49. Kinematics

Reviewed August 2021 by D. Miller (Glasgow), D.R. Tovey (Sheffield), written January 2000 by J.D. Jackson (LBNL).

Throughout this section units are used in which $\hbar=c=1$. The following conversions are useful: $\hbar c=197.3 \mathrm{MeV} \mathrm{fm},(\hbar c)^{2}=0.3894(\mathrm{GeV})^{2} \mathrm{mb}$.

49.1 Lorentz transformations

The energy E and 3 -momentum \boldsymbol{p} of a particle of mass m form a 4 -vector $p=(E, \boldsymbol{p})$ whose square $p^{2} \equiv E^{2}-|\boldsymbol{p}|^{2}=m^{2}$. The velocity of the particle is $\boldsymbol{\beta}=\boldsymbol{p} / E$. The energy and momentum $\left(E^{*}, \boldsymbol{p}^{*}\right)$ viewed from a frame moving with velocity $\boldsymbol{\beta}_{f}$ are given by

$$
\binom{E^{*}}{p_{\|}^{*}}=\left(\begin{array}{cc}
\gamma_{f} & -\gamma_{f} \beta_{f} \tag{49.1}\\
-\gamma_{f} \beta_{f} & \gamma_{f}
\end{array}\right)\binom{E}{p_{\|}}, \quad p_{T}^{*}=p_{T}
$$

where $\gamma_{f}=\left(1-\beta_{f}^{2}\right)^{-1 / 2}$ and $p_{T}\left(p_{\|}\right)$are the components of \boldsymbol{p} perpendicular (parallel) to $\boldsymbol{\beta}_{f}$. Other 4 -vectors, such as the space-time coordinates of events, of course transform in the same way. The scalar product of two 4 -momenta $p_{1} \cdot p_{2}=E_{1} E_{2}-\boldsymbol{p}_{1} \cdot \boldsymbol{p}_{2}$ is invariant (frame independent).

49.2 Center-of-mass energy and momentum

In the collision of two particles of masses m_{1} and m_{2} the total center-of-mass energy can be expressed in the Lorentz-invariant form

$$
\begin{align*}
E_{\mathrm{cm}} & =\left[\left(E_{1}+E_{2}\right)^{2}-\left(\boldsymbol{p}_{1}+\boldsymbol{p}_{2}\right)^{2}\right]^{1 / 2} \\
& =\left[m_{1}^{2}+m_{2}^{2}+2 E_{1} E_{2}\left(1-\beta_{1} \beta_{2} \cos \theta\right)\right]^{1 / 2} \tag{49.2}
\end{align*}
$$

where θ is the angle between the particles. In the frame where one particle (of mass m_{2}) is at rest (lab frame),

$$
\begin{equation*}
E_{\mathrm{cm}}=\left(m_{1}^{2}+m_{2}^{2}+2 E_{1 \mathrm{lab}} m_{2}\right)^{1 / 2} \tag{49.3}
\end{equation*}
$$

The velocity of the center-of-mass in the lab frame is

$$
\begin{equation*}
\boldsymbol{\beta}_{\mathrm{cm}}=\boldsymbol{p}_{\mathrm{lab}} /\left(E_{1 \mathrm{lab}}+m_{2}\right) \tag{49.4}
\end{equation*}
$$

where $\boldsymbol{p}_{\text {lab }} \equiv \boldsymbol{p}_{1 \text { lab }}$ and

$$
\begin{equation*}
\gamma_{\mathrm{cm}}=\left(E_{1 \mathrm{lab}}+m_{2}\right) / E_{\mathrm{cm}} \tag{49.5}
\end{equation*}
$$

The c.m. momenta of particles 1 and 2 are of magnitude

$$
\begin{equation*}
p_{\mathrm{cm}}=p_{\mathrm{lab}} \frac{m_{2}}{E_{\mathrm{cm}}} \tag{49.6}
\end{equation*}
$$

For example, if a $0.80 \mathrm{GeV} / c$ kaon beam is incident on a proton target, the center of mass energy is 1.699 GeV and the center of mass momentum of either particle is $0.442 \mathrm{GeV} / c$. It is also useful to note that

$$
\begin{equation*}
E_{\mathrm{cm}} d E_{\mathrm{cm}}=m_{2} d E_{1 \mathrm{lab}}=m_{2} \beta_{1 \mathrm{lab}} d p_{\mathrm{lab}} \tag{49.7}
\end{equation*}
$$

49.3 Lorentz-invariant amplitudes

The matrix elements for a scattering or decay process are written in terms of an invariant amplitude $-i \mathscr{M}$. As an example, the S-matrix for $2 \rightarrow 2$ scattering is related to \mathscr{M} by

$$
\begin{equation*}
\left\langle p_{1}^{\prime} p_{2}^{\prime}\right| S-1\left|p_{1} p_{2}\right\rangle=i(2 \pi)^{4} \delta^{4}\left(p_{1}+p_{2}-p_{1}^{\prime}-p_{2}^{\prime}\right) \mathscr{M}\left(p_{1}, p_{2} ; p_{1}^{\prime}, p_{2}^{\prime}\right) . \tag{49.8}
\end{equation*}
$$

The state normalization is such that

$$
\begin{equation*}
\left\langle p^{\prime} \mid p\right\rangle=(2 \pi)^{3} 2 E_{p} \delta^{3}\left(\boldsymbol{p}^{\prime}-\boldsymbol{p}\right), \tag{49.9}
\end{equation*}
$$

with $E_{p}=\sqrt{\boldsymbol{p}^{2}+m^{2}}$.
For a $2 \rightarrow 2$ scattering process producing unstable particles 1^{\prime} and 2^{\prime} decaying via $1^{\prime} \rightarrow 3^{\prime} 4^{\prime}$ and $2^{\prime} \rightarrow 5^{\prime} 6^{\prime}$ the matrix element for the complete process can be written in the narrow width approximation as:

$$
\begin{equation*}
\mathscr{M}\left(12 \rightarrow 3^{\prime} 4^{\prime} 5^{\prime} 6^{\prime}\right)=\sum_{h_{1^{\prime}}, h_{2^{\prime}}} \frac{\mathscr{M}\left(12 \rightarrow 1^{\prime} 2^{\prime}\right) \mathscr{M}\left(1^{\prime} \rightarrow 3^{\prime} 4^{\prime}\right) \mathscr{M}\left(2^{\prime} \rightarrow 5^{\prime} 6^{\prime}\right)}{\left(m_{3^{\prime} 4^{\prime}}^{2}-m_{1^{\prime}}^{2}+i m_{1^{\prime}} \Gamma_{1^{\prime}}\right)\left(m_{5^{\prime} 6^{\prime}}^{2}-m_{2^{\prime}}^{2}+i m_{2^{\prime}} \Gamma_{2^{\prime}}\right)} . \tag{49.10}
\end{equation*}
$$

Here, $m_{i j}$ is the invariant mass of particles i and j, m_{k} and Γ_{k} are the mass and total width of particle k, and the sum runs over the helicities of the intermediate particles. This enables the cross section for such a process to be written as the product of the cross section for the initial $2 \rightarrow 2$ scattering process with the branching ratios (relative partial decay rates) of the subsequent decays. A more sophisticated treatment, beyond the narrow width approximation, can be found in the review on "Resonances".

49.4 Particle decays

The partial decay rate of a particle of mass M into n bodies in its rest frame is given in terms of the Lorentz-invariant matrix element \mathscr{M} by

$$
\begin{equation*}
d \Gamma=\frac{(2 \pi)^{4}}{2 M}|\mathscr{M}|^{2} d \Phi_{n}\left(P ; p_{1}, \ldots, p_{n}\right), \tag{49.11}
\end{equation*}
$$

where $d \Phi_{n}$ is an element of n-body phase space given by

$$
\begin{equation*}
d \Phi_{n}\left(P ; p_{1}, \ldots, p_{n}\right)=\delta^{4}\left(P-\sum_{i=1}^{n} p_{i}\right) \prod_{i=1}^{n} \frac{d^{3} p_{i}}{(2 \pi)^{3} 2 E_{i}} . \tag{49.12}
\end{equation*}
$$

This phase space is reduced by combinatoric factors whenever there are identical particles in the final state. The phase space can be generated recursively, viz.

$$
\begin{align*}
& d \Phi_{n}\left(P ; p_{1}, \ldots, p_{n}\right)=d \Phi_{j}\left(q ; p_{1}, \ldots, p_{j}\right) \\
& \quad \times d \Phi_{n-j+1}\left(P ; q, p_{j+1}, \ldots, p_{n}\right)(2 \pi)^{3} d q^{2} \tag{49.13}
\end{align*}
$$

where $q^{2}=\left(\sum_{i=1}^{j} E_{i}\right)^{2}-\left|\sum_{i=1}^{j} \boldsymbol{p}_{i}\right|^{2}$. This form is particularly useful in the case where a particle decays into another particle that subsequently decays.

49.4.1 Survival probability

If a particle of mass M has mean proper lifetime $\tau(=1 / \Gamma)$ and has momentum (E, \boldsymbol{p}), then the probability that it lives for a time t_{0} or greater before decaying is given by

$$
\begin{equation*}
P\left(t_{0}\right)=e^{-t_{0} \Gamma / \gamma}=e^{-M t_{0} \Gamma / E}, \tag{49.14}
\end{equation*}
$$

and the probability that it travels a distance x_{0} or greater is

$$
\begin{equation*}
P\left(x_{0}\right)=e^{-M x_{0} \Gamma /|\boldsymbol{p}|} . \tag{49.15}
\end{equation*}
$$

Figure 49.1: Definitions of variables for two-body decays.

49.4.2 Two-body decays

In the rest frame of a particle of mass M, decaying into 2 particles labeled 1 and 2 ,

$$
\begin{gather*}
E_{1}=\frac{M^{2}-m_{2}^{2}+m_{1}^{2}}{2 M}, \tag{49.16}\\
\left|\boldsymbol{p}_{1}\right|=\left|\boldsymbol{p}_{2}\right|=\frac{1}{2 M} \sqrt{\lambda\left(M^{2}, m_{1}^{2}, m_{2}^{2}\right)}, \tag{49.17}
\end{gather*}
$$

and

$$
\begin{equation*}
d \Gamma=\frac{1}{32 \pi^{2}}|\mathscr{M}|^{2} \frac{\left|\boldsymbol{p}_{1}\right|}{M^{2}} d \Omega, \tag{49.18}
\end{equation*}
$$

where $\lambda(\alpha, \beta, \gamma)=\alpha^{2}+\beta^{2}+\gamma^{2}-2 \alpha \beta-2 \alpha \gamma-2 \beta \gamma$ is the Källén function and $d \Omega=d \phi_{1} d\left(\cos \theta_{1}\right)$ is the solid angle of particle 1 . The invariant mass M can be determined from the energies and momenta using Eq. (49.2) with $M=E_{\mathrm{cm}}$.

49.4.3 Three-body decays

Figure 49.2: Definitions of variables for three-body decays.
Defining $p_{i j}=p_{i}+p_{j}$ and $m_{i j}^{2}=p_{i j}^{2}$, then $m_{12}^{2}+m_{23}^{2}+m_{13}^{2}=M^{2}+m_{1}^{2}+m_{2}^{2}+m_{3}^{2}$ and $m_{12}^{2}=$ $\left(P-p_{3}\right)^{2}=M^{2}+m_{3}^{2}-2 M E_{3}$, where E_{3} is the energy of particle 3 in the rest frame of M. In that frame, the momenta of the three decay particles lie in a plane. The relative orientation of these three momenta is fixed if their energies are known. The momenta can therefore be specified in space by giving three Euler angles (α, β, γ) that specify the orientation of the final system relative to the initial particle. The direction of any one of the particles relative to the frame in which the initial particle is described can be specified in space by two angles (α, β) while a third angle, γ, can be set as the azimuthal angle of a second particle around the first [1]. Then

$$
\begin{equation*}
d \Gamma=\frac{1}{(2 \pi)^{5}} \frac{1}{16 M}|\mathscr{M}|^{2} d E_{1} d E_{3} d \alpha d(\cos \beta) d \gamma \tag{49.19}
\end{equation*}
$$

Alternatively

$$
\begin{equation*}
d \Gamma=\frac{1}{(2 \pi)^{5}} \frac{1}{16 M^{2}}|\mathscr{M}|^{2}\left|\boldsymbol{p}_{1}^{*}\right|\left|\boldsymbol{p}_{3}\right| d m_{12} d \Omega_{1}^{*} d \Omega_{3}, \tag{49.20}
\end{equation*}
$$

where $\left(\left|\boldsymbol{p}_{1}^{*}\right|, \Omega_{1}^{*}\right)$ is the momentum of particle 1 in the rest frame of 1 and 2 , and Ω_{3} is the angle of particle 3 in the rest frame of the decaying particle. $\left|\boldsymbol{p}_{1}^{*}\right|$ and $\left|\boldsymbol{p}_{3}\right|$ are given by

$$
\begin{equation*}
\left|\boldsymbol{p}_{1}^{*}\right|=\frac{1}{2 m_{12}} \sqrt{\lambda\left(m_{12}^{2}, m_{1}^{2}, m_{2}^{2}\right)} \tag{49.21a}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\boldsymbol{p}_{3}\right|=\frac{1}{2 M} \sqrt{\lambda\left(M^{2}, m_{12}^{2}, m_{3}^{2}\right)} . \tag{49.21b}
\end{equation*}
$$

[Compare with Eq. (49.17).]
If the decaying particle is a scalar, or we average over its spin states, then integration over the angles in Eq. (49.19) gives

$$
\begin{align*}
d \Gamma & =\frac{1}{(2 \pi)^{3}} \frac{1}{8 M} \overline{|\mathscr{M}|^{2}} d E_{1} d E_{3} \\
& =\frac{1}{(2 \pi)^{3}} \frac{1}{32 M^{3}} \overline{|\mathscr{M}|^{2}} d m_{12}^{2} d m_{23}^{2} . \tag{49.22}
\end{align*}
$$

This is the standard form for the Dalitz plot.
49.4.3.1 Dalitz plot

For a given value of m_{12}^{2}, the range of m_{23}^{2} is determined by its values when \boldsymbol{p}_{2} is parallel or antiparallel to \boldsymbol{p}_{3} :

$$
\begin{align*}
& \left(m_{23}^{2}\right)_{\max }=\left(E_{2}^{*}+E_{3}^{*}\right)^{2}-\left(\sqrt{E_{2}^{* 2}-m_{2}^{2}}-\sqrt{E_{3}^{* 2}-m_{3}^{2}}\right)^{2} \tag{49.23a}\\
& \left(m_{23}^{2}\right)_{\min }=\left(E_{2}^{*}+E_{3}^{*}\right)^{2}-\left(\sqrt{E_{2}^{* 2}-m_{2}^{2}}+\sqrt{E_{3}^{* 2}-m_{3}^{2}}\right)^{2} \tag{49.23b}
\end{align*}
$$

Here $E_{2}^{*}=\left(m_{12}^{2}-m_{1}^{2}+m_{2}^{2}\right) / 2 m_{12}$ and $E_{3}^{*}=\left(M^{2}-m_{12}^{2}-m_{3}^{2}\right) / 2 m_{12}$ are the energies of particles 2 and 3 in the m_{12} rest frame. The scatter plot in m_{12}^{2} and m_{23}^{2} is called a Dalitz plot. If $\overline{|\mathscr{M}|^{2}}$ is constant, the allowed region of the plot will be uniformly populated with events [see Eq. (49.22)]. A nonuniformity in the plot gives immediate information on $|\mathscr{M}|^{2}$. For example, in the case of $D \rightarrow K \pi \pi$, bands appear when $m_{(K \pi)}=m_{K^{*}(892)}$, reflecting the appearance of the decay chain $D \rightarrow K^{*}(892) \pi \rightarrow K \pi \pi$.

49.4.4 Kinematic limits

49.4.4.1 Three-body decays

In a three-body decay (Fig. 49.2) the maximum of $\left|\boldsymbol{p}_{3}\right|$, [given by Eq. (49.21)], is achieved when $m_{12}=m_{1}+m_{2}$, i.e., particles 1 and 2 have the same vector velocity in the rest frame of the decaying particle. If, in addition, $m_{3}>m_{1}, m_{2}$, then $\left|\boldsymbol{p}_{3}\right|_{\max }>\left|\boldsymbol{p}_{1}\right|_{\max },\left|\boldsymbol{p}_{2}\right|_{\text {max }}$. The distribution of m_{12} values possesses an end-point or maximum value at $m_{12}=M-m_{3}$. This can be used to constrain the mass difference of a parent particle and one invisible decay product.
49.4.4.2 Sequential two-body decays

When a heavy particle initiates a sequential chain of two-body decays terminating in an invisible particle, constraints on the masses of the states participating in the chain can be obtained from end-points and thresholds in invariant mass distributions of the aggregated decay products. For the two-step decay chain depicted in Fig. 49.4 the invariant mass distribution of the two visible particles possesses an end-point given by:

$$
\begin{equation*}
\left(m_{12}^{\max }\right)^{2}=\frac{\left(m_{\mathrm{c}}^{2}-m_{\mathrm{b}}^{2}\right)\left(m_{\mathrm{b}}^{2}-m_{\mathrm{a}}^{2}\right)}{m_{\mathrm{b}}^{2}} \tag{49.24}
\end{equation*}
$$

Figure 49.3: Dalitz plot for a three-body final state. In this example, the state is $\pi^{+} \bar{K}^{0} p$ at 3 GeV . Four-momentum conservation restricts events to the shaded region.

Figure 49.4: Particles participating in sequential two-body decay chain. Particles labeled 1 and 2 are visible while the particle terminating the chain (a) is invisible.
provided particles 1 and 2 are massless. If visible particle 1 has non-zero mass m_{1} then Eq. (49.24) is replaced by

$$
\begin{gather*}
\left(m_{12}^{\max }\right)^{2}=m_{1}^{2}+\frac{\left(m_{\mathrm{c}}^{2}-m_{\mathrm{b}}^{2}\right)}{2 m_{\mathrm{b}}^{2}} \times \\
\left(m_{1}^{2}+m_{\mathrm{b}}^{2}-m_{\mathrm{a}}^{2}+\sqrt{\left(-m_{1}^{2}+m_{\mathrm{b}}^{2}-m_{\mathrm{a}}^{2}\right)^{2}-4 m_{1}^{2} m_{\mathrm{a}}^{2}}\right) \tag{49.25}
\end{gather*}
$$

See Refs. [2] and [3] for other cases.

49.4.5 Multibody decays

The above results may be generalized to final states containing any number of particles by combining some of the particles into "effective particles" and treating the final states as 2 or 3 "effective particle" states. Thus, if $p_{i j k \ldots}=p_{i}+p_{j}+p_{k}+\ldots$, then

$$
\begin{equation*}
m_{i j k \ldots}=\sqrt{p^{2}{ }_{i j k \ldots .}}, \tag{49.26}
\end{equation*}
$$

and $m_{i j k \ldots . .}$ may be used in place of e.g., m_{12} in the relations in Sec. 49.4.3 or Sec. 49.4.4 above.

49.5 Cross sections

Figure 49.5: Definitions of variables for production of an n-body final state.

The differential cross section is given by

$$
\begin{align*}
& d \sigma=\frac{(2 \pi)^{4}|\mathscr{M}|^{2}}{4 \sqrt{\left(p_{1} \cdot p_{2}\right)^{2}-m_{1}^{2} m_{2}^{2}}} \\
& \times \quad d \Phi_{n}\left(p_{1}+p_{2} ; p_{3}, \ldots, p_{n+2}\right) . \tag{49.27}
\end{align*}
$$

[See Eq. (49.12).] In the rest frame of m_{2} (lab),

$$
\begin{equation*}
\sqrt{\left(p_{1} \cdot p_{2}\right)^{2}-m_{1}^{2} m_{2}^{2}}=m_{2} p_{1 \mathrm{lab}} ; \tag{49.28a}
\end{equation*}
$$

while in the center-of-mass frame

$$
\begin{equation*}
\sqrt{\left(p_{1} \cdot p_{2}\right)^{2}-m_{1}^{2} m_{2}^{2}}=p_{1 \mathrm{~cm}} \sqrt{s} . \tag{49.28b}
\end{equation*}
$$

49.5.1 Two-body reactions

Figure 49.6: Definitions of variables for a two-body final state.
Two particles of momenta p_{1} and p_{2} and masses m_{1} and m_{2} scatter to particles of momenta p_{3} and
p_{4} and masses m_{3} and m_{4}; the Lorentz-invariant Mandelstam variables are defined by

$$
\begin{align*}
s & =\left(p_{1}+p_{2}\right)^{2}=\left(p_{3}+p_{4}\right)^{2} \\
& =m_{1}^{2}+2 E_{1} E_{2}-2 \boldsymbol{p}_{1} \cdot \boldsymbol{p}_{2}+m_{2}^{2}, \tag{49.29}\\
t & =\left(p_{1}-p_{3}\right)^{2}=\left(p_{2}-p_{4}\right)^{2} \\
& =m_{1}^{2}-2 E_{1} E_{3}+2 \boldsymbol{p}_{1} \cdot \boldsymbol{p}_{3}+m_{3}^{2}, \tag{49.30}\\
u & =\left(p_{1}-p_{4}\right)^{2}=\left(p_{2}-p_{3}\right)^{2} \\
& =m_{1}^{2}-2 E_{1} E_{4}+2 \boldsymbol{p}_{1} \cdot \boldsymbol{p}_{4}+m_{4}^{2}, \tag{49.31}
\end{align*}
$$

and they satisfy

$$
\begin{equation*}
s+t+u=m_{1}^{2}+m_{2}^{2}+m_{3}^{2}+m_{4}^{2} . \tag{49.32}
\end{equation*}
$$

The two-body cross section may be written as

$$
\begin{equation*}
\frac{d \sigma}{d t}=\frac{1}{64 \pi s} \frac{1}{\left|\boldsymbol{p}_{1 \mathrm{~cm}}\right|^{2}}|\mathscr{M}|^{2} . \tag{49.33}
\end{equation*}
$$

In the center-of-mass frame

$$
\begin{gather*}
t=\left(E_{1 \mathrm{~cm}}-E_{3 \mathrm{~cm}}\right)^{2}-\left(p_{1 \mathrm{~cm}}-p_{3 \mathrm{~cm}}\right)^{2}-4 p_{1 \mathrm{~cm}} p_{3 \mathrm{~cm}} \sin ^{2}\left(\theta_{\mathrm{cm}} / 2\right) \\
=t_{0}-4 p_{1 \mathrm{~cm}} p_{3 \mathrm{~cm}} \sin ^{2}\left(\theta_{\mathrm{cm}} / 2\right), \tag{49.34}
\end{gather*}
$$

where θ_{cm} is the angle between particle 1 and 3 . The limiting values $t_{0}\left(\theta_{\mathrm{cm}}=0\right)$ and $t_{1}\left(\theta_{\mathrm{cm}}=\pi\right)$ for $2 \rightarrow 2$ scattering are

$$
\begin{equation*}
t_{0}\left(t_{1}\right)=\left[\frac{m_{1}^{2}-m_{3}^{2}-m_{2}^{2}+m_{4}^{2}}{2 \sqrt{s}}\right]^{2}-\left(p_{1 \mathrm{~cm}} \mp p_{3 \mathrm{~cm}}\right)^{2} . \tag{49.35}
\end{equation*}
$$

In the literature the notation $t_{\min }\left(t_{\max }\right)$ for $t_{0}\left(t_{1}\right)$ is sometimes used, which should be discouraged since $t_{0}>t_{1}$. The center-of-mass energies and momenta of the incoming particles are

$$
\begin{equation*}
E_{1 \mathrm{~cm}}=\frac{s+m_{1}^{2}-m_{2}^{2}}{2 \sqrt{s}}, \quad E_{2 \mathrm{~cm}}=\frac{s+m_{2}^{2}-m_{1}^{2}}{2 \sqrt{s}} \tag{49.36}
\end{equation*}
$$

For $E_{3 \mathrm{~cm}}$ and $E_{4 \mathrm{~cm}}$, change m_{1} to m_{3} and m_{2} to m_{4}. Then

$$
\begin{equation*}
p_{i \mathrm{~cm}}=\sqrt{E_{i \mathrm{~cm}}^{2}-m_{i}^{2}} \text { and } p_{1 \mathrm{~cm}}=\frac{p_{1 \mathrm{lab}} m_{2}}{\sqrt{s}} . \tag{49.37}
\end{equation*}
$$

Here the subscript lab refers to the frame where particle 2 is at rest. [For other relations see Eqs. (49.2)-(49.4).]

49.5.2 Inclusive reactions

Choose some direction (usually the beam direction) for the z-axis; then the energy and momentum of a particle can be written as

$$
\begin{equation*}
E=m_{T} \cosh y, p_{x}, p_{y}, p_{z}=m_{T} \sinh y, \tag{49.38}
\end{equation*}
$$

where m_{T}, conventionally called the 'transverse mass', is given by

$$
\begin{equation*}
m_{T}^{2}=m^{2}+p_{x}^{2}+p_{y}^{2} . \tag{49.39}
\end{equation*}
$$

and the rapidity y is defined by

$$
\begin{gather*}
y=\frac{1}{2} \ln \left(\frac{E+p_{z}}{E-p_{z}}\right) \\
=\ln \left(\frac{E+p_{z}}{m_{T}}\right)=\tanh ^{-1}\left(\frac{p_{z}}{E}\right) . \tag{49.40}
\end{gather*}
$$

Note that the definition of the transverse mass in Eq. (49.39) differs from that used by experimentalists at hadron colliders (see Sec. 49.6.1 below). Under a boost in the z-direction to a frame with velocity $\beta, y \rightarrow y-\tanh ^{-1} \beta$. Hence, the shape of the rapidity distribution $d N / d y$ is invariant, as are differences in rapidity. The invariant cross section may also be rewritten

$$
\begin{equation*}
E \frac{d^{3} \sigma}{d^{3} p}=\frac{d^{3} \sigma}{d \phi d y p_{T} d p_{T}} \Longrightarrow \frac{d^{2} \sigma}{\pi d y d\left(p_{T}^{2}\right)} . \tag{49.41}
\end{equation*}
$$

The second form is obtained using the identity $d y / d p_{z}=1 / E$, and the third form represents the average over ϕ.

Feynman's x variable is given by

$$
\begin{equation*}
x=\frac{p_{z}}{p_{z \max }} \approx \frac{E+p_{z}}{\left(E+p_{z}\right)_{\max }} \quad\left(p_{T} \ll\left|p_{z}\right|\right) . \tag{49.42}
\end{equation*}
$$

In the c.m. frame,

$$
\begin{equation*}
x \approx \frac{2 p_{z \mathrm{~cm}}}{\sqrt{s}}=\frac{2 m_{T} \sinh y_{\mathrm{cm}}}{\sqrt{s}} \tag{49.43}
\end{equation*}
$$

and

$$
\begin{equation*}
=\left(y_{\mathrm{cm}}\right)_{\max }=\ln (\sqrt{s} / m) . \tag{49.44}
\end{equation*}
$$

The invariant mass M of the two-particle system described in Sec. 49.4.2 can be written in terms of these variables as

$$
\begin{equation*}
M^{2}=m_{1}^{2}+m_{2}^{2}+2\left[E_{T}(1) E_{T}(2) \cosh \Delta y-\boldsymbol{p}_{T}(1) \cdot \boldsymbol{p}_{T}(2)\right], \tag{49.45}
\end{equation*}
$$

where

$$
\begin{equation*}
E_{T}(i)=\sqrt{\left|\boldsymbol{p}_{T}(i)\right|^{2}+m_{i}^{2}} \tag{49.46}
\end{equation*}
$$

and $\boldsymbol{p}_{T}(i)$ denotes the transverse momentum vector of particle i.
For $p \gg m$, the rapidity [Eq. (49.40)] may be expanded to obtain

$$
\begin{gather*}
y=\frac{1}{2} \ln \frac{\cos ^{2}(\theta / 2)+m^{2} / 4 p^{2}+\ldots}{\sin ^{2}(\theta / 2)+m^{2} / 4 p^{2}+\ldots} \\
\approx-\ln \tan (\theta / 2) \equiv \eta \tag{49.47}
\end{gather*}
$$

where $\cos \theta=p_{z} / p$. The pseudorapidity η defined by the second line is approximately equal to the rapidity y for $p \gg m$ and $\theta \gg 1 / \gamma$, and in any case can be measured when the mass and momentum of the particle are unknown. From the definition one can obtain the identities

$$
\begin{equation*}
\sinh \eta=\cot \theta, \quad \cosh \eta=1 / \sin \theta, \quad \tanh \eta=\cos \theta \tag{49.48}
\end{equation*}
$$

49.6 Transverse variables

At hadron colliders, a significant and unknown proportion of the energy of the incoming hadrons in each event escapes down the beam-pipe. Consequently, if invisible particles are created in the final state, their net momentum can only be constrained in the plane transverse to the beam direction. Defining the z-axis as the beam direction, this net momentum is equal to the missing transverse energy vector

$$
\begin{equation*}
\boldsymbol{E}_{T}^{\mathrm{miss}}=-\sum_{i} \boldsymbol{p}_{T}(i), \tag{49.49}
\end{equation*}
$$

where the sum runs over the transverse momenta of all visible final state particles.

49.6.1 Single production with semi-invisible final state

Consider a single heavy particle of mass M produced in association with visible particles which decays as in Fig. 49.1 to two particles, of which one (labeled particle 1) is invisible. The mass of the parent particle can be constrained with the quantity M_{T} defined by

$$
\begin{align*}
M_{T}^{2} & \equiv\left[E_{T}(1)+E_{T}(2)\right]^{2}-\left[\boldsymbol{p}_{T}(1)+\boldsymbol{p}_{T}(2)\right]^{2} \\
& =m_{1}^{2}+m_{2}^{2}+2\left[E_{T}(1) E_{T}(2)-\boldsymbol{p}_{T}(1) \cdot \boldsymbol{p}_{T}(2)\right] \tag{49.50}
\end{align*}
$$

where

$$
\begin{equation*}
\boldsymbol{p}_{T}(1)=\boldsymbol{E}_{T}^{\mathrm{miss}} \tag{49.51}
\end{equation*}
$$

This quantity is called the 'transverse mass' by hadron collider experimentalists but it should be noted that it is quite different from that used in the description of inclusive reactions [Eq. (49.39)]. The distribution of event M_{T} values possesses an end-point at $M_{T}^{\max }=M$. If $m_{1}=m_{2}=0$ then

$$
\begin{equation*}
M_{T}^{2}=2\left|\boldsymbol{p}_{T}(1)\right|\left|\boldsymbol{p}_{T}(2)\right|\left(1-\cos \phi_{12}\right), \tag{49.52}
\end{equation*}
$$

where $\phi_{i j}$ is defined as the angle between particles i and j in the transverse plane.

49.6.2 Pair production with semi-invisible final states

Figure 49.7: Definitions of variables for pair production of semi-invisible final states. Particles 1 and 3 are invisible while particles 2 and 4 are visible.

Consider two identical heavy particles of mass M produced such that their combined center-ofmass is at rest in the transverse plane (Fig. 49.7). Each particle decays to a final state consisting of an invisible particle of fixed mass m_{1} together with an additional visible particle. M and m_{1} can be constrained with the variables $M_{T 2}$ and $M_{C T}$ which are defined in Refs. [4] and [5].

References

[1] J.D. Jackson in High Energy Physics, Les Houches 1965 Summer School, GORDON AND BREACH Science Publishers (1965), p. 348.
[2] I. Hinchliffe et al., Phys. Rev. D55, 5520 (1997), [hep-ph/9610544].
[3] B. C. Allanach et al., JHEP 09, 004 (2000), [hep-ph/0007009].
[4] C. G. Lester and D. J. Summers, Phys. Lett. B463, 99 (1999), [hep-ph/9906349].
[5] D. R. Tovey, JHEP 04, 034 (2008), [arXiv:0802.2879].

