610

460

379

340

 Ξ_{cc}^{++}

Λ⁰_b

$$I(J^{P}) = ?(?^{?})$$

n

Mass $m=3621.6\pm0.4$ MeV Mean life $au=(256\pm27) imes10^{-15}$ s

Ξ_{cc}^{++} DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	р (MeV/c)
$\overline{\Lambda_c^+ K^- \pi^+ \pi^+}$	DEFINED AS 1		880
$\overline{\Xi}_{c}^{+}\pi^{+}, \ \overline{\Xi}_{c}^{+} \rightarrow \ pK^{-}\pi^{+}$	$0.0022\!\pm\!0.0006$		-
$\Xi_{c}^{\prime+}\pi^{+}, \ \Xi_{c}^{\prime+} \rightarrow \ \Xi_{c}^{+}\gamma, \ \Xi_{c}^{+} \rightarrow$ $pK^{-}\pi^{+}$	0.0031 ± 0.0009		_
$D^+ p K^- \pi^+$	<0.017	90%	562

$$I(J^P) = 0(\frac{1}{2}^+)$$

$$\begin{split} I(J^P) & \text{not yet measured; } 0(\frac{1}{2}^+) \text{ is the quark model prediction.} \\ & \text{Mass } m = 5619.60 \pm 0.17 \text{ MeV} \\ & m_{\Lambda_b^0} - m_{B^0} = 339.2 \pm 1.4 \text{ MeV} \\ & m_{\Lambda_b^0} - m_{B^+} = 339.72 \pm 0.28 \text{ MeV} \\ & \text{Mean life } \tau = (1.471 \pm 0.009) \times 10^{-12} \text{ s} \\ & c\tau = 441.0 \ \mu\text{m} \\ & A_{CP}(\Lambda_b \to \ p\pi^-) = -0.025 \pm 0.029 \quad (\text{S} = 1.2) \\ & A_{CP}(\Lambda_b \to \ p\kappa^-) = -0.025 \pm 0.022 \\ & A_{CP}(\Lambda_b \to \ Dp\kappa^-) = 0.12 \pm 0.09 \\ & \Delta A_{CP}(p\kappa^-/\pi^-) = 0.014 \pm 0.024 \\ & A_{CP}(\Lambda_b \to \ p\overline{K}^0\pi^-) = 0.22 \pm 0.13 \end{split}$$

$$\begin{split} & \Delta A_{CP}(J/\psi \, p \pi^- / K^-) = (5.7 \pm 2.7) \times 10^{-2} \\ & A_{CP}(\Lambda_b \to \Lambda K^+ \pi^-) = -0.53 \pm 0.25 \\ & A_{CP}(\Lambda_b^0 \to \rho K^- \mu^+ \mu^-) = (-4 \pm 5) \times 10^{-2} \\ & \Delta A_{CP}(\Lambda_b^0 \to \rho \pi^- \pi^+ \pi^-) = (1.1 \pm 2.6) \times 10^{-2} \\ & \Delta A_{CP}(\Lambda_b^0 \to \rho \pi^- \pi^+ \pi^-)_{LBM}) = (4 \pm 4) \times 10^{-2} \\ & \Delta A_{CP}(\Lambda_b^0 \to \rho a_1(1260)^-) = (-1 \pm 4) \times 10^{-2} \\ & \Delta A_{CP}(\Lambda_b^0 \to \rho a_1(1260)^-) = (-1 \pm 4) \times 10^{-2} \\ & \Delta A_{CP}(\Lambda_b^0 \to \lambda(1520)^0 \rho(770)^0) = (2 \pm 5) \times 10^{-2} \\ & \Delta A_{CP}(\Lambda_b^0 \to \rho K^- \pi^+ \pi^-) = (3.2 \pm 1.3) \times 10^{-2} \\ & \Delta A_{CP}(\Lambda_b^0 \to \rho K^- \pi^+ \pi^-)_{LBM}) = (3.5 \pm 1.6) \times 10^{-2} \\ & \Delta A_{CP}(\Lambda_b^0 \to \rho K^- \pi^+ \pi^-)_{LBM}) = (3.5 \pm 1.6) \times 10^{-2} \\ & \Delta A_{CP}(\Lambda_b^0 \to \lambda(1520)^0 K^*(892)^0) = (5.5 \pm 2.5) \times 10^{-2} \\ & \Delta A_{CP}(\Lambda_b^0 \to \lambda(1520) \rho(770)^0) = (1 \pm 6) \times 10^{-2} \\ & \Delta A_{CP}(\Lambda_b^0 \to \rho K_1(1410)^-) = (5 \pm 4) \times 10^{-2} \\ & \Delta A_{CP}(\Lambda_b^0 \to \rho K^- K^+ \pi^-) = (-7 \pm 5) \times 10^{-2} \\ & \Delta A_{CP}(\Lambda_b^0 \to \rho K^- K^+ \pi^-) = (0.2 \pm 1.9) \times 10^{-2} \\ & \Delta A_{CP}(\Lambda_b^0 \to \rho K^- K^+ K^-) = (0.2 \pm 1.9) \times 10^{-2} \\ & \Delta A_{CP}(\Lambda_b^0 \to \rho K^- K^+ K^-) = (0.2 \pm 1.9) \times 10^{-2} \\ & \Delta A_{CP}(\Lambda_b^0 \to \rho K^- K^+ K^-) = (0.2 \pm 1.9) \times 10^{-2} \\ & \Delta A_{CP}(\Lambda_b^0 \to \rho K^- K^+ K^-) = (0.2 \pm 1.9) \times 10^{-2} \\ & \Delta A_{CP}(\Lambda_b^0 \to \rho K^- K^+ K^-) = (0.2 \pm 1.9) \times 10^{-2} \\ & \Delta A_{CP}(\Lambda_b^0 \to \rho K^- K^+ K^-) = (0.2 \pm 1.9) \times 10^{-2} \\ & \Delta A_{CP}(\Lambda_b^0 \to \rho K^- K^+ K^-) = (0.2 \pm 1.9) \times 10^{-2} \\ & \Delta A_{CP}(\Lambda_b^0 \to \rho K^- K^+ K^-) = (0.2 \pm 1.9) \times 10^{-2} \\ & \Delta A_{CP}(\Lambda_b^0 \to \rho K^- K^+ K^-) = (0.2 \pm 1.9) \times 10^{-2} \\ & \Delta A_{CP}(\Lambda_b^0 \to \rho K^- K^+ K^-) = (0.2 \pm 1.9) \times 10^{-2} \\ & \Delta A_{CP}(\Lambda_b^0 \to \rho K^- K^+ K^-) = (0.2 \pm 1.9) \times 10^{-2} \\ & \Delta A_{CP}(\Lambda_b^0 \to \rho K^- K^+ K^-) = (0.2 \pm 1.9) \times 10^{-2} \\ & \Delta A_{CP}(\Lambda_b^0 \to \rho K^- K^+ K^-) = 0.05 \pm 0.09 \\ & A_{FB}^{\ell}(\mu \mu) \text{ in } \Lambda_b \to \Lambda \mu^+ \mu^- = -0.39 \pm 0.04 \\ & \Delta A_{FB}^{\ell}(\mu \mu) \text{ in } \Lambda_b \to \Lambda \mu^+ \mu^- = -0.30 \pm 0.05 \\ & A_{FB}^{\ell}(\mu \pi) \text{ in } \Lambda_b \to \Lambda \mu^+ \mu^- = 0.25 \pm 0.04 \\ \end{aligned}$$

The branching fractions B(*b*-baryon $\rightarrow \Lambda \ell^- \overline{\nu}_\ell$ anything) and B($\Lambda_b^0 \rightarrow \Lambda_c^+ \ell^- \overline{\nu}_\ell$ anything) are not pure measurements because the underlying measured products of these with B($b \rightarrow b$ -baryon) were used to determine B($b \rightarrow b$ -baryon), as described in the note "Production and Decay of *b*-Flavored Hadrons."

For inclusive branching fractions, e.g., $\Lambda_b \rightarrow \overline{\Lambda}_c$ anything, the values usually are multiplicities, not branching fractions. They can be greater than one.

Λ_b^0 DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	<i>р</i> (MeV/c)
$J/\psi(1S)$ / $\!$	(5.8 \pm 0.8) $ imes$ 1	.0 ⁻⁵	1740
$p D^0 \pi^-$	(6.2 \pm 0.6) $ imes$ 1	.0 ⁻⁴	2370
$pD^+\pi^-\pi^-$	(2.7 \pm 0.4) $ imes$ 1	.0 ⁻⁴	2332
$pD^{*}(2010)^{+}\pi^{-}\pi^{-}$	(5.2 ± 1.0) $ imes$ 1	.0 ⁻⁴	2277
р D ⁰ К ⁻	(4.5 ± 0.8) $ imes$ 1	.0 ⁻⁵	2269
$ ho J/\psi \pi^-$	(2.6 $\substack{+0.5\\-0.4}$) $ imes$ 1	10-5	1755
$p\pi^{-}J/\psi$, $J/\psi \rightarrow \mu^{+}\mu^{-}$	(1.6 \pm 0.8) $ imes$ 1	.0 ⁻⁶	-

https://pdg.lbl.gov

Created: 5/31/2024 10:12

$ ho$ J/ ψ K $^-$	(3.2 $\substack{+0.6\\-0.5}$) $ imes$ 10 ⁻⁴		1589
$p\eta_c(1S)K^-$	$(1.06\pm0.26) imes10^{-4}$		1670
$P_{c\overline{c}}(4312)^+ K^-, P^+_{c\overline{c}} \rightarrow$	< 2.5 $\times 10^{-5}$	CL=95%	_
$p\eta_c(15)$	[-1, (-2, -1, 1, 4, +1, 0, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5		
$P_{c\overline{c}}(4300)$ K , $P_{c\overline{c}} \rightarrow n I/\psi$	[V] (2.7 ±1.4)×10 °		_
$P_c(4450)^+ K^-, P_c \rightarrow$	$[v]$ (1.3 \pm 0.4) $ imes$ 10 $^{-5}$		_
$p J/\dot{\psi}$			
$\chi_{c1}(1P) p K^-$	(7.6 $^{+1.5}_{-1.3}$) $ imes$ 10 $^{-5}$		1242
$\chi_{c1}(1P) p \pi^-$	(5.0 $^{+1.3}_{-1.1}$) $ imes$ 10 $^{-6}$		1462
$\chi_{c2}(1P) p K^-$	(7.7 $^{+1.6}_{-1.4}$) $ imes$ 10 $^{-5}$		1198
$\chi_{c2}(1P) p \pi^-$	(4.8 ± 1.9) $\times 10^{-6}$		1427
$pJ/\psi(1S)\pi^+\pi^-K^-$	(6.6 $^{+1.3}_{-1.1}$) $ imes$ 10 $^{-5}$		1410
$p\psi(2S)K^-$	(6.6 $^{+1.2}_{-1.0}$) $ imes$ 10 $^{-5}$		1063
$\chi_{c1}(3872) p K^{-}$	(3.5 ± 1.3) $\times 10^{-5}$		837
$\chi_{c1}(3872) \Lambda(1520)$	(2.0 ± 0.9) $\times 10^{-5}$		721
$\psi(2S) p \pi^-$	(7.5 $^{+1.6}_{-1.4}$) $ imes$ 10 $^{-6}$		1320
$p\overline{K}^0\pi^-$	(1.3 ± 0.4) $\times 10^{-5}$		2693
<i>pK</i> ⁰ <i>K</i> ⁻	$< 3.5 \times 10^{-6}$	CL=90%	2639
$\Lambda_{c}^{+}\pi^{-}$	(4.9 \pm 0.4) $ imes$ 10 ⁻³	S=1.2	2342
$\Lambda_c^+ K^-$	$(3.56\pm0.28) imes10^{-4}$	S=1.2	2314
$\Lambda_{c}^{+} a_{1}(1260)^{-}$	seen		2153
$\Lambda^+_{+}D^{-}$	$(4.6 \pm 0.6) \times 10^{-4}$		1886
$\Lambda_c D_s$	$(1.10\pm0.10)\%$		1833
$\Lambda_c' \pi \pi \pi \pi$	$(7.6 \pm 1.1) \times 10^{-3}$	S=1.1	2323
$\Lambda_c(2595) + \pi$, $\Lambda_c(2505) + \Lambda_c^+ - +$	$(3.4 \pm 1.4) \times 10^{-4}$		2210
$\Lambda_c(2393)^+ \rightarrow \Lambda_c^- \pi^+ \pi^-$	$(22 \pm 12) \times 10^{-4}$		2102
$\Lambda_{c}(2023)^{+} \rightarrow \Lambda^{+}\pi^{+}\pi^{-}$	$(5.5 \pm 1.5) \times 10$		2195
$\Sigma_{c}(2455)^{0}\pi^{+}\pi^{-}\Sigma^{0} \rightarrow$	$(57 + 22) \times 10^{-4}$		2265
$\frac{2}{\lambda^{+}\pi^{-}}$	(0.1 ±2.2) × 10		2200
$\Sigma_{c}(2455)^{++}\pi^{-}\pi^{-}, \Sigma^{++} \rightarrow$	(3.2 ± 1.5) $ imes 10^{-4}$		2265
$\Lambda_{-}^{+}\pi^{+}$	· · · · · ·		
$\Lambda_{c}^{+} K^{+} K^{-} \pi^{-}$	$(1.02\pm0.11) imes 10^{-3}$		2184
$\Lambda_{c}^{+} \rho \overline{\rho} \pi^{-}$	$(2.63\pm0.27)\times10^{-4}$		1805
$\Sigma_c(2455)^0 ho \overline{ ho}, \ \Sigma_c^0 ightarrow \Sigma_c^0$	(2.3 ± 0.5) $ imes 10^{-5}$		-
$\Lambda_c^+ \pi^-$			

$\Sigma_c(2520)^0 ho\overline{ ho}$, $\Sigma_c(2520)^0 o$	(3.1 \pm 0.7) $ imes$ 10 $^{-5}$		_
$\Lambda_c^+ \pi^-$			
$\Lambda_c^+ \ell^- \overline{ u}_\ell$ anything	$[x]$ (10.9 ± 2.2)%		-
$\Lambda_{c}^{+}\ell^{-}\overline{ u}_{\ell}$	(6.2 $\substack{+1.4\\-1.3}$)%		2345
$\Lambda_c^+ \tau^- \overline{ u}_{ au}$	(1.9 ± 0.5)%		1933
$\Lambda_c^+ \pi^+ \pi^- \ell^- \overline{\nu}_\ell$	(5.6 ± 3.1)%		2335
$\Lambda_c(2595)^+ \ell^- \overline{ u}_\ell$	(7.9 $^{+4.0}_{-3.5}$) $\times10^{-3}$		2212
$\Lambda_c(2625)^+ \ell^- \overline{ u}_\ell$	(1.3 $\substack{+0.6\\-0.5}$) %		2195
p h	$[y] < 2.3 10^{-5}$	CL=90%	2730
$p\pi^-$	(4.6 ± 0.8) $ imes 10^{-6}$		2730
р <i>К</i> -	(5.5 ± 1.0) $ imes 10^{-6}$		2709
p D_{s}^{-}	$(1.25\pm0.13) imes10^{-5}$		2364
$ ho \mu^- \overline{ u}_\mu$	(4.1 ± 1.0) $ imes 10^{-4}$		2730
$\Lambda \mu^+ \mu^-$	$(1.08\pm0.28) imes10^{-6}$		2695
$ ho \pi^- \mu^+ \mu^-$	(6.9 ± 2.5) $ imes 10^{-8}$		2720
$p K^- e^+ e^-$	(3.1 ± 0.6) $ imes 10^{-7}$		2708
$p K^- \mu^+ \mu^-$	(2.6 $^{+0.5}_{-0.4}$) $ imes$ 10 $^{-7}$		2685
$\Lambda\gamma$	(7.1 ± 1.7) $ imes 10^{-6}$		2699
$\Lambda\eta$	$(\begin{array}{cc}9 & +7 \ -5 \end{array}) imes 10^{-6}$		2670
$\Lambda \eta'(958)$	$< 3.1 \times 10^{-6}$	CL=90%	2611
$\Lambda \pi^+ \pi^-$	(4.6 ± 1.9) $ imes 10^{-6}$		2692
$\Lambda K^+ \pi^-$	(5.6 ± 1.2) $ imes 10^{-6}$		2660
$\Lambda K^+ K^-$	$(1.60\pm0.21) imes10^{-5}$		2605
$\Lambda \phi$	$(9.8 \pm 2.6) \times 10^{-6}$		2599
$p\pi^-\pi^+\pi^-$	$(2.08\pm0.21)\times10^{-5}$		2715
$pK^-K^+\pi^-$	$(4.0 \pm 0.6) \times 10^{-6}$		2612
$pK^-\pi^+\pi^-$	$(5.0 \pm 0.5) \times 10^{-5}$		2675
рК-К+К-	$(1.25\pm0.13)\times10^{-5}$		2524

А_b(5912)⁰

$$J^P = \frac{1}{2}^-$$

Mass m = 5912.19 \pm 0.17 MeV Full width Γ < 0.25 MeV, CL = 90%

Λ _b (5912) ⁰ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\overline{\Lambda^0_b \pi^+ \pi^-}$	seen	86

$\Lambda_b(5920)^0$

$$J^{P} = \frac{3}{2}^{-}$$

Mass $m = 5920.09 \pm 0.17$ MeV Full width $\Gamma \ < \ 0.19$ MeV, CL = 90%

Λ _b (5920) ⁰ DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$\Lambda_b^0 \pi^+ \pi^-$	seen	108

Λ_b(6070)⁰

$$J^{P} = \frac{1}{2}^{+}$$

Quantum numbers based on quark model expectations.

Mass $m = 6072.3 \pm 2.9$ MeV Full width $\Gamma = 72 \pm 11$ MeV

Λ _b (6070) ⁰ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\overline{\Lambda^0_b \pi^+ \pi^-}$	seen	343

Λ_b(6146)⁰

$$J^{P} = \frac{3}{2}^{+}$$

$$\begin{split} \text{Mass} \ m &= 6146.2 \pm 0.4 \ \text{MeV} \\ m_{\Lambda_b(6146)^0} \ - \ m_{\Lambda_b^0} = 526.55 \pm 0.34 \ \text{MeV} \\ \text{Full width} \ \Gamma &= 2.9 \pm 1.3 \ \text{MeV} \end{split}$$

Λ _b (6146) ⁰ DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$\Lambda_b^0 \pi^+ \pi^-$	seen	427
Λ _b (6152) ⁰	$J^P = \frac{5}{2}^+$	
Mass <i>m</i> = 6152.5	\pm 0.4 MeV	
$m_{\Lambda_b(6152)^0} - m_{\Lambda_b^0}$	$=$ 532.89 \pm 0.28 MeV	

50	,	D			
m (cir	~ 0 –	m_{Λ} (class)	= 6.34	± 0.32	MeV
$n_{h}(615)$	2)0	$N_{h}(6146)^{\circ}$	0.0.	_ 0.0_	
Full widt	⊦ĥГ–	- 2 Ĩ`+ ∩´Q	/_/		
	LII I –	- 2.1 ± 0.9	IVIC V		

$h_b(6152)^0$ DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$\Lambda^0_b \pi^+ \pi^-$	seen	434

Σ_b

$$I(J^P) = 1(\frac{1}{2}^+)$$

I, J, P need confirmation.

Mass
$$m(\Sigma_b^+) = 5810.56 \pm 0.25$$
 MeV
Mass $m(\Sigma_b^-) = 5815.64 \pm 0.27$ MeV
 $m_{\Sigma_b^+} - m_{\Sigma_b^-} = -5.06 \pm 0.18$ MeV
 $\Gamma(\Sigma_b^+) = 5.0 \pm 0.5$ MeV
 $\Gamma(\Sigma_b^-) = 5.3 \pm 0.5$ MeV

Σ _b DECAY MOD	ES	Fraction (Γ_i/Γ)		p (MeV/c)
$\Lambda_b^0 \pi$		dominant		133
Σ_b^*		$I(J^P)=1(I,\ J,\ P$ need	$\frac{3}{2}^+$) confirmation.	
Mas Mas m _Σ m _Σ Γ(Σ Γ(Σ m _Σ	$ss \ m(\Sigma_{b}^{*+}) = 583$ $ss \ m(\Sigma_{b}^{*-}) = 193$ $ss \ m(\Sigma_{b}^{*-}) = 194$ $ss \ m(\Sigma_{b}^{*-}) = 104 \pm 0.5$ $ss \ m(\Sigma_{b}^{*-}) = 10.4 \pm 0.5$ $ss \ m(\Sigma_{b}^{*-}) = 21.2$	80.32 ± 0.27 MeV 84.74 ± 0.30 MeV 4.37 ± 0.33 MeV $.73 \pm 0.18$ $.09 \pm 0.22$ MeV 8 MeV (S = 1.3) \pm 2.0 MeV	(S = 1.6)	
Σ_b^* decay mod	ES	Fraction (Γ_i/Γ)		p (MeV/c)
$\Lambda_b^0 \pi$		dominant		159
Σ_b(6097) ⁺ Mat	m = 6095.8 +	J ^P = ? [?] 1.7 MeV		
Full	width $\Gamma = 31 \pm$	6 MeV		
Σ _b (6097) ⁺ DEC	AY MODES	Fraction (Γ_i/Γ)		p (MeV/c)
$\Lambda_b \pi^+ imes B(b-b)$	$\rightarrow \Sigma_b(6097)^+)$	seen		_

Σ_b(6097)⁻

 $J^{P} = ?^{?}$

 $\begin{array}{l} \text{Mass} \ m = 6098.0 \, \pm \, 1.8 \ \text{MeV} \\ \text{Full width} \ \Gamma = 29 \, \pm \, 4 \ \text{MeV} \end{array}$

Σ_b (6097) ⁻ DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$\Lambda_b \pi^- imes B(b o \Sigma_b(6097)^-)$	seen	_
Ξ <u>-</u>	$I(J^P) = rac{1}{2}(rac{1}{2}^+)$ I, J, P need confirm	nation.
$egin{array}{l} m(arepsilon_b^-) &= 5797.0 \pm 0.6 \ m_{arepsilon_b^-} - m_{arepsilon_b^0} &= 177.46 \pm 0.6 \ m_{arepsilon_b^-} - m_{arepsilon_b^0} &= 177.46 \pm 0.6 \ m_{arepsilon_b^-} - m_{arepsilon_b^-} &= 5.9 \pm 0.6 \ m_{arepsilon_b^+} &= 5.6 \ m_{arepsilon_b^+} &=$	MeV $(S = 1.7)$ $\pm 0.31 \text{ MeV} (S = 1.3)$.6 MeV	3)
$=_b = =_b^{\sim}$ Mean life $ au = = = (1.572)$	\pm 0.040) $ imes$ 10 ⁻¹² s	
= b E DECAY MODES	Fraction (Γ_i/Γ) Cor	<i>p</i> nfidence level (MeV/c)
$\overline{J/\psi \Xi^- \times B(b \rightarrow \Xi_b^-)}$	$(1.02 \substack{+0.26 \\ -0.21}) imes 10^{-5}$	1782
$J/\psi \Lambda K^- \times B(b \rightarrow \tilde{\Xi}_b^-)$	$(2.5 \pm 0.4) \times 10^{-6}$	1631
$pK^-K^- \times B(b \rightarrow \Xi_b)$	$(3.7 \pm 0.8) \times 10^{-8}$	2731
pK ⁻ K ⁻	seen	2731
<i>pK</i> ⁻ <i>π</i> ⁻	seen	2783
$\Lambda_b^0 \pi^- \times B(b \to \Xi_b^-)/B(b \to \Lambda_b^0)$	(7.0 ± 0.9) $ imes 10^{-4}$	99
$\Xi_c^0 \pi^-$	seen	2367
$\Sigma(1385)K^{-}$	$(2.6 \pm 2.3) \times 10^{-7}$	2707
$\Lambda(1405) K^{-}$	$(1.9 \pm 1.2) \times 10^{-7}$	2702
$\Lambda(1520) K^{-}$	$(7.6 \pm 3.2) \times 10^{-7}$	2673
$\Sigma(1775) K^{-}$	$(4.3 \pm 2.3) \times 10^{-7}$ $(2.2 \pm 1.5) \times 10^{-7}$	2029
$\Sigma(1915)K^{-}$	$(2.2 \pm 1.5) \times 10^{-7}$ $(2.6 \pm 2.5) \times 10^{-7}$	2553
$\Xi^{-}\gamma$	$< 1.3 \times 10^{-4}$	95% –
Ξ ⁰ _b	$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$ I. J. P need confirm	mation.

 $\begin{array}{l} m(\Xi_b^0) = 5791.9 \pm 0.5 \text{ MeV} \\ m_{\Xi_b^0} - m_{\Lambda_b^0} = 172.5 \pm 0.4 \text{ MeV} \\ \text{Mean life } \tau_{\Xi_b^0} = (1.480 \pm 0.030) \times 10^{-12} \text{ s} \end{array}$

E DECAY MODES	Fraction (Г	- _i /Γ)	Confidence level	<i>р</i> (MeV/c)
$pD^0K^- imes B(b ightarrow arepsilon^0)$	$(1.7 \pm 0$.5) $ imes$ 10 $^-$	-6	2374
$p\overline{K}^0\pi^- \times B(b \rightarrow \overline{\Xi}^0_b)/B(\overline{b} \rightarrow \overline{\Xi}^0_b)$	< 1.6	imes 10 ⁻	-6 90%	2783
B ⁰)				

https://pdg.lbl.gov

Created: 5/31/2024 10:12

$p K^0 K^- imes B(b o \ arepsilon^0) / B(\overline{b} o arepsilon)$	< 1.1	imes 10 ⁻⁶	90%	2730
$B^{0})$ $\Lambda \pi^{+} \pi^{-} \times B(b \rightarrow \Xi^{0}_{b})/B(b \rightarrow A^{0})$	< 1.7	imes 10 ⁻⁶	90%	2781
$\Lambda K^{-}\pi^{+} \times B(b \rightarrow \Xi_{b}^{0})/B(b \rightarrow A^{0})$	< 8	$\times 10^{-7}$	90%	2751
$\Lambda_b^{(n)}$ $\Lambda K^+ K^- \times B(b \rightarrow \Xi_b^0) / B(b \rightarrow \Xi_b^0)$	< 3	$\times 10^{-7}$	90%	2698
$\Lambda_b^{(c)}$) $J/\psi \Lambda$	seen			1868
$J/\psi \equiv^{0}$ $\Lambda^{+} K^{-} \times B(b \to \equiv^{0})$	seen	4) $\times 10^{-7}$		1785 2416
$pK^{-}\pi^{+}\pi^{-} \times B(b \rightarrow F^{0}) = \frac{1}{2} pK^{-}\pi^{+}\pi^{-} \times B(b \rightarrow F^{0})$	(0 ± 1)	$(0.4) \times 10^{-6}$		2766
$pK^{-}K^{-}\pi^{+} \times B(b \rightarrow f^{0})$ $= \frac{1}{2} \int B(b \rightarrow f^{0})$	(1.70±	0.30) × 10 ⁻⁶		2704
$pK^{-}K^{+}K^{-} \times B(b \rightarrow a^{0})$	(1.7 ±	0.9) $ imes$ 10 $^{-7}$		2620
= b / b (b / b)				

$$J^P = \frac{1}{2}^+$$

Mass $m = 5935.1 \pm 0.5$ MeV Full width $\Gamma = 0.03 \pm 0.032$ MeV

$\Xi_b'(5935)^-$ DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$\overline{\Xi_b^0}\pi^- imes B(\overline{b} imes$	(11.8 ± 1.8) %	31
$\Xi_b'(5935)^-)/B(\overline{b} \to \Xi_b^0)$		

$$J^{P} = \frac{3}{2}^{+}$$

Mass $m = 5952.3 \pm 0.6$ MeV Full width $\Gamma = 0.87 \pm 0.08$ MeV

$\Xi_b(5945)^0$ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\equiv_b^- \pi^+$	seen	78
<i>Ξ_b</i> (5955) [−]	$J^{P} = \frac{3}{2}^{+}$	

Mass $m = 5955.7 \pm 0.5$ MeV Full width $\Gamma = 1.43 \pm 0.11$ MeV

Ξ_{b} (5955) $^{-}$ DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$\overline{\Xi_b^0 \pi^-} \times B(\overline{b} \to \Xi^*(5955)^-)/B(\overline{b} \to \Xi^0)$	(20.7±3.5) %	84
$= \frac{B(2322)}{D(D - 2)}$		
$\Xi_b(6087)^0$ Mass $m = 6087.2$	$I(J^P) = \frac{1}{2}(\frac{3}{2}^-)$ <i>J</i> , <i>P</i> need confirm ± 0.5 MeV	nation.
Full width $\Gamma = 2.4$	± 0.5 MeV	
<i>≡</i> _b (6087) ⁰ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\Xi_b^0 \pi^+ \pi^-$	seen	_
Ξ_b(6095)⁰ Mass $m = 6095.3$ Full width $\Gamma = 0.5$	$I(J^P) = rac{1}{2}(rac{3}{2}^-)$ J, P need confirm ± 0.5 MeV 50 ± 0.35 MeV	nation.
Ξ _b (6095) ⁰ DECAY MODES	Fraction (Γ_i/Γ)	р (MeV/c)
$\Xi_b^0 \pi^+ \pi^-$	seen	_
Ξ_b(6100) ⁻ Mass $m = 6099.8$ Full width $\Gamma = 0.9$	$J^P=rac{3}{2}^-$ J,~P need confirm $\pm~0.6~$ MeV $94~\pm~0.31~$ MeV	nation.
Ξ_b (6100) $^-$ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\overline{\Xi_b} \pi^+ \pi^-$	seen	128
<i>Ξ_b</i> (6227) [−]	J ^P = ??	
Mass $m=$ 6227.9 Full width $\Gamma=$ 19	\pm 0.9 MeV .9 \pm 2.6 MeV	
Ξ_b (6227) $^-$ DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> Scale factor (MeV/ <i>c</i>)
$egin{aligned} & \Lambda^0_b {\mathcal K}^- imes {\mathsf B}(b o \ & ar arepsilon_b(6227))/{\mathsf B}(b o \ & \Lambda^0_b) \end{aligned}$	$(3.20\pm0.35) imes10^{-3}$	336

Page 62

Created: 5/31/2024 10:12

$\frac{\Xi_b^0 \pi^- \times E}{\Xi_b(622)}$	$B(b \rightarrow 27))/B(b \rightarrow \Xi_b^0)$	(2.8 ± 1.1)%	1.8	398
<i>Ξ</i> _b (622	7) ⁰	$J^{P} = ?^{?}$		
	Mass $m = 6226$ Full width $\Gamma =$	$5.8 \pm 1.6 \; { m MeV}$ $19^{+5}_{-4} \; { m MeV}$		
Ξ _b (6227) ⁰	DECAY MODES	Fraction (Γ_i/Γ)	p (N	ЛеV/ <i>с</i>)
$ \Xi_b^- \pi^+ \times \Pi $ $ \Xi_b (622) $	$\frac{B(b \rightarrow}{27)^0}/B(b \rightarrow \Xi_{b}$	$(4.5\pm0.9)\%$		398
<i>Ξ</i> _b (632	7) ⁰	$J^{P} = ?^{?}$		
	Mass $m=$ 6327 Full width Γ $<$	7.28 ± 0.35 MeV 2.56 MeV, CL $= 95\%$		
<i>Ξ_b</i> (6327) ⁰	DECAY MODES	Fraction (Γ_i/Γ)	p (N	ЛеV/ <i>с</i>)
$\Lambda_b^0 K^- \pi^+$		seen		298
<i>Ξ</i> _b (633	3) ⁰	$J^{P} = ?^{?}$		
	Mass $m=$ 6332 Full width F $<$	1.69 ± 0.28 MeV 1.92 MeV, CL $= 95\%$		
<i>Ξ_Ь</i> (6333) ⁰	DECAY MODES	Fraction (Γ_i/Γ)	p (N	/leV/ <i>c</i>)
$\Lambda_b^0 K^- \pi^+$		seen		309
Ω_b^-		$I(J^P) = 0(\frac{1}{2}^+)$ I, J, P need confirmation.		
	Mass $m = 6045$	0.8 ± 0.8 MeV		
	$m_{\Omega_b^-} - m_{\Lambda_b^0} =$	426.4 \pm 2.2 MeV		
	$m_{\Omega_b^-} - m_{\Xi_b^-} =$	$= 248.5 \pm 0.6$ MeV		
	Mean life $ au = ($	$1.64^{+0.18}_{-0.17}) imes 10^{-12}~{ m s}$		
	$\tau(\Omega_b^-)/\tau(\Xi_b^-)$	mean life ratio $= 1.11 \pm 0.16$		

Ω_b^- DECAY M	ODES	Fraction (Γ _i	;/ Г)	Scale factor/ Confidence level	р (MeV/c)
$J/\psi \Omega^{-} \times B(x)$ $pK^{-}K^{-} \times B(x)$ $p\pi^{-}\pi^{-} \times B(x)$ $pK^{-}\pi^{-} \times B(x)$ $\Omega_{c}^{0}\pi^{-}$ $\Omega_{c}^{0}\pi^{-}, \Omega$ $\Xi_{c}^{+}K^{-}\pi^{-}$	$egin{aligned} b & o & \Omega_b \ (\overline{b} & o & \Omega_b) \ (\overline{b} & o & \Omega_b) \ \overline{b} & o & \Omega_b \ \overline{b} & o & \Omega_b) \ \overline{b} & o & \Omega_b) \ \end{array}$	$(1.4^{+0.5}_{-0.4})$ < 2.3 < 1.5 < 7 seen seen seen	$) \times 10^{-6} \times 10^{-9} \times 10^{-8} \times 10^{-8} \times 10^{-9}$	S=1.6 CL=90% CL=90% CL=90%	1805 2865 2943 2915 2420 – 2473
Ω _b (6316) Γ	- lass $m=6315.6\pm 0.$ ull width $\Gamma~<~4.2$ Me	<i>I(J^P) = I, J, P</i> r 6 MeV eV, CL = 95	= ?(? [?]) need con %	firmation.	
Ω _b (6316) [—] DE	ECAY MODES	Fraction (Γ _i	;/ Г)	p	• (MeV/ <i>c</i>)
$\Xi_b^0 K^-$		seen			168
Ω _b (6330) Γ	- Mass $m = 6330.3 \pm 0.$ ull width Γ < 4.7 Me	I(J ^P) = I, J, P r 6 MeV eV, CL = 95	= ?(? [?]) need con %	firmation.	
Ω _b (6330) ⁻ DE	CAY MODES	Fraction (Γ _i	;/ Г)	p	• (MeV/ <i>c</i>)
$\Xi_b^0 K^-$		seen			206
Ω_b(6340) Γ	- Mass $m=6339.7\pm 0.$ ull width $\Gamma~<~1.8$ Me	<i>I(J^P) = I, J, P</i> r 6 MeV eV, CL = 95	= ?(? [?]) need con %	firmation.	
Ω _b (6340) [—] DE	ECAY MODES	Fraction (Γ _i	;/ Г)	p	• (MeV/ <i>c</i>)
$\Xi_b^0 K^-$		seen			227
Ω _b (6350) Γ	- lass $m = 6349.8 \pm 0.$ ull width $\Gamma < 3.2$ Me	I(J ^P) = I, J, P r 6 MeV eV, CL = 95	= ?(? [?]) need con %	firmation.	
https://pdg.l	bl.gov Pag	e 64	Crea	ted: 5/31/202	4 10:12

Ω_b (6350) ⁻ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\Xi_b^0 K^-$	seen	248

b-baryon ADMIXTURE (Λ_b , Ξ_b , Ω_b)

These branching fractions are actually an average over weakly decaying bbaryons weighted by their production rates at the LHC, LEP, and Tevatron, branching ratios, and detection efficiencies. They scale with the b-baryon production fraction $B(b \rightarrow b$ -baryon).

The branching fractions B(*b*-baryon $\rightarrow \Lambda \ell^- \overline{\nu}_{\ell}$ anything) and B($\Lambda_b^0 \rightarrow$

 $\Lambda_{c}^{+}\ell^{-}\overline{\nu}_{\ell}$ anything) are not pure measurements because the underlying measured products of these with $B(b \rightarrow b$ -baryon) were used to determine $B(b \rightarrow b$ -baryon), as described in the note "Production and Decay of b-Flavored Hadrons."

For inclusive branching fractions, e.g., $B \rightarrow D^{\pm}$ anything, the values usually are multiplicities, not branching fractions. They can be greater than one.

b-barvon ADMIXTURE DECAY MODES

<i>b</i> -baryon ADMIXTURE DECAY MODES $(\Lambda_b, \Xi_b, \Omega_b)$	Fraction (Γ_i/Γ)	Scale factor	р (MeV/c)
$p\mu^-\overline{ u}$ anything	$(5.8^+_{-2.0})\%$		-
$p\ell\overline{ u}_\ell$ anything	(5.6 ± 1.2) %		-
<i>p</i> anything	(70 ±22)%		_
$\Lambda \ell^- \overline{ u}_\ell$ anything	(3.8± 0.6) %		_
$\Lambda \ell^+ \nu_\ell$ anything	(3.2± 0.8) %		_
Aanything	$(39 \pm 7)\%$		_
$\Xi^-\ell^-\overline{ u}_\ell$ anything	$(4.6 \pm 1.4) \times 10^{-3}$	1.2	_

EXOTIC BARYONS

$P_{c\overline{c}s}(4338)^{0}$

$$I(J^P) = 0(\frac{1}{2}^-)$$

Mass $m = 4338.2 \pm 0.8$ MeV Full width $\Gamma=7.0\pm1.8~\text{MeV}$

_

NOTES

- [a] The masses of the p and n are most precisely known in u (unified atomic mass units). The conversion factor to MeV, 1 u = 931.494061(21) MeV, is less well known than are the masses in u.
- [b] The $|m_p m_{\overline{p}}|/m_p$ and $|q_p + q_{\overline{p}}|/e$ are not independent, and both use the more precise measurement of $|q_{\overline{p}}/m_{\overline{p}}|/(q_p/m_p)$.
- [c] The limit is from neutrality-of-matter experiments; it assumes $q_n = q_p + q_e$. See also the charge of the neutron.
- [d] The μp and e p values for the charge radius are much too different to average them. The disagreement is not yet understood.
- [e] There is a lot of disagreement about the value of the proton magnetic charge radius. See the Listings.
- [f] There is some controversy about whether nuclear physics and model dependence complicate the analysis for bound neutrons (from which the best limit comes). The first limit here is from reactor experiments with free neutrons.
- [g] Lee and Yang in 1956 proposed the existence of a mirror world in an attempt to restore global parity symmetry—thus a search for oscillations between the two worlds. Oscillations between the worlds would be maximal when the magnetic fields B and B' were equal. The limit for any B' in the range 0 to 12.5 μ T is >12 s (95% CL).
- [h] The parameters g_A , g_V , and g_{WM} for semileptonic modes are defined by $\overline{B}_f[\gamma_\lambda(g_V + g_A\gamma_5) + i(g_{WM}/m_{B_i}) \sigma_{\lambda\nu} q^{\nu}]B_i$, and ϕ_{AV} is defined by $g_A/g_V = |g_A/g_V|e^{i\phi_{AV}}$. See the "Note on Baryon Decay Parameters" in the neutron Particle Listings.
- [*i*] Time-reversal invariance requires this to be 0° or 180° .
- [*j*] This coefficient is zero if time invariance is not violated.
- [k] This limit is for γ energies between 0.4 and 782 keV.
- [/] The decay parameters γ and Δ are calculated from α and ϕ using

$$\gamma = \sqrt{1{-}lpha^2}\,\cos\phi$$
 , $an \Delta = -rac{1}{lpha}\,\sqrt{1{-}lpha^2}\,\sin\phi$.

See the "Note on Baryon Decay Parameters" in the neutron Particle Listings.

- [n] See the Listings for the pion momentum range used in this measurement.
- [o] Our estimate. See the Particle Listings for details.
- [p] A theoretical value using QED.
- [q] This branching fraction includes all the decay modes of the final-state resonance.
- [r] Here γ_D stands for a dark photon.

https://pdg.lbl.gov

Page 66

- [s] See AALTONEN 11H, Fig. 8, for the calculated ratio of $\Lambda_c^+ \pi^0 \pi^0$ and $\Lambda_c^+ \pi^+ \pi^-$ partial widths as a function of the $\Lambda_c(2595)^+ \Lambda_c^+$ mass difference. At our value of the mass difference, the ratio is about 4.
- [t] A test that the isospin is indeed 0, so that the particle is indeed a Λ_c^+ .
- [u] Assuming isospin conservation, so that the other third is $\Lambda_c^+ \pi^0 \pi^0$.
- $[v] P_c^+$ is a pentaquark-charmonium state.
- [x] Not a pure measurement. See note at head of Λ_b^0 Decay Modes.
- [y] Here h^- means π^- or K^- .