Width Determinations of the $\boldsymbol{\Upsilon}$ States

As is the case for the $J / \psi(1 S)$ and $\psi(2 S)$, the full widths of the $b \bar{b}$ states $\Upsilon(1 S)$, $\Upsilon(2 S)$, and $\Upsilon(3 S)$ are not directly measurable, since they are much narrower than the energy resolution of the $e^{+} e^{-}$storage rings where these states are produced. The common indirect method to determine Γ starts from

$$
\begin{equation*}
\Gamma=\Gamma_{\ell \ell} / B_{\ell \ell} \tag{1}
\end{equation*}
$$

where $\Gamma_{\ell \ell}$ is one leptonic partial width and $B_{\ell \ell}$ is the corresponding branching fraction ($\ell=e, \mu$, or τ). One then assumes $e-\mu-\tau$ universality and uses

$$
\begin{align*}
\Gamma_{\ell \ell} & =\Gamma_{e e} \\
B_{\ell \ell} & =\text { average of } B_{e e}, B_{\mu \mu}, \text { and } B_{\tau \tau} \tag{2}
\end{align*}
$$

The electronic partial width $\Gamma_{e e}$ is also not directly measurable at $e^{+} e^{-}$storage rings, only in the combination $\Gamma_{e e} \Gamma_{\text {had }} / \Gamma$, where $\Gamma_{\text {had }}$ is the hadronic partial width and

$$
\begin{equation*}
\Gamma_{\mathrm{had}}+3 \Gamma_{e e}=\Gamma \tag{3}
\end{equation*}
$$

This combination is obtained experimentally from the energy-integrated hadronic cross section

$$
\int \sigma\left(e^{+} e^{-} \rightarrow \Upsilon \rightarrow \text { hadrons }\right) d E
$$

resonance

$$
\begin{equation*}
=\frac{6 \pi^{2}}{M^{2}} \frac{\Gamma_{e e} \Gamma_{\mathrm{had}}}{\Gamma} C_{r}=\frac{6 \pi^{2}}{M^{2}} \frac{\Gamma_{e e}^{(0)} \Gamma_{\mathrm{had}}}{\Gamma} C_{r}^{(0)} \tag{4}
\end{equation*}
$$

where M is the Υ mass, and C_{r} and $C_{r}^{(0)}$ are radiative correction factors. C_{r} is used for obtaining $\Gamma_{e e}$ as defined in Eq. (1), and contains corrections from all orders of QED for describing $(b \bar{b}) \rightarrow e^{+} e^{-}$. The lowest order QED value $\Gamma_{e e}^{(0)}$, relevant for comparison with potential-model calculations, is defined by the lowest order QED graph (Born term) alone, and is about 7% lower than $\Gamma_{e e}$.

The Listings give experimental results on $B_{e e}, B_{\mu \mu}, B_{\tau \tau}$, and $\Gamma_{e e} \Gamma_{\text {had }} / \Gamma$. The entries of the last quantity have been re-evaluated consistently using the correction procedure of KURAEV 85 [1]. The partial width $\Gamma_{e e}$ is obtained from the average values for $\Gamma_{e e} \Gamma_{\text {had }} / \Gamma$ and $B_{\ell \ell}$ using

$$
\begin{equation*}
\Gamma_{e e}=\frac{\Gamma_{e e} \Gamma_{\mathrm{had}}}{\Gamma\left(1-3 B_{\ell \ell}\right)} \tag{5}
\end{equation*}
$$

The total width Γ is then obtained from Eq. (1). We do not list $\Gamma_{e e}$ and Γ values of individual experiments. The $\Gamma_{e e}$ values in the Meson Summary Table are also those defined in Eq. (1).

References:

1. E.A. Kuraev, V.S. Fadin, Sov. J. Nucl. Phys. 41, 466 (1985).
