90. Axions and Other Similar Particles

Revised August 2023 by L. J Rosenberg (U. Washington), G. Rybka (U. Washington) and B. Safdi (UC Berkeley).

90.1 Introduction

In this section, we list coupling-strength and mass limits for light neutral scalar or pseudoscalar bosons that couple weakly to normal matter and radiation. Such bosons may arise from the spontaneous breaking of a global $\mathrm{U}(1)$ symmetry, resulting in a massless Nambu-Goldstone (NG) boson. If there is a small explicit symmetry breaking, either already in the Lagrangian or due to quantum effects such as anomalies, the boson acquires a mass and is called a pseudo-NG boson. Typical examples are axions (a) [1-4] and majorons [5, 6], associated, respectively, with a spontaneously broken Peccei-Quinn PQ and lepton-number symmetry. Axions may also arise in extra dimension constructions as the zero-modes of higher-dimensional gauge fields compactified on internal manifolds; in this case, the absence of a local contributions to the axion mass is due to the higherdimensional gauge symmetry $[7,8]$.

A common feature of these light bosons ϕ is that their coupling to Standard-Model particles is suppressed by the energy scale that characterizes the symmetry breaking, i.e., the decay constant f. For example, in models where the axion arises as a Goldstone boson, the interaction Lagrangian at energy scales below f is

$$
\begin{equation*}
\mathcal{L}=f^{-1} J^{\mu} \partial_{\mu} \phi, \tag{90.1}
\end{equation*}
$$

where J^{μ} is the Noether current of the spontaneously broken global symmetry. If f is very large, these new particles interact very weakly. Detecting them would provide a window to physics far beyond what can be probed at accelerators.

Axions are of particular interest because the PQ mechanism is a compelling scheme to preserve $C P$-symmetry in QCD. Moreover, the cold dark matter (CDM) of the Universe may well consist of axions and they are searched for in dedicated experiments with a realistic chance of discovery.

Originally it was assumed that the PQ scale f_{a} was related to the electroweak symmetrybreaking scale $v_{\mathrm{EW}}=\left(\sqrt{2} G_{\mathrm{F}}\right)^{-1 / 2}=246.22 \mathrm{GeV}$. However, the associated "standard" and "variant" axions were quickly excluded-we refer to the Listings for detailed limits. Here we focus on "invisible axions" with $f_{a} \gg v_{\text {EW }}$ as the main possibility.

Axions have a characteristic two-photon vertex, inherited from their mixing with π^{0} and η. This coupling allows for the main search strategy based on axion-photon conversion in external magnetic fields [9], an effect that also can be of astrophysical interest. While for axions the product "a $\alpha \gamma$ interaction strength \times mass" is essentially fixed by the corresponding π^{0} properties, one may consider a more general class of axion-like particles (ALPs) where the two parameters (coupling and mass) are independent. A number of experiments explore this more general ALP parameter space. ALPs populating the latter are predicted to arise generically, in addition to the axion, in low-energy effective field theories emerging from string theory $[7,8,10-16]$. The latter may contain also very light Abelian vector bosons under which the Standard-Model particles are not charged: so-called hidden-sector photons, dark photons or paraphotons. They share a number of phenomenological features with the axion and ALPs, notably the possibility of hidden photon-to-photon conversion and of hidden photon dark matter [17-19]. Their physics cases and the current constraints are compiled in Refs. [20-23].

90.2 Theory

90.2.1 Peccei-Quinn mechanism and axions

The QCD Lagrangian includes a $C P$-violating term $\mathcal{L}_{\Theta}=-\bar{\Theta}\left(\alpha_{s} / 8 \pi\right) G^{\mu \nu a} \tilde{G}_{\mu \nu}^{a}$, where $-\pi \leq$ $\bar{\Theta} \leq+\pi$ is the effective Θ parameter after diagonalizing quark masses, $G_{\mu \nu}^{a}$ is the color field strength tensor, and $\tilde{G}^{a, \mu \nu} \equiv \epsilon^{\mu \nu \lambda \rho} G_{\lambda \rho}^{a} / 2$, with $\varepsilon^{0123}=1$, its dual. This term induces an electric dipole moment (EDM) of the neutron of strength $d_{n}=C_{\text {EDM }} e \bar{\Theta}$. The coefficient $C_{\text {EDM }}$ is calculated using QCD sum rules as $C_{\mathrm{EDM}}=2.4(1.0) \times 10^{-16} \mathrm{~cm}$ [24], while lattice QCD computations find $C_{\text {EDM }}=1.48(14)(31) \times 10^{-16} \mathrm{~cm}[25]$ including statistical and systematic uncertainties. Experimental upper bounds on the latter, $\left|d_{n}\right|<1.8 \times 10^{-26} e \mathrm{~cm}[26,27]$, imply $|\bar{\Theta}| \lesssim 10^{-10}$ even though $\bar{\Theta}=\mathcal{O}(1)$ is otherwise completely satisfactory. Note that the proton has a similar EDM as the neutron, but it is less strongly constrained at present; this could change in the future [28]. The proton EDM may be written as $d_{p}=C_{\mathrm{EDM}}^{p} e \bar{\Theta}$, with $C_{\mathrm{EDM}}^{p}=-3.8(11)(8)$ [25]. The opposite signs of the neutron and proton EDMs may be understood from the opposite signs of their magnetic moments. The spontaneously broken global PQ symmetry $\mathrm{U}(1)_{\mathrm{PQ}}$ was introduced to solve the "strong $C P$ problem" $[1,2]$ of small Θ, the axion being the pseudo-NG boson of $\mathrm{U}(1)_{\mathrm{PQ}}[3,4]$. This symmetry is broken due to the axion's anomalous triangle coupling to gluons,

$$
\begin{equation*}
\mathcal{L}=\left(\frac{a}{f_{a}}-\bar{\Theta}\right) \frac{\alpha_{s}}{8 \pi} G^{\mu \nu a} \tilde{G}_{\mu \nu}^{a} \tag{90.2}
\end{equation*}
$$

where a is the axion field and f_{a} the axion decay constant. Color anomaly factors have been absorbed in the normalization of f_{a} which is defined by this Lagrangian. Thus normalized, f_{a} is the quantity that enters all low-energy phenomena [29]. Non-perturbative topological fluctuations of the gluon fields in QCD induce a potential for a whose minimum is at $a=\bar{\Theta} f_{a}$, thereby canceling the $\bar{\Theta}$ term in the QCD Lagrangian and thus restoring $C P$ symmetry.

The resulting axion mass, in units of the PQ scale f_{a}, is identical to the square root of the topological susceptibility in QCD, $m_{a} f_{a}=\sqrt{\chi}$. The latter can be evaluated further [30,31], exploiting the chiral limit (masses of up and down quarks much smaller than the scale of QCD), yielding $m_{a} f_{a}=\sqrt{\chi} \approx f_{\pi} m_{\pi}$, where $m_{\pi} \approx 135 \mathrm{MeV}$ and $f_{\pi} \approx 92 \mathrm{MeV}$. In more detail one finds, by including $\mathcal{O}(\alpha)$ QED corrections and next-to-next-to-leading order (NNLO) corrections in chiral perturbation theory [32],

$$
\begin{equation*}
m_{a}=5.691(51)\left(\frac{10^{9} \mathrm{GeV}}{f_{a}}\right) \mathrm{meV} \tag{90.3}
\end{equation*}
$$

A direct calculation of the topological susceptibility via QCD lattice simulations finds almost the same central value, albeit with an about five times larger error bar [33].

The QCD axion acquires a variety couplings to low-energy Standard Model observables, as we discuss in detail in this review. The most model-independent couplings are those of the axion to the neutron and proton EDM operators. While the axion removes the static neutron and proton EDMs, displacements of the axion field a from its vacuum expectation value induce field-dependent EDMs, which are characterized through the operator

$$
\begin{equation*}
\mathcal{L}_{a N \gamma}=-\frac{i}{2} g_{a N \gamma} a \bar{\Psi}_{N} \sigma_{\mu \nu} \gamma_{5} \Psi_{N} F^{\mu \nu} \tag{90.4}
\end{equation*}
$$

with $N=n, p$ for neutrons or protons, respectively. The coupling $g_{a n \gamma}$ is related to $C_{\text {EDM }}$ by $g_{a n \gamma}=e C_{\mathrm{EDM}} / f_{a}$ and similarly for $g_{a p \gamma}$. Direct probes of the axion-EDM operators are difficult, though by studying the thermal production of axions in the early universe one can broadly constrain, using Planck and Baryon Acoustic Oscillation (BAO) data, $m_{a} \lesssim 0.3 \mathrm{eV}$ [34]. In the presence of an oscillatory relic axion DM field, this operator induces an oscillating neutron EDM; this effect forms
the basis of the CASPEr experiment $[35,36]$ that is discussed more later in this review. Non-linearly realized discrete-symmetries may be used to suppress the QCD axion mass below the prediction in Eq. (90.3), in which case a variety of cosmological and terrestrial constraints on the operator in Eq. (90.4) are also relevant [37-44]

Axions with $f_{a} \gg v_{\text {EW }}$ evade almost all current experimental limits. One generic class of models invokes "hadronic axions" where new heavy quarks carry $\mathrm{U}(1)_{\mathrm{PQ}}$ charges, leaving ordinary quarks and leptons without tree-level axion couplings. The archetype is the KSVZ model [45, 46], where in addition the heavy new quarks are electrically neutral. Another generic class of axion models requires at least two Higgs doublets and ordinary quarks and leptons carry PQ charges, the archetype being the DFSZ model $[47,48]$; in this case the quarks and leptons may have tree-level axion couplings. All of these models contain at least one electroweak singlet scalar that acquires a vacuum expectation value and thereby breaks the PQ symmetry. The KSVZ and DFSZ models are frequently used as benchmark examples, but other models exist where both heavy quarks and Higgs doublets carry PQ charges (see [49] for an extensive review). In supersymmetric models, the axion is part of a supermultiplet and thus inevitably accompanied by a spin- 0 saxion and a spin- $1 / 2$ axino, which both also have couplings suppressed by f_{a} and are expected to have large masses due to supersymmetry breaking [50]. In extra-dimension constructions the axion emerges from a higher-dimensional gauge field; the other components of the gauge field, however, tend to have masses proportional to the Kaluza-Klein mass scale of the extra dimensions.

90.2.2 Model-dependent axion couplings

Although the generic axion interactions scale approximately with f_{π} / f_{a} from the corresponding π^{0} couplings, there are non-negligible model-dependent factors and uncertainties. The axion's two-photon interaction plays a key role for many searches,

$$
\begin{equation*}
\mathcal{L}_{a \gamma \gamma}=-\frac{g_{a \gamma \gamma}}{4} a F_{\mu \nu} \tilde{F}^{\mu \nu}=g_{a \gamma \gamma} a \mathbf{E} \cdot \mathbf{B} \tag{90.5}
\end{equation*}
$$

where F is the electromagnetic field-strength tensor and $\tilde{F}^{\mu \nu} \equiv \epsilon^{\mu \nu \lambda \rho} F_{\lambda \rho} / 2$, with $\varepsilon^{0123}=1$, its dual. The coupling constant is [51]

$$
\begin{equation*}
g_{a \gamma \gamma}=\frac{\alpha}{2 \pi f_{a}}\left(\frac{E}{N}-1.92(4)\right)=\left(0.203(3) \frac{E}{N}-0.39(1)\right) \frac{m_{a}}{\mathrm{GeV}^{2}}, \tag{90.6}
\end{equation*}
$$

where E and N are the electromagnetic and color anomalies of the axial current associated with the axion. In grand unified models, and notably for $\operatorname{DFSZ}[47,48], E / N=8 / 3$, whereas for KSVZ $[45,46] E / N=0$ if the electric charge of the new heavy quark is taken to vanish. In general, a broad range of E / N values is possible [49,52-54], as indicated by the diagonal yellow band in Fig. 90.1, whose width is roughly determined by the boundary values $E / N=44 / 3$ and $E / N=5 / 3$, respectively. However, this band still does not exhaust all the possibilities. In fact, there exist classes of QCD axion models whose photon couplings populate the entire still-allowed region outside the yellow band in Fig. 90.1 [55-60], motivating axion search efforts over a wide range of masses and couplings.

The two-photon decay width is

$$
\begin{equation*}
\Gamma_{a \rightarrow \gamma \gamma}=\frac{g_{a \gamma \gamma}^{2} m_{a}^{3}}{64 \pi} \approx 1.1 \times 10^{-24} \mathrm{~s}^{-1}\left(\frac{m_{a}}{\mathrm{eV}}\right)^{5} \tag{90.7}
\end{equation*}
$$

The second expression uses Eq. (90.6) with $E / N=0$. Axions decay faster than the age of the Universe if $m_{a} \gtrsim 20 \mathrm{eV}$.

Figure 90.1: Exclusion plot for the ALP-photon coupling. Figure courtesy of Ciaran O'Hare [61], contains exclusions from refs. [62-168]. Constraints in red are from terrestrial experiments. ABRA 10 cm , SHAFT, BASE, ADMX SLIC, ADMX, RBF+UF, CAPP, QUAX, and ORGAN search for axion DM and assume the axion in 100% DM; CROWS. ALPS-I, OSQAR, PVLAS are light-shining-through-walls experiments that are purely terrestrial, while CAST searches for axions produced in the Sun with no DM assumption. Those shown in green are astrophysical but make no assumption about axions being DM. See text for details regarding the orange band expectation for the QCD axion and assumptions for blue high mass axion astrophysical limits.

The interaction with fermions f has derivative form and is invariant under a shift $a \rightarrow a+a_{0}$ as behooves a NG boson,

$$
\begin{equation*}
\mathcal{L}_{a f f}=\frac{C_{f}}{2 f_{a}} \partial_{\mu} a \bar{\Psi}_{f} \gamma^{\mu} \gamma_{5} \Psi_{f} . \tag{90.8}
\end{equation*}
$$

Here, Ψ_{f} is the fermion field, m_{f} its mass, and C_{f} a model-dependent coefficient. The dimensionless combination $g_{a f f} \equiv C_{f} m_{f} / f_{a}$ plays the role of a Yukawa coupling and $\alpha_{a f f} \equiv g_{a f f}^{2} / 4 \pi$ of a "finestructure constant." The often-used pseudoscalar form $\mathcal{L}_{a f f}=-\mathrm{i}\left(C_{f} m_{f} / f_{a}\right) a \bar{\Psi}_{f} \gamma_{5} \Psi_{f}$ need not be equivalent to the appropriate derivative structure, for example when two NG bosons are attached to one fermion line as in axion emission by nucleon bremsstrahlung [169-171].

In hadronic axion models, C_{e} vanishes at tree level, but is then generated radiatively at one loop [172,173],

$$
\begin{equation*}
C_{e} \simeq \frac{3 \alpha^{2}}{4 \pi^{2}}\left[\frac{E}{N} \log \left(\frac{f_{a}}{m_{e}}\right)-1.92 \log \left(\frac{\Lambda_{\chi}}{m_{e}}\right)\right], \tag{90.9}
\end{equation*}
$$

where $\Lambda_{\chi} \simeq 1 \mathrm{GeV}$ is the chiral symmetry breaking scale. In the DFSZ model [47,48], the tree-level coupling coefficient to electrons is [172]

$$
\begin{equation*}
C_{e}=\frac{\sin ^{2} \beta}{3} \tag{90.10}
\end{equation*}
$$

where $\tan \beta$ is the ratio of the vacuum expectation values of the two Higgs doublets giving masses to the up- and down-type quarks, respectively: $\tan \beta=v_{u} / v_{d}$. As a cautionary note, many of the original axion references, such as [172], defined $\tan \beta=v_{d} / v_{u}$, but the choice $\tan \beta=v_{u} / v_{d}$ adopted here and in more modern axion works is a reflection of the choice taken in the two-Higgs-doublet literature [174]. The resulting prediction for the axion-electron coupling, as a function of the axion mass, for the KSVZ axion $(E / N=0)$, hadronic axions, with $5 / 3 \leq E / N \leq 44 / 3$, and the DFSZ axion is displayed in Fig. 90.2. For the DFSZ range we have taken into account the constraint $0.28 \lesssim \tan \beta \lesssim 140$ [175] arising from the requirement of perturbative unitarity of the Yukawa couplings of Standard Model fermions.

For nucleons, $C_{p, n}$ have been determined as [51]

$$
\begin{align*}
C_{p}=-0.47(3) & +0.88(3) C_{u}-0.39(2) C_{d}-0.038(5) C_{s} \\
& -0.012(5) C_{c}-0.009(2) C_{b}-0.0035(4) C_{t} \\
C_{n}=-0.02(3) & +0.88(3) C_{d}-0.39(2) C_{u}-0.038(5) C_{s} \tag{90.11}\\
& -0.012(5) C_{c}-0.009(2) C_{b}-0.0035(4) C_{t}
\end{align*}
$$

in terms of the corresponding model-dependent quark couplings $C_{q}, q=u, d, s, c, b, t$. For hadronic axions, the latter vanish at tree-level, which means that C_{n} is expected to be much smaller than C_{p}. In the DFSZ model, $C_{u}=C_{c}=C_{t}=\frac{1}{3} \cos ^{2} \beta$ and $C_{d}=C_{s}=C_{b}=\frac{1}{3} \sin ^{2} \beta$, and C_{p} and C_{n}, as functions of β,

$$
\begin{align*}
& C_{p}=-0.435 \sin ^{2} \beta+(-0.182 \pm 0.025), \\
& C_{n}=0.414 \sin ^{2} \beta+(-0.160 \pm 0.025) \tag{90.12}
\end{align*}
$$

The resulting prediction for the axion-neutron coupling, as a function of the axion mass, for the KSVZ axion and the DFSZ axion is displayed in Fig. 90.3. Note, however, that these couplings receive in-medium corrections, which may be important when considering compact stars [176].

The axion-pion interaction is given by the Lagrangian [173,177]

$$
\begin{equation*}
\mathcal{L}_{a \pi}=\frac{C_{a \pi}}{2 f_{\pi} f_{a}} \partial_{\mu} a\left(\pi^{0} \pi^{+} \partial_{\mu} \pi^{-}+\pi^{0} \pi^{-} \partial_{\mu} \pi^{+}-2 \pi^{+} \pi^{-} \partial_{\mu} \pi^{0}\right), \tag{90.13}
\end{equation*}
$$

where $C_{a \pi}=2\left(C_{p}-C_{n}\right) /\left(3 g_{A}\right)$ and g_{A} is the nucleon axial charge $g_{A}=1.2723(23)$. Additionally, there are axion-pion-nucleon interactions of the form

$$
\begin{equation*}
\mathcal{L}_{a \pi N}=\frac{C_{a \pi N}}{2 f_{\pi} f_{a}} \partial_{\mu} a\left(i \pi^{+} \bar{p} \gamma^{\mu} n-i \pi^{-} \bar{n} \gamma^{\mu} p\right) \tag{90.14}
\end{equation*}
$$

where $C_{a \pi N}=\left(C_{a p}-C_{a n}\right) /\left(\sqrt{2} g_{A}\right)$.

90.3 Laboratory Searches

90.3.1 Light shining through walls

Searching for "invisible axions" is extremely challenging due to their extraordinarily feeble coupling to normal matter and radiation. Currently, the most promising approaches rely on the axion-two-photon interaction, allowing for axion-photon conversion in external electric or magnetic fields [9]. For the Coulomb field of a charged particle, the conversion can be viewed as a scattering process, $\gamma+Z e \leftrightarrow Z e+a$, called Primakoff effect [178]. In the other extreme of a macroscopic field, usually a large-scale B-field, the momentum transfer is small, the interaction is coherent over a large distance, and the conversion can be viewed as an axion-photon oscillation phenomenon in analogy to neutrino flavor oscillations [179].

Photons propagating through a transverse magnetic field, with incident \mathbf{E}_{γ} and magnetic field \mathbf{B} parallel, may convert into axions. For $m_{a}^{2} L / 2 \omega \ll 2 \pi$, where L is the length of the B field region and
ω the photon energy, the resultant axion beam is coherent with the incident photon beam and the conversion probability is $\Pi \sim(1 / 4)\left(g_{a \gamma \gamma} B L\right)^{2}$. One such realization uses a laser beam propagating down the bore of a superconducting dipole magnet (like, say, the bending magnets in high-energy accelerators). If another magnet is in line with the first, but shielded by an optical barrier, then photons may be regenerated from the pure axion beam [180,181]. The overall probability is $P(\gamma \rightarrow$ $A \rightarrow \gamma)=\Pi^{2}$.

The first such Light-Shining-through-Walls (LSW) experiment was performed by the BFRT (Brookhaven-Fermilab-Rochester-Trieste) collaboration. It utilized two magnets of length $L=$ 4.4 m and $B=3.7 \mathrm{~T}$ and found $\left|g_{a \gamma \gamma}\right|<6.7 \times 10^{-7} \mathrm{GeV}^{-1}$ at $95 \% \mathrm{CL}$ for $m_{a}<1 \mathrm{meV}[182,183]$. More recently, several such experiments were performed (see Listings) [98, 101, 184-188]. The current best limit, $\left|g_{a \gamma \gamma}\right|<3.5 \times 10^{-8} \mathrm{GeV}^{-1}$ at $95 \% \mathrm{CL}$ for $m_{a} \lesssim 0.3 \mathrm{meV}$ (see Fig. 90.1), has been achieved by the OSQAR (Optical Search for QED Vacuum Birefringence, Axions, and Photon Regeneration) experiment, which exploited two 9 T LHC dipole magnets and an 18.5 W continuous wave laser emitting at the wavelength of 532 nm [101]. The ALPS I (Any Light Particle Search I) experiment achieved a similar sensitivity [98], see Fig. 90.1. Some of these experiments have also reported limits for scalar bosons where the photon \mathbf{E}_{γ} must be chosen perpendicular to the magnetic field \mathbf{B}.

The concept of resonantly enhanced photon regeneration may open unexplored regions of coupling strength [189-191]. In this scheme, both the production and detection magnets are within Fabry-Perot optical cavities and actively locked in frequency. The $\gamma \rightarrow a \rightarrow \gamma$ rate is enhanced by
 cavities. The resonant enhancement could be of order $10^{(10-12)}$, improving the $g_{a \gamma \gamma}$ sensitivity by $10^{(2.5-3)}$. The experiment ALPS II (Any Light Particle Search II) is based on this concept and aims at an improvement of the current laboratory bound on $g_{a \gamma \gamma}$ by a factor $\sim 10^{3}$ [192]. ALPS II began operations in 2023.

Resonantly enhanced photon regeneration has already been exploited in experiments searching for "radiowaves shining through a shielding" [193-196]. For $m_{a} \lesssim 10^{-5} \mathrm{eV}$, the upper bound on $g_{a \gamma \gamma}$ established by the CROWS (CERN Resonant Weakly Interacting sub-eV Particle Search) experiment [100] is slightly less stringent than the one set by OSQAR, see Fig. 90.1.

90.3.2 Photon polarization

An alternative to regenerating the lost photons is to use the beam itself to detect conversion: the polarization of light propagating through a transverse B field undergoes dichroism and birefringence [197]. Dichroism: The $E_{\|}$component, but not E_{\perp}, is depleted by axion production, causing a small rotation of linearly polarized light. For $m_{a}^{2} L / 2 \omega \ll 2 \pi$, the effect is independent of m_{a}. For heavier axions, it oscillates and diminishes as m_{a} increases, and it vanishes for $m_{a}>\omega$. Birefringence: This effect occurs because there is mixing of virtual axions in the $E_{\|}$state, but not for E_{\perp}. Hence, linearly polarized light will develop elliptical polarization. Higher-order QED also induces vacuum magnetic birefringence (VMB). A search for these effects was performed in the same dipole magnets of the BFRT experiment mentioned before [198]. The dichroic rotation gave a stronger limit than the ellipticity rotation: $\left|g_{a \gamma \gamma}\right|<3.6 \times 10^{-7} \mathrm{GeV}^{-1}$ at $95 \% \mathrm{CL}$, for $m_{a}<5 \times 10^{-4} \mathrm{eV}$. The ellipticity limits are better at higher masses, as they fall off smoothly and do not terminate at m_{a}.

90.3.3 Long-range forces

New bosons would mediate new long-range forces, which are severely constrained by "fifth force" experiments [199]. Those looking for new mass-spin couplings provide significant constraints on pseudoscalar bosons [200-205], see for example in Fig. 90.3 the limit on the axion-neutron coupling [206] from torsion balance tests of the gravitational inverse square law [207]. Presently, the most restrictive limits are obtained from combining long-range force measurements with stellar
cooling arguments [208, 209]. For the moment, any of these limits are far from realistic values expected for the QCD axion. Still, these efforts provide constraints on more general low-mass bosons.

In Ref. [210], a method was proposed that can extend the search for axion-mediated spin-dependent forces by several orders of magnitude. By combining techniques used in nuclear magnetic resonance and short-distance tests of gravity, this method appears to be sensitive to the QCD axion in the $\mu \mathrm{eV}-\mathrm{meV}$ mass range, independent of the cosmic axion abundance, if axions have a $C P$-violating interaction with nuclei as large as the current experimental bound on the electric dipole moment of the neutron allows. (Note that the $C P$-violation already present in the Standard Model is sufficient for generating an axion-mediated force, though in this case the signal appears too small to be detectable for the QCD axion in the foreseeable future [210].) The ARIADNE (Axion Resonant InterAction DetectioN Experiment) is under development and employs this approach to search for axion-mediated spin-dependent short-range interactions between a hyper-polarized 3He sample and an unpolarized tungsten source mas [211]. The method relies on superconducting magnetic shielding to screen the sample from ordinary magnetic field noise. Experimental tests to demonstrate the requirements of ARIADNE, including characterization of the magnetic field backgrounds, are under way [212,213].

90.4 Axions from Astrophysical Sources

90.4.1 Stellar energy-loss limits

Axions are produced in hot astrophysical plasmas, and can thus transport energy out of stars. The coupling strength of these particles with normal matter and radiation is bounded by the constraint that stellar lifetimes or energy-loss rates are not in conflict with observation [214,215].

We begin this discussion with our Sun and concentrate first on the axion-photon coupling. In the Sun axions are produced by the Primakoff process $\gamma+Z e \rightarrow Z e+a$. Integrating this process over a standard solar model yields the axion luminosity [216]

$$
\begin{equation*}
L_{a}=g_{10}^{2} \times 1.85 \times 10^{-3} L_{\odot}, \tag{90.15}
\end{equation*}
$$

where $g_{10}=\left|g_{a \gamma \gamma}\right| \times 10^{10} \mathrm{GeV}$. The maximum of the spectrum is at 3.0 keV , the average at 4.2 keV , and the number flux at Earth is $g_{10}^{2} \times 3.75 \times 10^{11} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$. The solar photon luminosity is fixed, so energy losses due to the Primakoff process require enhanced nuclear energy production and thus enhanced neutrino fluxes. The all-flavor measurements by SNO (Sudbury Neutrino Observatory), together with a standard solar model, imply $L_{a} \lesssim 0.10 L_{\odot}$, corresponding to $g_{10} \lesssim 7$ [217], mildly superseding a similar limit from helioseismology (sound speed, surface helium and convective radius) [218]. In Ref. [147], this limit was improved to $g_{10}<4.1$ (at 3σ), see Fig. 90.1, exploiting a new statistical analysis that combined helioseismology and solar neutrino observations, including theoretical and observational errors, and accounting for tensions between input parameters of solar models, in particular the solar element abundances. Going beyond the axion-photon coupling, Ref. [217] considered also a non-zero axion-electron coupling and obtained the bound on the latter displayed in Fig. 90.2.

A more restrictive limit derives from globular-cluster (GC) stars that allow for detailed tests of stellar-evolution theory. The stars on the horizontal branch (HB) in the color-magnitude diagram have reached helium burning with a core-averaged energy release of about $80 \mathrm{erg} \mathrm{g}^{-1} \mathrm{~s}^{-1}$, compared to Primakoff axion losses of $g_{10}^{2} 30 \mathrm{erg} \mathrm{g}^{-1} \mathrm{~s}^{-1}$. The accelerated consumption of helium reduces the HB lifetime by about $80 /\left(80+30 g_{10}^{2}\right)$. In contrast, the red giant (RG) branch stars are not strongly affected by Primakoff losses, since unlike for the HB stars the plasma frequency in the RG stellar cores is below the temperature. Thus, Primakoff production reduces the R-parameter,

Figure 90.2: Exclusion plot for ALP-electron coupling as described in the text. Figure courtesy of Ciaran O'Hare [61], contains data from refs. [168,217,219-228]. The hadronic QCD axion-electron coupling arises at one loop and is given in Eq. (90.9); varying E / N between $5 / 3$ and $44 / 3$ gives the indicated hadronic axion band. The KSVZ axion has $E / N=0$, while the DFSZ axion-electron coupling has the tree-level coupling given in Eq. (90.10) that depends on the unknown but bounded value of $\tan \beta$ (see text for details).
which is the number of observed HB branch stars to RG branch stars in a GC. Measurements of the R-parameter in a large sample of 39 Galactic GCs
give a weak indication of non-standard losses which may be accounted by Primakoff-like axion emission, if the photon coupling is in the range $\left|g_{a \gamma \gamma}\right|=(2.9 \pm 1.8) \times 10^{-11} \mathrm{GeV}^{-1}[122,229]$. Still, the upper bound found in this analysis,

$$
\begin{equation*}
\left|g_{a \gamma \gamma}\right|<6.6 \times 10^{-11} \mathrm{GeV}^{-1}(95 \% \mathrm{CL}) \tag{90.16}
\end{equation*}
$$

represents one of the strongest limits on $g_{a \gamma \gamma}$ for a wide mass range. More recently, the $R_{2}{ }^{-}$ parameter has emerged as a potentially more sensitive probe of axions; the R_{2}-parameter is defined as the ratio of the asymptotic giant branch (AGB) stars to the HB stars in a GC. AGB stars have more efficient Primakoff production than HB stars, meaning that R_{2} is expected to decrease for increasing $\left|g_{a \gamma \gamma}\right|$. Ref. [123] used an R_{2} measurement based off of 48 GCs as observed by the Hubble Space Telescope [230] to constrain

$$
\begin{equation*}
\left|g_{a \gamma \gamma}\right|<4.7 \times 10^{-11} \mathrm{GeV}^{-1}(95 \% \mathrm{CL}) \tag{90.17}
\end{equation*}
$$

The constraint above on $g_{a \gamma \gamma}$ may be translated to $f_{a}>4.8 \times 10^{7} \mathrm{GeV}\left(m_{a}<0.12 \mathrm{eV}\right)$, using $E / N=0$ as in the KSVZ model, or to $f_{a}>1.8 \times 10^{7} \mathrm{GeV}\left(m_{a}<0.32 \mathrm{eV}\right)$, for the DFSZ axion model, with $E / N=8 / 3$, see Fig. 90.1.

If axions couple directly to electrons, the dominant emission processes are atomic axio-recombination and axio-deexcitation, axio-bremsstrahlung in electron-ion or electron-electron collisions, and Compton scattering [231]. Stars in the RG branch of the color-magnitude diagram of GCs are particularly sensitive to these processes: they would lead to an extension of the latter to larger brightness. In fact, the tip of the RG branch (TRGB) - the brightest point of the RG branch provides the currently most sensitive method to test the axion coupling to electrons. The strongest bounds on it are derived from analyses of the TRGB in several GCs [232] and in the Galactic GC ω Centauri [226]. The two analyses lead to very similar results,

$$
\begin{equation*}
\left|g_{\text {aee }}\right|<1.48 \times 10^{-13}(95 \% \mathrm{CL}) \text { and }\left|g_{\text {aeee }}\right|<1.3 \times 10^{-13}(95 \% \mathrm{CL}), \tag{90.18}
\end{equation*}
$$

respectively, see Fig. 90.2. Reference [232] finds also a small hint for extra cooling, corresponding to $\left|g_{\text {aee }}\right|=0.60_{-0.58}^{+0.32} \times 10^{-13}$, while Ref. [226] does not find any evidence for exotic cooling.

Bremsstrahlung is also efficient in white dwarfs (WDs), where the Primakoff and Compton processes are suppressed by the large plasma frequency. A comparison of the predicted and observed luminosity function of WDs can be used to put limits on $\left|g_{\text {aee }}\right|[233,234]$. An analysis based on detailed WD cooling treatment and data on the WD luminosity function (WDLF) of the Galactic disk found that electron couplings above $\left|g_{\text {aee }}\right| \gtrsim 3 \times 10^{-13}$ are disfavoured [235]. Lower couplings cannot be discarded from the current knowledge of the WDLF of the Galactic disk [235-237]. These probes may be improved by the Rubin Observatory Large Synoptic Survey Telescope (LSST), which is expected to increase the sample of WDs in the Galactic halo to hundreds of thousands [238]. For pulsationally unstable WDs (ZZ Ceti stars), the period decrease \dot{P} / P is a measure of the cooling speed. The corresponding observations of a handful pulsating WDs imply additional cooling that can be interpreted in terms of axion energy losses [239-243], though with axion-electron coupling values likely incompatible with other constraints [244].

Analogous constraints derive from neutron stars (NS) cooling. Broadly speaking, there are two classes of NS cooling searches for axions. One approach uses the proto-NS formed after SN 1987A to constrain the axion luminosity produced during the first seconds of the proto-NS when the neutrino luminosity is measured with terrestrial experiments. The second class of NS cooling constraints consider older NSs, typically much older than $\sim 100 \mathrm{yr}$, and constrains the axion luminosity using the surface temperature as measured with photons versus the age of NS as measured through e.g. kinematic considerations. We begin with a discussion of the limits from SN 1987A.

Numerical simulations reveal that the energy-loss rate due to axions in a nuclear medium at the density $3 \times 10^{14} \mathrm{~g} \mathrm{~cm}^{-3}$ and temperature 30 MeV should not exceed about $1 \times 10^{19} \mathrm{erg} \mathrm{g}^{-1} \mathrm{~s}^{-1}$ to be consistent with the neutrino signal observed from SN 1987A [256]. The energy-loss rate from nucleon bremsstrahlung, $N+N \rightarrow N+N+a$, is $\left(C_{N} / 2 f_{a}\right)^{2}\left(T^{4} / \pi^{2} m_{N}\right) F$. Here F is a numerical factor that represents an integral over the dynamical spin-density structure function because axions couple to the nucleon spin. For realistic conditions, even after considerable effort, one is limited to a heuristic estimate leading to $F \approx 1$ [215]. The SN 1987A limits are of particular interest for hadronic axions where the bounds on $\left|g_{\text {aee }}\right|$ are moot. Using a proton fraction of $0.3, g_{\text {ann }}=0$, $F=1$, and $T=30 \mathrm{MeV}$, one finds $f_{a}>4 \times 10^{8} \mathrm{GeV}$ and $m_{a}<16 \mathrm{meV}$ [215]. A more detailed numerical calculation [257] with state of the art SN models, again assuming $g_{a n n}=0$, found that a coupling larger than $\left|g_{\text {app }}\right| \gtrsim 6 \times 10^{-10}$, would shorten significantly the timescale of the neutrino emission. This result is, not surprisingly, rather close to the estimate in Ref. [215]. Improving the calculation of axion emission via nucleon-nucleon bremsstrahlung beyond the basic one-pion exchange approximation appears to loosen the bound $[258,259]$. The latter analysis finds a reduction of the axion emissivity by an order of magnitude if one takes into account the non-vanishing mass of the exchanged pion, the contribution from two-pion exchange, effective in-medium nucleon masses

Figure 90.3: Exclusion plot for ALP-neutron coupling as described in the text. Figure courtesy of Ciaran O'Hare [61], includes data from refs. [40, 42, 206, 245-255]. The hadronic axion model prediction is given in Eq. (90.11) with vanishing quark couplings, while the DFSZ model prediction depends on $\tan \beta$ as is found in Eq. (90.12), giving the shaded yellow region above. Note that for a fine-tuned value of $\tan \beta g_{a n}$ can be taken to zero. On the other hand, the neutron star cooling constraints [254] also probe the axion-proton coupling $g_{a p}$ at a comparable level (not shown), and both $g_{a n}$ and $g_{a p}$ cannot simultaneously be taken to zero in the DFSZ model.
and multiple nucleon scattering, leading to the result [259]

$$
\begin{equation*}
g_{a n n}^{2}+0.61 g_{a p p}^{2}+0.53 g_{\text {ann }} g_{a p p}<8.26 \times 10^{-19} \tag{90.19}
\end{equation*}
$$

which is consistent with the original estimate in [215]. This analysis, however, still neglects another very efficient mechanism for axion production in a SN: the pion production process, $\pi^{-}+p \rightarrow a+n$, also induced by the axion coupling to nucleons. Pion production was recognized long ago as being competitive with nucleon bremsstrahlung [260-262]. However, only recently it was shown that the pion abundance in the early stages of a SN is much larger than previously expected [263]. It was shown in Ref. [264] that pion induced processes dominate over bremsstrahlung and so strengthen the bound on the axion-nucleon coupling. On the other hand, given the modeling uncertainties and the sparse data from SN 1987A, the constraint on the axion-nucleon couplings from SN 1987A should be considered more as indicative than as a sharp bound [257]. Furthermore, note that if axions interact sufficiently strongly they are trapped. Only about three orders of magnitude in $g_{a N N}$, where $N=n, p$, or m_{a} are excluded. For even larger couplings, the axion flux would have been negligible, yet it would have triggered additional events in the detectors, excluding a further range [265].

Further bounds on the axion-nucleon coupling can be derived from observations of the cooling of older NSs. Recently, strong constraints were obtained by modeling the cooling of the "Magnificent

Seven" (M7) NSs in the presence of axions [254]. Axion emission would accelerate NS cooling. Thus, if the age and temperature of a NS are independently known, then by modeling axioninduced cooling in conjunction with the standard NS cooling mechanisms, in particular cooling via neutrino emission from the bulk of the NS and thermal emission from the NS surface, one is able to constrain the axion's coupling strength. Ref. [254] used a sample of four of the M7 along with PSR J0659 to constrain $m_{a}<16 \mathrm{meV}$ for the KSVZ QCD axion at $95 \% \mathrm{CL}$ and $m_{a} \lesssim 5 \mathrm{meV}$ ($m_{a} \lesssim 30 \mathrm{meV}$) in the DFSZ scenario for asymptotically large (small) $\tan \beta$. For axions that couple exclusively to neutrons (protons) Ref. [254] constrains $\left|g_{\text {ann }}\right|<1.3 \times 10^{-9}\left(\left|g_{\text {app }}\right|<1.5 \times 10^{-9}\right)$, as illustrated in Fig. 90.3. The five NSs used in that work are unique in that their ages, all in the range $0.1-1 \mathrm{Myr}$, are known by kinematic measurements (e.g., tracing back to the SN remnant), while their surface temperatures are measured in the X-ray band. Beyond statistical uncertainties on these measurements, there are a number of confounding systematic uncertainties that must be accounted for in NS cooling analyses, including uncertainties related to the core-surface temperature relation, which involves the chemical composition of the NS envelope. The NS equation of state and the superfluid critical temperatures of the dense nuclear matter are also sources of uncertainty. Note that axions are predominantly produced by nuclear bremsstrahlung [266, 267] except for temperatures near the superfluid critical temperature, when Cooper pair breaking and formation (PBF) processes may efficiently produce axions [268,269]. Given the large densities it is crucial to account for medium dependent couplings when computing the axion luminosities [270].

The young NS in the supernova remnant Cassiopeia A (Cas A) was previously though to strongly constrain axions, at a level similar to the NS cooling bound described above, due to PBF axion production [271]. This is because it was observed that Cas A was cooling rapidly, which may be explained by neutrino cooling with neutron superfluidity and proton superconductivity [272, 273]. However, it is possible that the excessive cooling of Cas A is at least in part instrumental in origin [274]. Fully accounting for uncertainties on both the NS properties and the data, constraints from young NSs such as Cas A and the NS in the supernova remnant HESS J1731-347 [275] appear to be sub-dominant compared to the limits from SN 1987A and the M7 [254].

Finally, let us note that if $m_{a} \sim \mathrm{meV}$, SNe would lose a large fraction of their energy as axions. This would lead to a diffuse SN axion background in the Universe with an energy density comparable to the extra-galactic background light [276]. However, there is no apparent way of detecting it or the axion burst from the next nearby SN. On the other hand, neutrino detectors such as IceCube, Super-Kamiokande or a future mega-ton water Cherenkov detector will probe exactly the mass region of interest by measuring the neutrino pulse duration of the next Galactic SN [257].

90.4.2 Searches for solar axions and ALPs

Instead of using stellar energy losses to derive axion limits, one can also search directly for these fluxes, notably from the Sun. The main focus has been on ALPs with a two-photon vertex. They are produced by the Primakoff process with a flux given by Eq. (90.15) and an average energy of 4.2 keV , and can be detected at Earth with the reverse process in a macroscopic B-field ("axion helioscope") [9]. In order to extend the sensitivity in mass towards larger values, one can endow the photon with an effective mass in a gas, $\omega_{\text {plas }}$, and tune the mass to match the axion's dispersion relation ($\omega_{\text {plas }}=m_{a}$) [277].

An early implementation of these ideas used a conventional dipole magnet, with a conversion volume of variable-pressure gas with a xenon proportional chamber as x-ray detector [278]. The conversion magnet was fixed in orientation and collected data for about $1000 \mathrm{~s} /$ day. Axions were excluded for $\left|g_{a \gamma \gamma}\right|<3.6 \times 10^{-9} \mathrm{GeV}^{-1}$ for $m_{a}<0.03 \mathrm{eV}$, and $\left|g_{a \gamma \gamma}\right|<7.7 \times 10^{-9} \mathrm{GeV}^{-1}$ for $0.03<m_{a}<0.11 \mathrm{eV}$ at 95% CL.

Later, the Tokyo axion helioscope used a superconducting magnet on a tracking mount, viewing
the Sun continuously. They reported $\left|g_{a \gamma \gamma}\right|<6 \times 10^{-10} \mathrm{GeV}^{-1}$ for $m_{a}<0.3 \mathrm{eV}$ [279, 280]. This experiment was recommissioned and a similar limit for masses around 1 eV was reported [281].

The most recent helioscope CAST (CERN Axion Solar Telescope) uses a decommissioned LHC dipole magnet on a tracking mount. The hardware includes grazing-incidence x-ray optics with solid-state x-ray detectors, as well as x-ray Micromegas position-sensitive gaseous detectors. Exploiting an IAXO (see below) pathfinder system, CAST has established the limit

$$
\begin{equation*}
\left|g_{a \gamma \gamma}\right|<6.6 \times 10^{-11} \mathrm{GeV}^{-1} \quad(95 \% \mathrm{CL}) \tag{90.20}
\end{equation*}
$$

for $m_{a}<0.02 \mathrm{eV}$ [99]. To cover larger masses, the magnet bores are filled with a gas at varying pressure. The runs with ${ }^{4} \mathrm{He}$ cover masses up to about 0.4 eV [282], providing the high-mass component of the CAST limits shown in Fig. 90.1. To cover yet larger masses, ${ }^{3} \mathrm{He}$ was used to achieve a larger pressure at cryogenic temperatures. Limits up to 1.17 eV allowed CAST to "cross the axion line" for the KSVZ model [283-285], see Fig. 90.1.

Sensitivity to significantly smaller values of $g_{a \gamma \gamma}$ can be achieved with a next-generation axion helioscope with a much larger magnetic-field cross section. Realistic design options for this "International Axion Observatory" (IAXO) have been studied in some detail [286] and its physics potential has been reviewed recently [287]. Such a next-generation axion helioscope may also push the sensitivity in the product of couplings to photons and to electrons, $g_{a \gamma \gamma} g_{a e e}$, into a range beyond stellar energy-loss limits and test the hypothesis that WD, RG, and HB cooling is dominated by axion emission $[288,289]$. As a first step towards IAXO, an intermediate experimental stage called BabyIAXO is currently under preparation at DESY [290].

Direct detection experiments searching for dark matter (DM) consisting of weakly interacting massive particles have also the capability to search for solar axions and ALPs. For low masses, $m_{a} \lesssim 100 \mathrm{eV}$, the XENONnT experiment [291] has provided the most stringent bound among those experiments on the axion-electron coupling constant,

$$
\begin{equation*}
\left|g_{\text {aee }}\right|<1.9 \times 10^{-12} \quad(90 \% \mathrm{CL}) \tag{90.21}
\end{equation*}
$$

see Fig. 90.2, by exploiting the axio-electric effect in liquid xenon. Slightly less stringent limits were set by PandaX-II [292] and by LUX [293]. However, this technique has not reached the sensitivity of energy-loss considerations in stars.

90.4.3 Conversion of astrophysical axion fluxes

Large-scale B fields exist in astrophysics that can induce axion-photon oscillations. In practical cases, the strength of B is much smaller than in the laboratory, whereas the conversion region L is much larger. Therefore, while the product $B L$ can be large, realistic sensitivities are usually restricted to very low-mass particles, far away from the "QCD axion band" in a plot like Fig. 90.1.

One example of this is SN 1987A, which would have emitted a burst of ALPs due to the Primakoff production in its core. They would have partially converted into γ-rays in the Galactic B-field. The lack of a gamma-ray signal in the GRS instrument of the SMM satellite in coincidence with the observation of the neutrinos emitted from SN 1987A therefore provides a strong bound on their coupling to photons [294,295]. This bound has been revisited and the underlying physics has been brought to the current state-of-the-art, as far as modeling of the supernova and the MilkyWay magnetic field are concerned, resulting in the limit $[151,152]\left|g_{a \gamma \gamma}\right|<5.2 \times 10^{-12} \mathrm{GeV}^{-1}$ for $m_{a} \lesssim 5 \times 10^{-10} \mathrm{eV}$.

Reference [119] reports no evidence of a γ-ray burst in observations of extragalactic SNe with the Fermi Large Area Telescope (LAT). Under the assumption that at least one SN was contained within the LAT field of view, the authors derive an upper bound on the axion photon coupling which is about a factor of 5 weaker than the one from SN 1987A, see Fig. 90.1.

The cumulative emission of ALPs from all past core-collapse SNe would lead to a diffuse gammaray flux peaked at energies $\sim 50-100 \mathrm{MeV}$ which can convert in the Galactic magnetic field into photons. Using Fermi-LAT measurements of the diffuse γ-ray flux, Ref. [296] obtains a conservative bound on the photon coupling, $\left|g_{a \gamma \gamma}\right|<5 \times 10^{-10} \mathrm{GeV}^{-1}$, for $m_{a} \lesssim 10^{-11} \mathrm{eV}$, see see Fig. 90.1, which can be decreased by nearly three orders of magnitude, if an ALP-nucleon coupling of maximal phenomenologically allowed strength, $\left|g_{a N N}\right| \sim 10^{-9}$, is allowed.

Hot, young stars, such as Wolf-Rayet stars, efficiently produce ALPs with energies $\sim 10-100 \mathrm{keV}$ via the Primakoff effect. Large numbers of those stars are hosted by the Galactic Quintuplet and Westerlund 1 super star clusters (SSCs). The non-observation of hard X-rays originating from axion-photon conversion in the Galactic magnetic field in archival NuSTAR (Nuclear Spectroscopic Telescope Array) data from these SSCs leads to a bound on the axion-photon coupling [159], $\left|g_{a \gamma \gamma}\right|<3.6 \times 10^{-12} \mathrm{GeV}^{-1}$, for $m_{a} \lesssim 5 \times 10^{-11} \mathrm{eV}$, see Fig. 90.1. A somewhat weaker bound in the same mass range was established exploiting NuSTAR data on Betelgeuse [105].

A hard X-ray excess in data from the nearby M7 isolated NSs [297] may be explained by ALPs produced in the cores of those stars and converted in the surrounding magnetic fields, with $\left|g_{a N N} g_{a \gamma \gamma}\right| \in\left(2 \times 10^{-21}, 10^{-18}\right) \mathrm{GeV}^{-1}$, for $m_{a} \lesssim 10^{-5} \mathrm{eV}[298]$. The non-observation of an X-ray excess from the magnetic WD RE J0317-853 [299] by Chandra yields the constraint $\left|g_{\text {aee }} g_{a \gamma \gamma}\right| \lesssim$ $1.3 \times 10^{-25} \mathrm{GeV}^{-1}$, for $m_{a} \ll 10^{-5} \mathrm{eV}$ [128], which provides a non-trivial constraint on the ratio $g_{a e e} / g_{a N N}$ for axion models explaining the M7 X-ray excess.

In addition to being produced in NS cores, axions may also be produced in NS magnetospheres. In particular, it has recently been shown that axions could be copiously produced in the polar-cap regions of NS magnetospheres due to time-varying, un-screened electric fields [145]. Those axions could then convert to photons in the outer regions of the NS magnetosphere, leading to observable, broadband radio flux. The absence of such radio flux sets competitive constraints on ALPs, as indicated by the "pulsars" constraint in Fig. 90.1.

90.4.4 Conversion of astrophysical photon fluxes

Magnetically induced oscillations between photons and ALPs can modify the photon fluxes from distant sources in various ways, featuring (i) frequency-dependent dimming, (ii) modified polarization, and (iii) avoiding absorption by propagation in the form of axions. For example, dimming of SNe Ia could influence the interpretation in terms of cosmic acceleration [300], although it has become clear that photon-ALP conversion could only be a subdominant effect [301].

Polarization measurements are particularly powerful probes of photon-to-axion conversion since only photons polarized parallel to astrophysical magnetic fields may convert into axions, meaning that in the presence of large-scale ordered magnetic fields axions tend to leave distinct polarization signatures in passing radiation. Searches for linear polarization from radio galaxies (see, e.g., Ref. [302]) and quasars [303] may approach in sensitivity $\left|g_{a \gamma \gamma}\right| \sim$ few $\times 10^{-13} \mathrm{GeV}^{-1}$, albeit with uncertainties related to the underlying modeling assumptions. Recently, robust limits at the level $\left|g_{a \gamma \gamma}\right| \leq 5.4 \times 10^{-12} \mathrm{GeV}^{-1}$ at 95% CL have been derived from optical polarization measurements of nearby magnetic WDs [129] (see also [304]), see Fig. 90.1. The magnetic fields of magnetic WDs may be well-measured through the Zeeman splitting of bound-bound transitions in the WD atmospheres.

Remarkably, it appears that the Universe could be too transparent to $\mathrm{TeV} \gamma$-rays that should be absorbed by pair production on the extra-galactic background light [109,305-308]. The situation is not conclusive at present [309-312], but the possible role of photon-ALP oscillations in $\mathrm{TeV} \gamma$-ray astronomy is tantalizing [313-315]. On the other hand, much of this parameter space is excluded by the previously-discussed WD polarization probes. Fortunately, the region in ALP parameter space, $g_{a \gamma \gamma} \sim 10^{-12}-10^{-10} \mathrm{GeV}^{-1}$ for $m_{a} \lesssim 10^{-7} \mathrm{eV}$ [316], required to explain the anomalous TeV
transparency of the Universe, could be conceivably probed by the next generation of laboratory experiments (ALPS II) and helioscopes (IAXO) mentioned above.

This parameter region can also be probed by searching for an irregular behavior of the gamma ray spectrum of distant active galactic nuclei (AGN), expected to arise from photon-ALP mixing in a limited energy range. In this type of studies, the uncertainty in the magnetic field around the source needs to be taken into account. This typically leads to a range of limits on the ALP-photon coupling that depend on the modeling assumptions. The H.E.S.S. collaboration has set a limit of $\left|g_{a \gamma \gamma}\right| \lesssim 2.1 \times 10^{-11} \mathrm{GeV}^{-1}$, for $1.5 \times 10^{-8} \mathrm{eV} \lesssim m_{a} \lesssim 6.0 \times 10^{-8} \mathrm{eV}$, from the non-observation of an irregular behavior of the spectrum of the AGN PKS 2155-304 [317]. The Fermi-LAT collaboration has put an even more stringent limit on the ALP-photon coupling [118] from observations of the gamma ray spectrum of NGC 1275, the central galaxy of the Perseus cluster, see Fig. 90.1. A similar analysis has been carried out in Ref. [318], using Fermi-LAT data of PKS 2155-304, and in Ref. [131], using ARGO-YBJ and Fermi-LAT data of Mrk 421, see Fig. 90.1. However, these constraints were obtained under certain theoretical assumptions about magnetic fields surrounding the sources, not confirmed yet by direct astronomical observations in these particular directions; this introduces large systematic uncertainties in the reported constraints [319].

Evidence for spectral irregularities has been reported in Galactic sources, such as pulsars and supernova remnants, and has been interpreted as hints for ALPs [320,321] (see also discussion in Ref. [322] and references therein). However, the inferred ALP parameters, $\left|g_{a \gamma \gamma}\right| \sim 10^{-10} \mathrm{GeV}^{-1}$, $m_{a} \sim \mathrm{neV}$, are in tension with the CAST helioscope bounds. Reference [322] updated the analysis of the pulsar signal region including astrophysical nuisance parameters and correctly deriving confidence intervals on ALP parameters by means of Monte Carlo simulations. The tension with the CAST bounds can be evaded if environmental effects in matter, which would suppress the ALP production in dense astrophysical plasmas like the solar interior, are invoked. If this explanation is correct, the claimed ALP signal would be in reach of the next-generation LSW experiment ALPS II. Other ways to make the CAST bound compatible with photon-ALP conversions in the lowdensity Galactic medium are invoking photon-ALP-dark photon oscillations [323] or the existence of a number of 'hidden' ALPs [324].

At smaller masses, $m_{a} \lesssim 10^{-12} \mathrm{eV}$, galaxy clusters become highly efficient at interconverting ALPs and photons at X-ray energies. Constraints on spectral irregularities in the spectra of luminous X-ray sources (Hydra A, M87, NGC 1275, NGC 3862, Seyfert galaxy 2E3140; taken by Chandra and XMM-Newton) located in or behind galaxy clusters then lead to stringent upper limits on the ALP-photon coupling [110-112,325-327], (for the limits exploiting spectra from Hydra and M87 from Refs. [110] and [111], respectively, see Fig. 90.1). Reference [112] recently performed the most sensitive x-ray searches for ALPs to date by employing Chandra's High-Energy Transmission Gratings that allow for an unsurpassed spectral resolution. New observations of the AGN NGC 1275 then led to the bound $\left|g_{a \gamma \gamma}\right|<8 \times 10^{-13} \mathrm{GeV}^{-1}$ at 99.7% C.L. for ultra-light ALPs, as illustrated in Fig. 90.1. On the other hand, magnetic field modeling uncertainties in the clusters may not be fully accounted for in these analyses [319].

90.4.5 Finite density effects for the $Q C D$ axion

If the QCD axion sector has a discrete, $\mathbb{Z}_{\mathcal{N}}$, shift symmetry, its potential is much shallower, and its mass, in units of its decay constant, $m_{a} f_{a} \simeq(3 \pi)^{-1 / 4} \mathcal{N}^{3 / 4} 2^{-\mathcal{N} / 2} m_{\pi} f_{\pi}$, is smaller than the one of the canonical QCD axion by an exponential factor $\propto 2^{-\mathcal{N} / 2}[57,58]$. This opens up the parameter space over which one should search for a QCD axion towards the left of the yellow canonical QCD axion band in Fig. 90.1, Fig. 90.2, and Fig. 90.3. Novel bounds apply to this exceptionally light QCD axion due to finite density effects [328-330]. In fact, in dense stellar media, the minimum of the axion potential may be shifted to π. This has a number of phenomenological consequences that
span from the modification of nuclear processes in stars due to $\theta=\mathcal{O}(\pi)$ to modifications in the orbital decay of binary systems (and subsequently in the emitted gravitational waves). Recently strong constraints have been set using the modification of the WD mass-radius relation due to such axions [331].

In fact, $\theta \sim 1$ in the solar core would lead to an increased proton-neutron mass difference, which would prohibit the neutrino line corresponding to the ${ }^{7} \mathrm{Be}-{ }^{7} \mathrm{Li}$ mass difference observed by Borexino [332].

Moreover, the fact that the position of the minimum of the axion potential depends on the nuclear density of the medium may also source a long-range force between dense stars [328]. This new long-range force sourced by the axion can be constrained by the measurement of the orbital decay of double pulsar or NS-pulsar binaries [328]. The gravitational wave signal of NS-NS mergers or black hole (BH) - NS mergers would also be modified by these axionic long-range forces [328,329]. There is also a corresponding bound [330] exploiting the gravitational waves observation from the binary NS inspiral GW170817 detected by LIGO (Laser Interferometer Gravitational-Wave Observatory) and Virgo [333].

90.4.6 Superradiance of black holes

Light bosonic fields such as axions or ALPs can affect the dynamics and gravitational wave emission of rapidly rotating astrophysical BHs through the superradiance mechanism. When the boson's Compton wavelength is of order of the size of the BH's ergoregion, they form gravitational bound states around the BH. Their occupation number grows exponentially by extracting energy and angular momentum from the black hole, forming a coherent axion or ALP bound state emitting gravitational waves. When accretion cannot replenish the spin of the BH , superradiance dominates the BH spin evolution; this is true for both supermassive and stellar mass BHs. The existence of destabilizing light bosonic fields thus leads to exclusion regions in the mass versus spin plot of rotating BHs. Stellar BH spin measurements exploiting well-studied binaries and two independent techniques exclude a mass range - up to self-interaction caveats discussed below $-6 \times 10^{-13} \mathrm{eV}<$ $m_{a}<2 \times 10^{-11} \mathrm{eV}$ at 2σ, which for the axion excludes $3 \times 10^{17} \mathrm{GeV}<f_{a}<1 \times 10^{19} \mathrm{GeV}[12,334,335]$, see Fig. 90.4. These bounds apply when gravitational interactions dominate over the axion selfinteraction, which is largely true for the QCD axion in this mass range. On the other hand, Mehta et al. $[336,337]$ considered superradiance bounds for string theory ALPs with a quartic self-coupling (of either sign) given by $\lambda=m_{a}^{2} / f_{a}^{2}$, using the bosenova model of Ref. [335], and found that for $m_{a} \sim 10^{-12} \mathrm{eV}$ the superradiant cloud, and thus the constraints, are destroyed for $f_{a} \lesssim 10^{11}-10^{12} \mathrm{GeV}$, depending precisely on the mass and the source.

Baryakhtar et al. [338] used a more advanced model for the effect of self-interactions on superradiant evolution, and a different (frequentist) statistical methodology, leading to more conservative bounds from stellar mass BHs (region near $10^{-12} \mathrm{eV}$). In particular, Baryakhtar et al. [338] found that QCD axions are only excluded for $m_{a} \lesssim 6 \times 10^{-12} M_{\odot}$ instead of the $2 \times 10^{-11} M_{\odot}$, as claimed in [336, 337]. Baryakhtar et al. [338] also vetoed supermassive BHs (SMBHs) with spins measured at low significance, and thus found no ALP bounds in the SMBH region (near $10^{-18} \mathrm{eV}$); Mehta et al. $[336,337,339]$, in constrast, included SMBHs in a (quasi-)Bayesian analysis with a flat prior on the spin and found non-trivial constraints. In summary, it appears likely that the lower end of the QCD axion mass range is excluded by superradiance, with the requirement $m_{a} \gtrsim 10^{-11} \mathrm{eV}$, but the exact location of this limit is still debated. It is also too early to claim that ultra-light ALP parameter space is excluded by SMBHs, though this may change with future work.

Long lasting, monochromatic gravitational wave signals, which can be distinguished from ordinary astrophysical sources by their clustering in a narrow frequency range, are expected to be produced by axions or ALPs annihilating to gravitons. Gravitational waves could also be sourced

Figure 90.4: QCD axion mass predictions for obtaining the correct DM abundance assuming the PQ symmetry is and is not restored after inflation and, in the case the PQ symmetry is restored after inflation, depending on the domain wall number N. Figure courtesy of Ciaran O'Hare [61], includes data from refs. [18,33,340-353]. The lower-end of the possible mass range is bounded by BH superradiance constraints and the theoretical requirement that f_{a} be below the Planck scale, while the upper end is bounded by the somewhat model-dependent NS cooling constraints (not shown), which exclude QCD axion masses above roughly $\sim 15-30 \mathrm{meV}$, depending on the UV completion. At even higher masses there are strong constraints from the production of DM in the early universe, which behaves as hot DM and contributes to $\Delta N_{\text {eff }}$.
by axions/ALPs transitioning between energy levels of the effective gravitational atom. Accordingly, the gravitational wave detector Advanced LIGO should be sensitive to the axion in the $m_{a} \lesssim 10^{-10} \mathrm{eV}$ region. LIGO measurements of BH spins in binary merger events could also provide statistical evidence for the presence of an axion [354,355]. Similar signatures could arise for supermassive and intermediate mass BHs for particles with masses $\lesssim 10^{-15} \mathrm{eV}$. Gravitational waves from such sources could be detected at lower-frequency observatories such as LISA (Laser Interferometer Space Antenna). First attempts to use LIGO/Virgo data to search for monochromatic signatures of axion superradiance were recently made in [356,357].

90.5 Cosmic Axions

90.5.1 Cosmic axion populations

There are two distinct populations of cosmic relic axion popoulations: a non-thermal one behaving as CDM, and a thermal one comprising a HDM component, in analogy to massive neutrinos. For $m_{a} \lesssim 0.01 \mathrm{eV}$, thermal axions are dominantly produced by processes involving quarks and gluons $[358,359]$, while, for larger masses, the dominant thermalization process is $\pi+\pi \leftrightarrow \pi+a[173,360,361]$. A number of evaluations exploiting cosmological precision data have found restrictive constraints on a possible HDM fraction that translate into an upper bound on the axion mass, $m_{a} \lesssim 1 \mathrm{eV}$, if a LO axion-pion chiral effective field theory (EFT) analysis of the axion-pion thermalization rate is used [362-365]. Recently, it was found that the NLO contribution exceeds the LO contributions for masses below $m_{a} \lesssim 1.2\left(0.12 / C_{a \pi}\right) \mathrm{eV}[366]$. Therefore, in order to assess the reach in sensitivity of future cosmological data sets, one has to improve the EFT description or to compute axion-pion scattering via lattice QCD techniques. Alternatively, recently Ref. [367] used pion-pion scattering data to overcome the EFT description issues and found the
constraint $m_{a} \lesssim 0.24 \mathrm{eV}$, see Fig. 90.4.
For $m_{a} \gtrsim 10 \mathrm{eV}$, axions may decay faster than the age of the Universe (see Eq. (90.7)), depending on the decay constant, which would remove the cosmic axion population while injecting photons. If the axions were in thermal equilibrium in the early Universe, which depends on the inflationary reheat temperature and assumptions about the pre-BBN cosmology [368,369], this excess radiation provides additional limits on the axion- or ALP-photon coupling up to very large masses [368,369]. Such photons could contribute to the extragalactic background light (EBL), could ionize primordial hydrogen and thus contribute to the optical depth after recombination, or could spoil the agreement of big bang nucleosynthesis (BBN) with observations. The corresponding up-to-date bounds from Refs. $[166,167]$ are displayed in Fig. 90.1. It has recently been shown that there is an irreducible axion background [168] that arises from axion freeze-in before BBN; decays of that axion population provide strong constraints on axions with masses above roughly 100 eV (see Fig. 90.1). For high enough decay constants, high-mass axions ($m_{a} \gtrsim 10 \mathrm{eV}$) can account for the DM abundance through the misalignment mechanism, described in more detail below, though additional entropy dilution or fine-tuning is needed to avoid overproducing the DM abundance [370] (see also [371] for heavy axion production through lepton-flavor-violating decays). The decay of such high-mass axions to photon pairs could leave narrow spectral features in e.g. optical or X-ray backgrounds [126, 138140, 161,163, 372, 373] (see Fig. 90.1).

The main cosmological interest in axions at present derives from their possible role as CDM. In addition to thermal processes, axions are abundantly produced by the misalignment (MIS) mechanism [374-376]. The axion DM abundance crucially depends on the cosmological history. Let us first consider the so called pre-inflationary $P Q$ symmetry breaking scenario, in which the PQ symmetry is broken before and during inflation and not restored afterwards. After the breakdown of the PQ symmetry, the axion field relaxes somewhere in the bottom of the "wine-bottle-bottom" potential. Near the QCD epoch, topological fluctuations of the gluon fields such as instantons explicitly break the PQ symmetry. This tilting of the "wine-bottle-bottom" drives the axion field toward the $C P$-conserving minimum, thereby exciting coherent oscillations of the axion field that ultimately represent a condensate of CDM. The fractional cosmic mass density in this homogeneous field mode, created by the MIS mechanism, is [33,377-379],

$$
\begin{align*}
\Omega_{a}^{\mathrm{MIS}} h^{2} & \approx 0.12\left(\frac{f_{a}}{9 \times 10^{11} \mathrm{GeV}}\right)^{1.165} F \Theta_{\mathrm{i}}^{2} \tag{90.22}\\
& \approx 0.12\left(\frac{6 \mu \mathrm{eV}}{m_{a}}\right)^{1.165} F \Theta_{\mathrm{i}}^{2}
\end{align*}
$$

where h is the present-day Hubble expansion parameter in units of $100 \mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1}$, and $-\pi \leq$ $\Theta_{\mathrm{i}} \leq \pi$ is the initial "misalignment angle" relative to the $C P$-conserving position attained in the causally connected region which evolved into today's observable Universe. $F=F\left(\Theta_{\mathrm{i}}, f_{a}\right)$ is a factor accounting for anharmonicities in the axion potential. For $F \Theta_{\mathrm{i}}^{2}=\mathcal{O}(1), m_{a}$ should be above $\sim 6 \mu \mathrm{eV}$ in order that the cosmic axion density does not exceed the observed CDM density, $\Omega_{\mathrm{CDM}} h^{2}=0.12$. However, much smaller axion masses (much higher PQ scales) are still possible if entropy is diluted for example by the late decay of a scalar condensate (see for example [380] and references therein) or the initial value Θ_{i} just happens to be small enough in today's observable Universe ("anthropic axion window" [381]). In the latter cosmological scenario, however, quantum fluctuations of the axion field during inflation are expected to lead to isocurvature density fluctuations which get imprinted to the temperature fluctuations of the CMB [382,383]. Their nonobservation puts severe constraints on the Hubble expansion rate H_{I} during inflation [384-389],
which read, in the simplest cosmological inflationary scenario,

$$
\begin{equation*}
H_{I} \lesssim 5.7 \times 10^{8} \mathrm{GeV}\left(\frac{5 \mathrm{neV}}{m_{a}}\right)^{0.4175} \tag{90.23}
\end{equation*}
$$

if axions represent all of DM. In Ref. [390] an alternative to the MIS mechanism was proposed: the so-called kinetic MIS mechanism. In this case, the axion field is assumed to have an initial velocity which may be generated, e.g., by a hypothesized explicit breaking of the axion shift symmetry in the early universe. The amount of QCD axion dark matter generated by the kinetic MIS mechanism can fit the observed dark matter abundance for any $f_{a} \lesssim 1.5 \times 10^{11} \mathrm{GeV}$, down to the minimum value allowed by the SN 1987A constraint.

In the above prediction of the fractional cosmic mass density in axions, the exponent, 1.165 , arises from the non-trivial temperature dependence of the topological susceptibility $\chi(T)=m_{A}^{2}(T) f_{A}^{2}$ at temperatures slighty above the QCD quark-hadron phase transition. Lattice QCD calculations of this exponent $[33,343,345,391-393]$, but also Ref. [344], found it to be remarkably close to the prediction of the dilute instanton gas approximation [394] which was previously exploited. Therefore, the state-of-the-art prediction of the axion mass relevant for DM for a fixed initial misalignment angle Θ_{i} differs from the previous prediction by just a factor of order one.

In the post-inflationary $P Q$ symmetry breaking scenario, on the other hand, Θ_{i} will take on different values in different patches of the present Universe. The average contribution is [33,377-379]

$$
\begin{equation*}
\Omega_{a}^{\mathrm{MIS}} h^{2} \approx 0.12\left(\frac{30 \mu \mathrm{eV}}{m_{a}}\right)^{1.165} \tag{90.24}
\end{equation*}
$$

The decay of cosmic strings and domain walls gives rise to a further population of CDM axions, whose abundance suffers from significant uncertainties [341,347-349, 378, 379, 395-403] which arise from the difficulty in understanding the energy loss process of topological defects and the generated axion spectrum in a quantitative way. In fact, in the present state-of-the-art it is still possible that the CDM contribution from the decay of topological defects is subdominant [347] or overwhelmingly large [348] in comparison to the one from the MIS mechanism. Correspondingly, the plausible range of axion masses providing all of CDM in scenarios with postinflationary PQ symmetry breaking is still rather large, namely $[347,348]$

$$
\begin{equation*}
m_{a} \approx 26 \mu \mathrm{eV}-0.5 \mathrm{meV} \tag{90.25}
\end{equation*}
$$

for models with short-lived (requiring unit color anomaly $N=1$) domain walls, such as the KSVZ model. On the other hand, the most recent adaptive mesh refinement axion string simulations, which are able to evolve over larger dynamic ranges than static lattice simulations, suggest the mass range $m_{a} \approx 40-180 \mu \mathrm{eV}$ [341]. For models with long-lived $(N>1)$ domain walls, such as an accidental DFSZ model [404], where the PQ symmetry is broken by higher dimensional Planck suppressed operators, the mass is predicted to be significantly higher [287, 349, 404-406],

$$
\begin{equation*}
m_{a} \approx(0.58-130) \mathrm{meV} \tag{90.26}
\end{equation*}
$$

However, the upper part of the predicted range is in conflict with stellar energy-loss limits on the axion. The pre- and post-inflationary mass predictions are summarized in Fig. 90.4.

In this post-inflationary PQ symmetry breakdown scenario, the spatial axion density variations are large at the QCD transition, and they are not erased by free streaming. Gravitationally bound "axion miniclusters" form before and around matter-radiation equality [407-409]. A significant fraction of CDM axions can reside in these bound objects [400, 410]. Remarkably, the minicluster
fraction can be bounded by gravitational lensing [411-413], although more simulations are required to understand whether miniclusters are dense enough and survive in sufficient quantities for lensing bounds to apply.

The non-thermal production mechanisms attributed to axions are generic to light bosonic weakly interacting particles such as ALPs [18]. The relic abundance is set by the epoch when the axion mass becomes significant, $3 H(t) \approx m_{a}(t)$, and ALP field oscillations begin. For ALPs to contribute to the DM density this epoch must precede that of matter radiation equality. For a temperature independent ALP mass this leads to the bound:

$$
\begin{equation*}
m_{a} \gtrsim 7 \times 10^{-28} \mathrm{eV}\left(\frac{\Omega_{m} h^{2}}{0.15}\right)^{1 / 2}\left(\frac{1+z_{\mathrm{eq}}}{3.4 \times 10^{3}}\right)^{3 / 2} \tag{90.27}
\end{equation*}
$$

ALPs lighter than this bound are allowed if their cosmic energy density is small, but they are quite distinct from other forms of DM [414]. Ignoring anharmonicities in the ALP potential, and taking the ALP mass to be temperature independent, the relic density in DM ALPs due to the MIS mechanism is given by

$$
\begin{equation*}
\Omega_{\mathrm{ALP}}^{\mathrm{MIS}} h^{2}=0.12\left(\frac{m_{a}}{4.7 \times 10^{-19} \mathrm{eV}}\right)^{1 / 2}\left(\frac{f_{a}}{10^{16} \mathrm{GeV}}\right)^{2}\left(\frac{\Omega_{m} h^{2}}{0.15}\right)^{3 / 4}\left(\frac{1+z_{\mathrm{eq}}}{3.4 \times 10^{3}}\right)^{-3 / 4} \Theta_{\mathrm{i}}^{2} \tag{90.28}
\end{equation*}
$$

An ALP decay constant near the GUT scale gives the correct relic abundance for ultralight ALPs (ULAs) with $m_{\text {ULA }} \approx 10^{-19} \mathrm{eV}[415,416]$. ULAs encompass the entire Earth in a single Compton wavelength, and for large occupation numbers are modelled as a coherent classical field. The coherence time is determined by the mass and virial velocity in the Milky Way, $\tau_{\text {coh }} \sim 1 / m_{\text {ULA }} v_{\text {vir }}^{2}$, with the detailed properties described by a stochastic model with an approximately Rayleigh Jeans distribution [417]. Natural models for ULAs can be found in string and M-theory compactifications [$7,8,10-15]$, in field theory with accidental symmetries [418, 419], or new hidden strongly coupled sectors [420, 421].

In addition to the gravitational potential energy, the ULA field also carries gradient energy. On scales where the gradient energy is non-negligible, ULAs acquire an effective pressure and do not behave as CDM. The gradient energy opposes gravitational collapse, leading to a Jeans scale below which perturbations are stable [422]. The Jeans scale suppresses linear cosmological structure formation relative to CDM [423-425]. The Jeans scale at matter-radiation equality in the case that ULAs make up all of CDM is:

$$
\begin{equation*}
k_{\mathrm{J}, \mathrm{eq}}=8.7 \mathrm{Mpc}^{-1}\left(\frac{1+z_{\mathrm{eq}}}{3.4 \times 10^{3}}\right)^{-1 / 4}\left(\frac{h^{2} \Omega_{\mathrm{ALP}}^{\mathrm{MIS}}}{0.12}\right)^{1 / 4}\left(\frac{m_{\mathrm{ULA}}}{10^{-22} \mathrm{eV}}\right)^{1 / 2} \tag{90.29}
\end{equation*}
$$

On non-linear scales the gradient energy leads to the existence of a class of pseudo-solitons known as oscillatons, or axion stars [426]. Axion stars are expected to form in all cosmological scenarios, and for all types of ALPs, including the QCD axion [427-429]. Some axion stars may explode into radio photons, heating the interstellar medium [104].

Cosmological and astrophysical observations are consistent with the CDM model, and departures from it are only allowed on the scales of the smallest observed DM structures with $M \sim 10^{6-8} M_{\odot}$. The CMB power spectrum and galaxy auto-correlation power spectrum limit the ULA mass to $m_{\text {ULA }} \gtrsim \mathcal{O}$ (few) $\times 10^{-24} \mathrm{eV}$ from linear theory of structure formation [414, 430]. Analytic models [431] and N-body simulations [432] for non-linear structures show that halo formation is suppressed in ULA models relative to CDM. This leads to constraints on the ULA mass of $m_{\mathrm{ULA}}>10^{-22} \mathrm{eV}$ from observations of high- z galaxies [432-434], and $m_{\mathrm{ULA}}>2 \times 10^{-20} \mathrm{eV}$
from the Lyman-alpha forest flux power spectrum [435]. Including the effects of anharmonicities on structure formation with ALPs can weaken these bounds if the misalignment angle $\Theta_{\mathrm{i}} \approx \pi$ [436]. A comprehensive study of Milky Way satellites by the DES collaboration resulted in the bound $m_{\text {ULA }}>2.9 \times 10^{-21} \mathrm{eV}$ [437].

Cosmological simulations that treat gradient energy in the ULA field beyond the N-body approximation have just recently become available [427, 438-440], and show, among other things, evidence for the formation of axion stars in the centres of ULA halos (various consequences of axion stars are considered in Refs. [441]). These central axion stars have been conjectured to play a role in the apparently cored density profiles of dwarf spheroidal galaxies, and other central galactic regions [127, 427, 442-446]. However, the relationship between the halo mass and the axion star mass [447] leads to problems with this scenario in some galaxies [448-450]. It should be emphasised that many of the conclusions about the role of ULA axion stars in galactic dynamics are based on use of simulation results that do not contain baryons and feedback could be important [451-453].

Inside DM halos the axion gradient energy causes coherence on the de Broglie wavelength and fluctuations on the coherence time [427,454]. These fluctuations can be thought of as short-lived quasiparticles and lead to relaxation processes that can be described statistically [416, 455] (this relaxation processes also leads to the gravitational condensation of axion stars [428]). The typical relaxation time is:

$$
\begin{equation*}
t \sim 10^{10} \text { years }\left(\frac{m_{\mathrm{ULA}}}{10^{-22} \mathrm{eV}}\right)^{3}\left(\frac{v}{100 \mathrm{~km} \mathrm{~s}^{-1}}\right)^{2}\left(\frac{r}{5 \mathrm{kpc}}\right)^{4} \tag{90.30}
\end{equation*}
$$

where v and r are the velocity and radius of the orbit in the host DM halo.
Relaxation processes such as these are not observed in galaxies, though there are some circumstances where they may be desirable [416]. An absence of observed relaxation can be used to set limits on the ULA mass. An absence of Milky Way disk thickening excludes $m_{\text {ULA }}>$ $0.6 \times 10^{-22} \mathrm{eV}$ [456], while stellar streams give the stronger bound $m_{\mathrm{ULA}}>1.5 \times 10^{-22} \mathrm{eV}$ [457]. The survival of the old star cluster in Eridanus II [458] excludes the range of masses $10^{-21} \mathrm{eV} \lesssim$ $m_{\text {ULA }} \lesssim 10^{-19} \mathrm{eV}$ [459]. Recently Ref. [460] finds that ULA DM is excluded for $m_{\text {ULA }} \lesssim 3 \times 10^{-19}$ eV at 99% CL because such DM would kinematically heat the stars in the Segue I and Segue II ultra-faint dwarf galaxies to a level inconsistent with their observed dynamics.

Finally, one should note that the beyond-CDM physics of ULAs (Jeans scale, relaxation, axion star formation) of course also applies to the QCD axion on smaller length scales. This is of particular interest inside axion miniclusters [407, 408, 428, 429].

90.5.2 Electron recoil searches

In a DM direct detection experiment, a DM ALP featuring a coupling to the electron can be absorbed by the target material, leading to a mono-energetic electronic recoil signal peaked at m_{a}. This mechanism allowed the EDELWEISS [461], PandaX [221], SuperCDMS [222] and XENON1T [462] collaborations to put the bounds on the axion-electron coupling displayed in Fig. 90.2 in the keV mass range. As discussed in the last sub-section, additionally dynamics beyond the standard misalignment mechanism are needed to explain the axion DM abundance for keV-scale axion masses (e.g., [370,371]). Moreover, such models are subject to stringent constraints from axion decays to photons [370].

90.5.3 Telescope searches

The two-photon decay is extremely slow for axions with masses in the CDM regime, but could be detectable for eV masses. The signature would be a quasi-monochromatic emission line from galaxies and galaxy clusters. The expected optical line intensity for DFSZ axions is similar to the continuum night emission. A search for optical line emission in two Abell clusters using spectra
from the VIMOS (Visible Multi-Object Spectrograph) integral field unit at the Very Large Telescope (VLT) excludes axions and ALPs with a two photon coupling bigger than $\sim 5 \times 10^{-12} \mathrm{GeV}^{-1}$ in the mass range between 4.5 and 5.5 eV [163], see Fig. 90.1. Spectral data on the dwarf spheroidal galaxy Leo T from the Multi Unit Spectroscopic Explorer (MUSE) at the VLT improve these constraints by more than an order of magnitude for ALP masses between 2.7 and 5.3 eV [162], see Fig. 90.1.

Very low-mass axions in halos produce a weak quasi-monochromatic radio line. Virial velocities in undisrupted dwarf galaxies are very low, and the axion decay line would therefore be extremely narrow. A search with the Haystack radio telescope on three nearby dwarf galaxies gave a limit $\left|g_{a \gamma \gamma}\right|<1.0 \times 10^{-9} \mathrm{GeV}^{-1}$ at 96% CL for $298<m_{a}<363 \mu \mathrm{eV}$ [161]. However, this combination of m_{a} and $g_{a \gamma \gamma}$ does not exclude plausible axion models.

A monochromatic signal is also produced in the conversion of DM axions in the background of slowly varying galactic B-fields [463]. The signal is, however, sensitive to magnetic field power on the scale of the axion mass [464]. Present and future radio telescopes appear to be able to probe ALP DM in the mass range $0.1-100 \mu \mathrm{eV}$ for couplings $g_{a \gamma \gamma} \gtrsim 10^{-13} \mathrm{GeV}^{-1}$ [464] - unfortunately not reaching down to the benchmark QCD axion sensitivity.

Resonant conversion of QCD axion or ALP DM in NS magnetospheres may give a detectable signal from individual NSs and populations of NSs for axion masses in the $\mu \mathrm{eV}$ range [465, 466]. Recent analyses of radio data in the frequency range $1-40 \mathrm{GHz}$ from several NSs have found no evidence for a narrow peak predicted from this mechanism and therefore put bounds on the axi-on-photon coupling around $10^{-11} \mathrm{GeV}^{-2}$ for $m_{a} \sim 10 \mu \mathrm{eV}[133-136]$, see Fig. 90.1. However, these limits may still suffer from uncertainties because the line intensity is difficult to predict in detail in the complicated environments of NSs [135,467-470]. Still, next-generation radio telescopes such as the Square Kilometer Array (SKA) may reach sensitivity to QCD axion-strength couplings [136]. Stimulated ALP decays in high radiation environments may be detectable, by e.g. the future SKA, down to $g_{a \gamma \gamma} \gtrsim 10^{-11} \mathrm{GeV}^{-1}$, for masses between $\mu \mathrm{eV}$ and 0.1 meV [471]. Furthermore, in condensed ALP dark matter structures such as ALP stars, a parametric instability may lead to an exponential enhancement of the photon flux from ALP-photon conversion by a factor $\sim \exp \left[\left|g_{a \gamma \gamma}\right| \int d s \rho_{a}^{1 / 2}(s)\right]$, where the integral is along any photon trajectory through the ALP overdensity [472, 473].

Photon propagation on an ULA DM background can induce birefringence that can be compared with upper limits from the CMB $[106,141,474]$ and may also be probed with other sources such as pulsars [475].

90.5.4 Microwave cavity experiments

Over a large part of the plausible m_{a} range for CDM, Galactic halo axions may be detected by their resonant conversion into a quasi-monochromatic microwave signal in a high-Q electromagnetic cavity permeated by a strong, static B field $[9,476,477]$. The cavity frequency is tunable, and the signal is maximized when the cavity resonant frequency is the total axion energy, rest mass plus kinetic energy, of $\nu=\left(m_{a} / 2 \pi\right)\left[1+\mathcal{O}\left(10^{-6}\right)\right]$, the width above the rest mass representing the axions' virial distribution in the galaxy near Earth. The frequency spectrum may also contain finer structure from axions more recently fallen into the galactic potential and not yet completely virialized $[478,479]$ or otherwise incompletely thermalized.

The feasibility of this technique was established in early experiments (RBF (Rochester-BrookhavenFlorida) and UF (University of Florida)) of relatively small sensitive volume, \mathcal{O} (1 liter), with HFETbased microwave amplifiers, setting limits in the range $4.5<m_{a}<16.3 \mu \mathrm{eV}$ [91,95,482], but lacking by $2-3$ orders of magnitude the sensitivity required to detect realistic axions, see Fig. 90.5.

Later, the first generation of ADMX ($B \sim 8 \mathrm{~T}, V \sim 200$ liters) achieved sensitivity to KSVZ axions, assuming they saturate the local DM density and are well virialized, over the mass range 1.9$3.3 \mu \mathrm{eV}$ [485]. Should halo axions have a significant narrow component not yet virialized, ADMX

Figure 90.5: Exclusion plot for ALP-photon coupling with closeup on the parameter space of RF cavity experiments as described in the text. This is a zoom-in of Fig. 90.1 that highlights regions probed by axion DM direct detection experiments. In particular, note that all of the terrestrial experiments shaded in red, except that of CAST, assume that the axion is 100% of the local DM. Figure courtesy of Ciaran O'Hare [61], including data from Refs. [43, 64-68, 76, 78, 81-84, 86, 87, 91, $93,99,122,123,145,216,480-484]$
was sensitive to DFSZ axions over the entire mass range [486]. The corresponding 90\% CL exclusion regions shown in Fig. 90.5 assume a local CDM density of $7.5 \times 10^{-25} \mathrm{~g} \mathrm{~cm}^{-3}\left(450 \mathrm{MeV} \mathrm{cm}^{-3}\right)$.

Somewhat later, the ADMX experiment commissioned an upgrade [64] that replaced the microwave HFET amplifiers by near-quantum-limited low-noise dc SQUID microwave amplifiers [487] and, more recently, with Josephson parametric amplifiers (related to the earlier dc SQUID amplifiers), also with noise near-quantum-limited [481]. With its large volume and low noise, ADMX has achieved an unprecedented axion DM sensitivity in the mass range between 2.7 and $4.2 \mu \mathrm{eV}$ [66-68, 480], down to the DFSZ benchmark axion-photon coupling over much of the range, see Fig. 90.5. This apparatus is also sensitive to certain other hypothetical light bosons, such as hidden photons or chameleons, over a limited parameter space [18, 488, 489].

ADMX continues to scan at DFSZ sensitivity, and has since been joined by an array of haloscopes. One of the CAPP experiments has also achieved DFSZ sensitivity over a small range of frequencies near $4.55 \mu \mathrm{eV}$ [76]. A number of other experiments from the CAPP group have operated at higher frequencies, many with KSVZ or near KSVZ sensitivity. [72-74,74,75] The HAYSTAC experiment also operates at or near KSVZ sensitivity and was the first to demonstrate near-quantum limited noise using a Josephson parametric amplifier [82, 490], and demonstrated 'state-squeezing'
to increase scan speed by nearly a factor of 2 . [83,84] Other haloscopes operating at or near KSVZ over narrow bands include TASEH [93] and QUAX-a [90]. The ORGAN experiment is the highest frequency haloscope, operating with a small cavity and sensitive to axion-like-particle masses up to $67.1 \mu \mathrm{eV}$, though not yet with sensitivity to the KSVZ model. [86, 87] There are also a number of other haloscopes sensitive to axion-like-particles with couplings above those predicted by KSVZ. [65, 81, 88, 89, 483] Fig. 90.5 shows the exclusions on axion-photon coupling from these haloscopes to date.

90.5.5 New concepts for axion DM direct detection

Other new concepts for searching for axion DM are also being investigated. "Plasma haloscopes" are under development by the ALPHA consortium [491]. This concept uses a metamaterial consisting of a parallel-wire array, thereby inducing an effective photon mass which is tunable by adjusting wire separation, and sensitive to axion masses $35-400 \mu \mathrm{eV}$. Another detector concept exploits the fact that a magnetized mirror would radiate photons in the background of axion DM, which could be collected like in a dish antenna [492]. The proposed MADMAX experiment will place a stack of dielectric layers in a magnetic field in order to resonantly enhance the photon signal, aiming a sensitivity to probe the mass range $40 \mu \mathrm{eV} \lesssim m_{a} \lesssim 200 \mu \mathrm{eV}$ [493, 494]. Optical dielectric haloscopes with single photon signal detection have been proposed to search for axions in the $50 \mathrm{meV}-10 \mathrm{eV}$ mass range [495]. Other semi-resonant or nonresonant axion haloscope ideas to read high mass axions that are based around similar principles but novel configurations include BREAD [496] and CADEx [497].

Absorption of axions on molecular transitions can be sensitive to the axion pseudoscalar coupling $g_{a N N}$ to nucleons or the pseudoscalar coupling $g_{a e e}$ to electrons in the $0.5-20 \mathrm{eV}$ range [498]. It has also been pointed out that the coupling induced by an axion field between photonic modes [96,499] or atomic states [500] separated by an energy equal to the axion mass may be leveraged for axion detection, though the implementation may be challenging. Certain magnetic topological insulators are conjectured to contain axion-polaritons, quasiparticles composed of magnons and the electric field, with magnetically tunable mass in the meV to eV range [501-503]. Axion dark matter leads to resonant photon emission from such materials, which can be detected [504, 505].

In the intermediate mass region, $\mathrm{neV} \lesssim m_{a} \lesssim 0.1 \mu \mathrm{eV}$, one may exploit a cooled LC circuit and precision magnetometry to search for the oscillating electric current induced by DM axions in a strong magnetic field $[506,507]$. A number of small-scale pathfinder experiments have implemented this approach: ABRACADABRA $[62,63]$ used a nonresonant configuration in a toroidal magnet for a broadband search, ADMX-SLIC [70] used a resonant configuration in a solenoid magnet for a narrowband search, SHAFT [92] used a nonresonant configuration in a toroidal magnet enhanced with a ferromagnetic core, BASE [80] used antiprotons in a Penning trap as the LC circuit, and DANCE [508] used a laser interferometer. The exclusion limits from these experiments are shown in Fig. 90.1; none are yet sensitive to the QCD axion. Future work in this direction is expected to have much more competitive limits [509,510].

The oscillating Galactic DM axion field induces oscillating nuclear electric dipole moments (EDMs) [35],

$$
\begin{equation*}
d_{N}(t)=g_{a N \gamma} \sqrt{2 \rho_{a \mathrm{DM}}} \cos \left(m_{a} t\right) / m_{a} \tag{90.31}
\end{equation*}
$$

where $g_{a N \gamma}$ is the coupling of the axion to the nucleon EDM operator, defined in Eq. (90.4). An analysis of the ratio of spin-precession frequencies of stored ultracold neutrons and ${ }^{199} \mathrm{Hg}$ atoms measured by neutron EDM experiments for an axion-induced oscillating neutron EDM revealed no signal consistent with axion DM, excluding a sizeable region of parameter space in the mass region $10^{-24} \mathrm{eV} \leq m_{a} \leq 10^{-17} \mathrm{eV}$ [40], which surpass the limits on anomalous energy loss of SN 1987A by more than seven orders of magnitude and are competitive with the ones from the
requirement of successful BBN established in [38]. ${ }^{1}$ In fact, the oscillating dark matter axion field could increase the neutron-proton mass difference at neutron freeze-out and thus result in the underproduction of ${ }^{4} \mathrm{He}$ during BBN. The oscillating EDMs cause also the precession of nuclear spins in a nucleon spin polarized sample in the presence of an electric field. The resulting transverse magnetization can be searched for by exploiting magnetic-resonance (MR) techniques, which are most sensitive in the range of low oscillation frequencies corresponding to sub-neV axion masses. The aim of the corresponding Cosmic Axion Spin Precession Experiment (CASPEr) [36] is to probe axion DM in the anthropic window, $f_{a} \gtrsim 10^{15} \mathrm{GeV}\left(m_{a} \lesssim n e V\right)$, motivated from Grand Unification [511-514]. There are two interactions probed through MR: the electric dipole coupling as searched for by CASPEr-electric (with first result presented in [39]) and an interaction between the axion field gradient and the nuclear spin, which is aimed for by CASPEr-Gradient. In the meantime, the latter has been explored through comagnetometry between a variety of nuclei: H ${ }^{12} \mathrm{C}$ in CASPEr-ZULF [246,247], Xe-Rb in NASDUCK [515], and K- ${ }^{3} \mathrm{He}[251,252]$. The exclusions from these searches are shown in Fig. 90.3. Sub- $\mu \mathrm{eV}$ ALP masses can also be probed by using the storage ring EDM method proposed in Ref. [516] which exploits a combination of B and E-fields to produce a resonance between the $g-2$ spin precession frequency and the DM ALP field oscillation frequency. This method, however, does not reach the sensitivity to probe the QCD axion prediction for $g_{a N \gamma}$. An eventually non-zero axion electron coupling $g_{a e e}$ will lead to an electron spin precession about the axion DM wind $[517,518]$. The QUAX a-e experiment exploits MR inside a magnetized material [519]. Because of the higher Larmor frequency of the electron, it is sensitive in the classic window. Its first run established the bound in the mass range 42.4 to $43.2 \mu \mathrm{eV}$ [227], slightly better than the solar ν bound, shown in Fig. 90.2.

90.6 Conclusions

There is a strengthening physics case for very weakly coupled light particles beyond the Standard Model. The elegant solution of the strong $C P$ problem proposed by Peccei and Quinn yields a particularly strong motivation for the axion. In many theoretically appealing ultraviolet completions of the Standard Model axions and ALPs occur automatically. Moreover, they are natural CDM candidates. Perhaps the first hints of their existence have already been seen in the anomalous excessive cooling of stars and the anomalous transparency of the Universe for very high energy gamma rays. Interestingly, a significant portion of previously unexplored, but phenomenologically very interesting and theoretically very well motivated axion and ALP parameter space can be explored in the foreseeable future by a number of terrestrial experiments searching for axion/ALP DM, for solar axions/ALPs, and for light apparently shining through a wall.

90.7 Acknowledgements

It is a pleasure to thank Masha Baryakhtar, Francesca Calore, Luca Di Luzio, Andrew Geraci, Maurizio Giannotti, Igor Irastorza, David J.E. Marsh, Alessandro Mirizzi, Ciaran O'Hare, Georg Raffelt, Ken’ichi Saikawa, Yannis Semertzidis, Guenter Sigl, Sergey Troitsky, and Lindley Winslow for discussions, suggestions, and comments on this review. Particular thanks to Ciaran O'Hare for maintaining a publicly accessible collection of axion plots and providing updates to accommodate this review [61].

References

[1] R. D. Peccei and H. R. Quinn, Phys. Rev. Lett. 38, 1440 (1977).
[2] R. D. Peccei and H. R. Quinn, Phys. Rev. D16, 1791 (1977).
[3] S. Weinberg, Phys. Rev. Lett. 40, 223 (1978).

[^0][4] F. Wilczek, Phys. Rev. Lett. 40, 279 (1978).
[5] Y. Chikashige, R.N. Mohapatra, and R.D. Peccei, Phys. Lett. B98, 265 (1981).
[6] G. B. Gelmini and M. Roncadelli, Phys. Lett. 99B, 411 (1981).
[7] E. Witten, Phys. Lett. B 149, 351 (1984).
[8] P. Svrcek and E. Witten, JHEP 06, 051 (2006), [hep-th/0605206].
[9] P. Sikivie, Phys. Rev. Lett. 51, 1415 (1983) and Erratum ibid., 52, 695 (1984).
[10] J. P. Conlon, JHEP 05, 078 (2006), [hep-th/0602233].
[11] K.-S. Choi et al., Phys. Lett. B675, 381 (2009), [arXiv:0902.3070].
[12] A. Arvanitaki et al., Phys. Rev. D81, 123530 (2010), [arXiv:0905.4720].
[13] B. S. Acharya, K. Bobkov and P. Kumar, JHEP 11, 105 (2010), [arXiv:1004.5138].
[14] M. Cicoli, M. Goodsell and A. Ringwald, JHEP 10, 146 (2012), [arXiv:1206.0819].
[15] J. Halverson, C. Long and P. Nath, Phys. Rev. D96, 5, 056025 (2017), [arXiv:1703.07779].
[16] M. Demirtas et al., JHEP 04, 138 (2020), [arXiv:1808.01282].
[17] A. E. Nelson and J. Scholtz, Phys. Rev. D 84, 103501 (2011), [arXiv:1105.2812].
[18] P. Arias et al., JCAP 1206, 013 (2012), [arXiv:1201.5902].
[19] P. W. Graham, J. Mardon and S. Rajendran, Phys. Rev. D 93, 10, 103520 (2016), [arXiv:1504.02102].
[20] J. Jaeckel and A. Ringwald, Ann. Rev. Nucl. Part. Sci. 60, 405 (2010), [arXiv:1002.0329].
[21] A. Ringwald, Phys. Dark Univ. 1, 116 (2012), [arXiv:1210.5081].
[22] J. Jaeckel, Frascati Phys. Ser. 56, 172 (2012), [arXiv:1303.1821].
[23] A. Caputo et al., Phys. Rev. D 104, 9, 095029 (2021), [arXiv:2105.04565].
[24] M. Pospelov and A. Ritz, Nucl. Phys. B573, 177 (2000), [hep-ph/9908508].
[25] J. Liang et al. (2023), [arXiv:2301.04331].
[26] C. A. Baker et al., Phys. Rev. Lett. 97, 131801 (2006), [hep-ex/0602020].
[27] C. Abel et al. (nEDM), Phys. Rev. Lett. 124, 8, 081803 (2020), [arXiv:2001.11966].
[28] J. Alexander et al. (2022), [arXiv:2205.00830].
[29] H. Georgi, D. B. Kaplan and L. Randall, Phys. Lett. 169B, 73 (1986).
[30] R. J. Crewther, Phys. Lett. 70B, 349 (1977).
[31] P. Di Vecchia and G. Veneziano, Nucl. Phys. B171, 253 (1980).
[32] M. Gorghetto and G. Villadoro, JHEP 03, 033 (2019), [arXiv:1812.01008].
[33] S. Borsanyi et al., Nature 539, 7627, 69 (2016), [arXiv:1606.07494].
[34] L. Caloni et al., JCAP 09, 021 (2022), [arXiv:2205.01637].
[35] P. W. Graham and S. Rajendran, Phys. Rev. D88, 035023 (2013), [arXiv:1306.6088].
[36] D. Budker et al., Phys. Rev. X4, 2, 021030 (2014), [arXiv:1306.6089].
[37] I. Schulthess et al., Phys. Rev. Lett. 129, 19, 191801 (2022), [arXiv:2204.01454].
[38] K. Blum et al., Phys. Lett. B 737, 30 (2014), [arXiv:1401.6460].
[39] D. Aybas et al., Phys. Rev. Lett. 126, 14, 141802 (2021), [arXiv:2101.01241].
[40] C. Abel et al., Phys. Rev. X7, 4, 041034 (2017), [arXiv:1708.06367].
[41] T. S. Roussy et al., Phys. Rev. Lett. 126, 17, 171301 (2021), [arXiv:2006.15787].
[42] S. Karanth et al. (JEDI Collaboration), Phys. Rev. X 13, 031004 (2023), URL https:// link.aps.org/doi/10.1103/PhysRevX.13.031004.
[43] X. Zhang et al., Phys. Rev. Lett. 130, 251002 (2023), URL https://link.aps.org/doi/ 10.1103/PhysRevLett. 130.251002.
[44] G. Lucente et al., Phys. Rev. D 105, 12, 123020 (2022), [arXiv:2203.15812].
[45] J. E. Kim, Phys. Rev. Lett. 43, 103 (1979).
[46] M. A. Shifman, A. I. Vainshtein and V. I. Zakharov, Nucl. Phys. B166, 493 (1980).
[47] M. Dine, W. Fischler and M. Srednicki, Phys. Lett. 104B, 199 (1981).
[48] A. R. Zhitnitsky, Sov. J. Nucl. Phys. 31, 260 (1980), [Yad. Fiz.31,497(1980)].
[49] L. Di Luzio et al., Phys. Rept. 870, 1 (2020), [arXiv:2003.01100].
[50] J. E. Kim and G. Carosi, Rev. Mod. Phys. 82, 557 (2010), [arXiv:0807.3125].
[51] G. Grilli di Cortona et al., JHEP 01, 034 (2016), [arXiv:1511.02867].
[52] J. E. Kim, Phys. Rev. D58, 055006 (1998), [hep-ph/9802220].
[53] L. Di Luzio, F. Mescia and E. Nardi, Phys. Rev. Lett. 118, 3, 031801 (2017), [arXiv:1610.07593].
[54] L. Di Luzio, F. Mescia and E. Nardi, Phys. Rev. D 96, 7, 075003 (2017), [arXiv:1705.05370].
[55] M. Farina et al., JHEP 01, 095 (2017), [arXiv:1611.09855].
[56] P. Agrawal et al., JHEP 02, 006 (2018), [arXiv:1709.06085].
[57] A. Hook, Phys. Rev. Lett. 120, 26, 261802 (2018), [arXiv:1802.10093].
[58] L. Di Luzio et al., JHEP 05, 184 (2021), [arXiv:2102.00012].
[59] A. V. Sokolov and A. Ringwald, JHEP 06, 123 (2021), [arXiv:2104.02574].
[60] J. Diehl and E. Koutsangelas, Phys. Rev. D 107, 9, 095020 (2023), [arXiv:2302.04667].
[61] C. O'Hare, cajohare/AxionLimits: AxionLimits (2023), URL https://doi.org/10.5281/ zenodo. 3932430.
[62] J. L. Ouellet et al. (ABRACADABRA), Phys. Rev. Lett. 122, 12, 121802 (2019), [arXiv:1810.12257].
[63] C. P. Salemi et al., Phys. Rev. Lett. 127, 8, 081801 (2021), [arXiv:2102.06722].
[64] S. J. Asztalos et al. (ADMX), Phys. Rev. Lett. 104, 041301 (2010), [arXiv:0910.5914].
[65] C. Boutan et al. (ADMX), Phys. Rev. Lett. 121, 26, 261302 (2018), [arXiv:1901.00920].
[66] N. Du et al. (ADMX), Phys. Rev. Lett. 120, 15, 151301 (2018), [arXiv:1804.05750].
[67] T. Braine et al. (ADMX), Phys. Rev. Lett. 124, 10, 101303 (2020), [arXiv:1910.08638].
[68] C. Bartram et al. (ADMX Collaboration), Phys. Rev. Lett. 127, 261803 (2021), URL https: //link.aps.org/doi/10.1103/PhysRevLett.127.261803.
[69] C. Bartram et al., Review of Scientific Instruments 94, 4, 044703 (2023), ISSN 0034-6748, URL https://doi.org/10.1063/5.0122907.
[70] N. Crisosto et al., Phys. Rev. Lett. 124, 24, 241101 (2020), [arXiv:1911.05772].
[71] S. Lee et al., Phys. Rev. Lett. 124, 10, 101802 (2020), [arXiv:2001.05102].
[72] J. Jeong et al., Phys. Rev. Lett. 125, 22, 221302 (2020), [arXiv:2008.10141].
[73] O. Kwon et al. (CAPP), Phys. Rev. Lett. 126, 19, 191802 (2021), [arXiv:2012.10764].
[74] Y. Lee et al., Phys. Rev. Lett. 128, 24, 241805 (2022), [arXiv:2206.08845].
[75] J. Kim et al., Phys. Rev. Lett. 130, 091602 (2023), URL https://link.aps.org/doi/10. 1103/PhysRevLett. 130.091602.
[76] A. K. Yi et al., Phys. Rev. Lett. 130, 071002 (2023), URL https://link.aps.org/doi/10. 1103/PhysRevLett. 130.071002.
[77] B. Yang et al. (2023), [arXiv:2308.09077].
[78] C. M. Adair et al., Nature Commun. 13, 1, 6180 (2022), [arXiv:2211.02902].
[79] Y. Oshima et al. (2023), [arXiv:2303.03594].
[80] J. A. Devlin et al., Phys. Rev. Lett. 126, 4, 041301 (2021), [arXiv:2101.11290].
[81] T. Grenet et al. (2021), [arXiv:2110.14406].
[82] L. Zhong et al. (HAYSTAC), Phys. Rev. D 97, 9, 092001 (2018), [arXiv:1803.03690].
[83] K. M. Backes et al. (HAYSTAC), Nature 590, 7845, 238 (2021), [arXiv:2008.01853].
[84] M. J. Jewell et al. (HAYSTAC) (2023), [arXiv:2301.09721].
[85] J. Heinze et al. (2023), [arXiv:2307.01365].
[86] B. T. McAllister et al., Phys. Dark Univ. 18, 67 (2017), [arXiv:1706.00209].
[87] A. P. Quiskamp et al., Sci. Adv. 8, 27, abq3765 (2022), [arXiv:2203.12152].
[88] D. Alesini et al., Phys. Rev. D 99, 10, 101101 (2019), [arXiv:1903.06547].
[89] D. Alesini et al., Phys. Rev. D 103, 10, 102004 (2021), [arXiv:2012.09498].
[90] D. Alesini et al., Phys. Rev. D 106, 5, 052007 (2022), [arXiv:2208.12670].
[91] S. De Panfilis et al., Phys. Rev. Lett. 59, 839 (1987).
[92] A. V. Gramolin et al., Nature Phys. 17, 1, 79 (2021), [arXiv:2003.03348].
[93] H. Chang et al. (TASEH), Phys. Rev. Lett. 129, 11, 111802 (2022), [arXiv:2205.05574].
[94] A. Arza et al., Phys. Rev. D 105, 9, 095007 (2022), [arXiv:2112.09620].
[95] C. Hagmann et al., Phys. Rev. D42, 1297 (1990).
[96] C. A. Thomson et al., Phys. Rev. Lett. 126, 8, 081803 (2021), [Erratum: Phys.Rev.Lett. 127, 019901 (2021)], [arXiv:1912.07751].
[97] C. A. Thomson et al., Phys. Rev. D 107, 112003 (2023), URL https://link.aps.org/doi/ 10.1103/PhysRevD.107.112003.
[98] K. Ehret et al. (ALPS), Phys. Lett. B689, 149 (2010), [arXiv:1004.1313].
[99] V. Anastassopoulos et al. (CAST), Nature Phys. 13, 584 (2017), [arXiv:1705.02290].
[100] M. Betz et al., Phys. Rev. D88, 7, 075014 (2013), [arXiv:1310.8098].
[101] R. Ballou et al. (OSQAR), Phys. Rev. D92, 9, 092002 (2015), [arXiv:1506.08082].
[102] F. Della Valle et al., Eur. Phys. J. C76, 1, 24 (2016), [arXiv:1510.08052].
[103] Y. Kirita et al. (SAPPHIRES), JHEP 10, 176 (2022), [arXiv:2208.09880].
[104] M. Escudero et al. (2023), [arXiv:2302.10206].
[105] M. Xiao et al., Phys. Rev. Lett. 126, 3, 031101 (2021), [arXiv:2009.09059].
[106] P. A. R. Ade et al. (BICEP/Keck Collaboration), Phys. Rev. D 105, 022006 (2022), URL https://link.aps.org/doi/10.1103/PhysRevD.105.022006.
[107] A. Keller et al., Astrophys. J. 927, 1, 71 (2022), [arXiv:2112.03439].
[108] M. H. Chan, Sci. Rep. 11, 20087 (2021), [arXiv:2109.11734].
[109] K. Kohri and H. Kodama, Phys. Rev. D96, 5, 051701 (2017), [arXiv:1704.05189].
[110] D. Wouters and P. Brun, Astrophys. J. 772, 44 (2013), [arXiv:1304.0989].
[111] M. C. D. Marsh et al., JCAP 1712, 12, 036 (2017), [arXiv:1703.07354].
[112] C. S. Reynolds et al., Astrophys. J. 890, 1, 59 (2020), [arXiv:1907.05475].
[113] J. S. Reynés et al., Mon. Not. Roy. Astron. Soc. 510, 1, 1264 (2021), [arXiv:2109.03261].
[114] F. Capozzi et al. (2023), [arXiv:2303.07426].
[115] H. Liu et al. (2023), [arXiv:2303.07370].
[116] B. Bolliet, J. Chluba and R. Battye, Mon. Not. Roy. Astron. Soc. 507, 3, 3148 (2021), [arXiv:2012.07292].
[117] M. A. Buen-Abad, J. Fan and C. Sun (2020), [arXiv:2011.05993].
[118] M. Ajello et al. (Fermi-LAT), Phys. Rev. Lett. 116, 16, 161101 (2016), [arXiv:1603.06978].
[119] M. Meyer and T. Petrushevska, Phys. Rev. Lett. 124, 23, 231101 (2020), [Erratum: Phys.Rev.Lett. 125, 119901 (2020)], [arXiv:2006.06722].
[120] J. Davies, M. Meyer and G. Cotter (2022), [arXiv:2211.03414].
[121] J. L. Bernal et al. (2022), [arXiv:2208.13794].
[122] A. Ayala et al., Phys. Rev. Lett. 113, 19, 191302 (2014), [arXiv:1406.6053].
[123] M. J. Dolan, F. J. Hiskens and R. R. Volkas, JCAP 10, 096 (2022), [arXiv:2207.03102].
[124] S. Jacobsen, T. Linden and K. Freese (2022), [arXiv:2203.04332].
[125] A. Abramowski et al. (H.E.S.S.), Phys. Rev. D 88, 10, 102003 (2013), [arXiv:1311.3148].
[126] F. Calore et al., Mon. Not. Roy. Astron. Soc. 520, 3, 4167 (2023), [arXiv:2209.06299].
[127] D. Wadekar and G. R. Farrar, Phys. Rev. D 103, 123028 (2021), URL https://link.aps. org/doi/10.1103/PhysRevD.103.123028.
[128] C. Dessert, A. J. Long and B. R. Safdi, Phys. Rev. Lett. 128, 071102 (2022), URL https: //link.aps.org/doi/10.1103/PhysRevLett.128.071102.
[129] C. Dessert, D. Dunsky and B. R. Safdi, Phys. Rev. D 105, 10, 103034 (2022), [arXiv:2203.04319].
[130] M. M. Ivanov et al., JCAP 02, 059 (2019), [arXiv:1811.10997].
[131] H.-J. Li et al., Phys. Rev. D 103, 8, 083003 (2021), [arXiv:2008.09464].
[132] H.-J. Li, X.-J. Bi and P.-F. Yin, Chin. Phys. C 46, 8, 085105 (2022), [arXiv:2110.13636].
[133] J. W. Foster et al., Phys. Rev. Lett. 125, 17, 171301 (2020), [arXiv:2004.00011].
[134] J. Darling, Astrophys. J. Lett. 900, 2, L28 (2020), [arXiv:2008.11188].
[135] R. A. Battye et al., Phys. Rev. D 105, L021305 (2022), URL https://link.aps.org/doi/ 10.1103/PhysRevD. 105.L021305.
[136] J. W. Foster et al., Phys. Rev. Lett. 129, 25, 251102 (2022), [arXiv:2202.08274].
[137] R. A. Battye et al. (2023), [arXiv:2303.11792].
[138] K. Perez et al., Phys. Rev. D 95, 12, 123002 (2017), [arXiv:1609.00667].
[139] K. C. Y. Ng et al., Phys. Rev. D 99, 083005 (2019), [arXiv:1901.01262].
[140] B. M. Roach et al., Phys. Rev. D 107, 2, 023009 (2023), [arXiv:2207.04572].
[141] M. A. Fedderke, P. W. Graham and S. Rajendran, Phys. Rev. D100, 1, 015040 (2019), [arXiv:1903.02666].
[142] S. Adachi et al. (POLARBEAR Collaboration), Phys. Rev. D 108, 043017 (2023), URL https://link.aps.org/doi/10.1103/PhysRevD.108.043017.
[143] A. Castillo et al., JCAP 06, 06, 014 (2022), [arXiv:2201.03422].
[144] T. Liu, X. Lou and J. Ren, Phys. Rev. Lett. 130, 121401 (2023), URL https://link.aps. org/doi/10.1103/PhysRevLett.130.121401.
[145] D. Noordhuis et al. (2022), [arXiv:2209.09917].
[146] C. Severino and I. Lopes, The Astrophysical Journal 943, 2, 95 (2023), URL https://dx. doi.org/10.3847/1538-4357/aca897.
[147] N. Vinyoles et al., JCAP 1510, 10, 015 (2015), [arXiv:1501.01639].
[148] N. H. Nguyen, E. H. Tanin and M. Kamionkowski (2023), [arXiv:2307.11216].
[149] J. Jaeckel, P. C. Malta and J. Redondo, Phys. Rev. D 98, 5, 055032 (2018), [arXiv:1702.02964].
[150] E. Müller et al. (2023), [arXiv:2304.01060].
[151] A. Payez et al., JCAP 1502, 02, 006 (2015), [arXiv:1410.3747].
[152] S. Hoof and L. Schulz, JCAP 03, 054 (2023), [arXiv:2212.09764].
[153] G. Lucente et al., JCAP 12, 008 (2020), [arXiv:2008.04918].
[154] A. Caputo, G. Raffelt and E. Vitagliano, Phys. Rev. D 105, 3, 035022 (2022), [arXiv:2109.03244].
[155] A. Caputo et al., Phys. Rev. Lett. 128, 22, 221103 (2022), [arXiv:2201.09890].
[156] M. Diamond et al., Phys. Rev. D 107, 10, 103029 (2023), [arXiv:2303.11395].
[157] W. DeRocco et al., Phys. Rev. Lett. 129, 10, 101101 (2022), [arXiv:2205.05700].
[158] C. Beaufort et al. (2023), [arXiv:2303.06968].
[159] C. Dessert, J. W. Foster and B. R. Safdi, Phys. Rev. Lett. 125, 26, 261102 (2020), [arXiv:2008.03305].
[160] K. R. Ferguson et al. (SPT-3G), Phys. Rev. D 106, 4, 042011 (2022), [arXiv:2203.16567].
[161] B. D. Blout et al., Astrophys. J. 546, 825 (2001), [arXiv:astro-ph/0006310].
[162] M. Regis et al., Phys. Lett. B 814, 136075 (2021), [arXiv:2009.01310].
[163] D. Grin et al., Phys. Rev. D 75, 105018 (2007), [arXiv:astro-ph/0611502].
[164] K. Nakayama and W. Yin, Phys. Rev. D 106, 10, 103505 (2022), [arXiv:2205.01079].
[165] P. Carenza, G. Lucente and E. Vitagliano (2023), [arXiv:2301.06560].
[166] D. Cadamuro and J. Redondo, JCAP 1202, 032 (2012), [arXiv:1110.2895].
[167] P. F. Depta, M. Hufnagel and K. Schmidt-Hoberg, JCAP 05, 009 (2020), [arXiv:2002.08370].
[168] K. Langhoff, N. J. Outmezguine and N. L. Rodd, Phys. Rev. Lett. 129, 24, 241101 (2022), [arXiv:2209.06216].
[169] G. Raffelt and D. Seckel, Phys. Rev. Lett. 60, 1793 (1988).
[170] M. Carena and R. D. Peccei, Phys. Rev. D40, 652 (1989).
[171] K. Choi, K. Kang and J. E. Kim, Phys. Rev. Lett. 62, 849 (1989).
[172] M. Srednicki, Nucl. Phys. B260, 689 (1985).
[173] S. Chang and K. Choi, Phys. Lett. B316, 51 (1993), [hep-ph/9306216].
[174] G. C. Branco et al., Phys. Rept. 516, 1 (2012), [arXiv:1106.0034].
[175] C.-Y. Chen and S. Dawson, Phys. Rev. D87, 055016 (2013), [arXiv:1301.0309].
[176] R. Balkin et al., JHEP 07, 221 (2020), [arXiv:2003.04903].
[177] K. Choi et al., JHEP 02, 143 (2022), [arXiv:2110.01972].
[178] D. A. Dicus et al., Phys. Rev. D18, 1829 (1978).
[179] G. Raffelt and L. Stodolsky, Phys. Rev. D37, 1237 (1988).
[180] A. A. Anselm, Yad. Fiz. 42, 1480 (1985).
[181] K. van Bibber et al., Phys. Rev. Lett. 59, 759 (1987).
[182] G. Ruoso et al., Z. Phys. C56, 505 (1992).
[183] R. Cameron et al., Phys. Rev. D47, 3707 (1993).
[184] M. Fouche et al., Phys. Rev. D78, 032013 (2008), [arXiv:0808.2800].
[185] P. Pugnat et al. (OSQAR), Phys. Rev. D78, 092003 (2008), [arXiv:0712.3362].
[186] A. S. Chou et al. (GammeV (T-969)), Phys. Rev. Lett. 100, 080402 (2008), [arXiv:0710.3783].
[187] A. Afanasev et al., Phys. Rev. Lett. 101, 120401 (2008), [arXiv:0806.2631].
[188] P. Pugnat et al. (OSQAR), Eur. Phys. J. C74, 8, 3027 (2014), [arXiv:1306.0443].
[189] F. Hoogeveen and T. Ziegenhagen, Nucl. Phys. B358, 3 (1991).
[190] P. Sikivie, D. B. Tanner and K. van Bibber, Phys. Rev. Lett. 98, 172002 (2007), [hepph/0701198].
[191] G. Mueller et al., Phys. Rev. D80, 072004 (2009), [arXiv:0907.5387].
[192] M. Diaz Ortiz et al., Physics of the Dark Universe 35, 100968 (2022), ISSN 2212-6864, URL https://www.sciencedirect.com/science/article/pii/S2212686422000115.
[193] F. Hoogeveen, Phys. Lett. B288, 195 (1992).
[194] J. Jaeckel and A. Ringwald, Phys. Lett. B659, 509 (2008), [arXiv:0707.2063].
[195] F. Caspers, J. Jaeckel and A. Ringwald, JINST 4, P11013 (2009), [arXiv:0908.0759].
[196] R. Povey, J. Hartnett and M. Tobar, Phys. Rev. D82, 052003 (2010), [arXiv:1003.0964].
[197] L. Maiani, R. Petronzio and E. Zavattini, Phys. Lett. B175, 359 (1986).
[198] Y. Semertzidis et al., Phys. Rev. Lett. 64, 2988 (1990).
[199] E. Fischbach and C. Talmadge, Nature 356, 207 (1992).
[200] J. E. Moody and F. Wilczek, Phys. Rev. D30, 130 (1984).
[201] A. N. Youdin et al., Phys. Rev. Lett. 77, 2170 (1996).
[202] W.-T. Ni et al., Phys. Rev. Lett. 82, 2439 (1999).
[203] D. F. Phillips et al., Phys. Rev. D63, 111101 (2001), [arXiv:physics/0008230].
[204] B. R. Heckel et al., Phys. Rev. Lett. 97, 021603 (2006), [hep-ph/0606218].
[205] S. A. Hoedl et al., Phys. Rev. Lett. 106, 041801 (2011).
[206] E. G. Adelberger et al., Phys. Rev. Lett. 98, 131104 (2007), [hep-ph/0611223].
[207] D. J. Kapner et al., Phys. Rev. Lett. 98, 021101 (2007), [hep-ph/0611184].
[208] G. Raffelt, Phys. Rev. D86, 015001 (2012), [arXiv:1205.1776].
[209] C. A. J. O'Hare and E. Vitagliano, Phys. Rev. D 102, 11, 115026 (2020), [arXiv:2010.03889].
[210] A. Arvanitaki and A. A. Geraci, Phys. Rev. Lett. 113, 16, 161801 (2014), [arXiv:1403.1290].
[211] A. A. Geraci et al. (ARIADNE), Springer Proc. Phys. 211, 151 (2018), [arXiv:1710.05413].
[212] H. Fosbinder-Elkins et al. (2017), [arXiv:1710.08102].
[213] N. Aggarwal et al. (ARIADNE Collaboration), Phys. Rev. Res. 4, 013090 (2022), URL https : //link.aps.org/doi/10.1103/PhysRevResearch.4.013090.
[214] M. S. Turner, Phys. Rept. 197, 67 (1990).
[215] G. G. Raffelt, Lect. Notes Phys. 741, 51 (2008), [,51(2006)], [hep-ph/0611350].
[216] S. Andriamonje et al. (CAST), JCAP 0704, 010 (2007), [hep-ex/0702006].
[217] P. Gondolo and G. G. Raffelt, Phys. Rev. D79, 107301 (2009), [arXiv:0807.2926].
[218] H. Schlattl, A. Weiss and G. Raffelt, Astropart. Phys. 10, 353 (1999), [hep-ph/9807476].
[219] P. Agnes et al. (DarkSide), Phys. Rev. Lett. 130, 10, 101002 (2023), [arXiv:2207.11968].
[220] M. Agostini et al. (GERDA), Phys. Rev. Lett. 125, 1, 011801 (2020), [arXiv:2005.14184].
[221] C. Fu et al. (PandaX), Phys. Rev. Lett. 119, 18, 181806 (2017), [arXiv:1707.07921].
[222] T. Aralis et al. (SuperCDMS), Phys. Rev. D 101, 5, 052008 (2020), [Erratum: Phys.Rev.D 103, 039901 (2021)], [arXiv:1911.11905].
[223] E. Aprile et al. (XENON), Phys. Rev. D 102, 7, 072004 (2020), [arXiv:2006.09721].
[224] E. Aprile et al. (XENON Collaboration), Phys. Rev. Lett. 129, 161805 (2022), URL https: //link.aps.org/doi/10.1103/PhysRevLett.129.161805.
[225] K. Van Tilburg, Phys. Rev. D 104, 2, 023019 (2021), [arXiv:2006.12431].
[226] F. Capozzi and G. Raffelt, Phys. Rev. D 102, 8, 083007 (2020), [arXiv:2007.03694].
[227] N. Crescini et al. (QUAX), Phys. Rev. Lett. 124, 17, 171801 (2020), [arXiv:2001.08940].
[228] R. Z. Ferreira, M. C. D. Marsh and E. Müller, Phys. Rev. Lett. 128, 22, 221302 (2022), [arXiv:2202.08858].
[229] O. Straniero et al., in "Proceedings, 11th Patras Workshop on Axions, WIMPs and WISPs (Axion-WIMP 2015): Zaragoza, Spain, June 22-26, 2015," 77-81 (2015).
[230] T. Constantino et al. .
[231] J. Redondo, Journal of Cosmology and Astroparticle Physics 2013, 12, 008 (2013).
[232] O. Straniero et al., Astron. Astrophys. 644, A166 (2020), [arXiv:2010.03833].
[233] G. G. Raffelt, Phys. Lett. 166B, 402 (1986).
[234] S. I. Blinnikov and N. V. Dunina-Barkovskaya, Mon. Not. Roy. Astron. Soc. 266, 289 (1994).
[235] M. M. Miller Bertolami et al., JCAP 1410, 10, 069 (2014), [arXiv:1406.7712].
[236] J. Isern et al., Astrophys. J. 682, L109 (2008), [arXiv:0806.2807].
[237] J. Isern et al., J. Phys. Conf. Ser. 172, 012005 (2009), [arXiv:0812.3043].
[238] A. Drlica-Wagner et al. (LSST Dark Matter Group) (2019), [arXiv:1902.01055].
[239] J. Isern et al., Astron. \& Astrophys. 512, A86 (2010).
[240] A. H. Corsico et al., Mon. Not. Roy. Astron. Soc. 424, 2792 (2012), [arXiv:1205.6180].
[241] A. H. Corsico et al., JCAP 1212, 010 (2012), [arXiv:1211.3389].
[242] A. H. Córsico et al., The Astronomy and Astrophysics Review 27, 1, 7 (2019), URL https: //doi.org/10.1007/s00159-019-0118-4.
[243] M. J. Dolan, F. J. Hiskens and R. R. Volkas, Journal of Cosmology and Astroparticle Physics 2021, 09, 010 (2021), URL https://doi.org/10.1088/1475-7516/2021/09/010.
[244] J. Isern, S. Torres and A. Rebassa-Mansergas, Front. Astron. Space Sci. 9, 815517 (2022), [arXiv:2202.02052].
[245] V. M. Mostepanenko and G. L. Klimchitskaya, Universe 6, 9, 147 (2020), [arXiv:2009.04517].
[246] T. Wu et al., Phys. Rev. Lett. 122, 19, 191302 (2019), [arXiv:1901.10843].
[247] A. Garcon et al., Sci. Adv. 5, 10, eaax4539 (2019), [arXiv:1902.04644].
[248] K. Wei et al. (2023), [arXiv:2306.08039].
[249] M. Jiang et al., Nature Phys. 17, 12, 1402 (2021), [arXiv:2102.01448].
[250] I. M. Bloch et al. (NASDUCK) (2022), [arXiv:2209.13588].
[251] I. M. Bloch et al., JHEP 01, 167 (2020), [arXiv:1907.03767].
[252] G. Vasilakis et al., Physical Review Letters 103, 26 (2009), ISSN 1079-7114, URL http: //dx.doi.org/10.1103/PhysRevLett.103.261801.
[253] J. Lee et al., Phys. Rev. X 13, 011050 (2023), URL https://link.aps.org/doi/10.1103/ PhysRevX.13.011050.
[254] M. Buschmann et al., Phys. Rev. Lett. 128, 9, 091102 (2022), [arXiv:2111.09892].
[255] A. Bhusal, N. Houston and T. Li, Phys. Rev. Lett. 126, 9, 091601 (2021), [arXiv:2004.02733].
[256] G.G. Raffelt, Stars as Laboratories for Fundamental Physics, (Univ. of Chicago Press, Chicago, 1996).
[257] T. Fischer et al., Phys. Rev. D94, 8, 085012 (2016), [arXiv:1605.08780].
[258] J. H. Chang, R. Essig and S. D. McDermott, JHEP 09, 051 (2018), [arXiv:1803.00993].
[259] P. Carenza et al., JCAP 10, 10, 016 (2019), [Erratum: JCAP 05, E01 (2020)], [arXiv:1906.11844].
[260] M. S. Turner, Phys. Rev. D 45, 1066 (1992).
[261] G. Raffelt and D. Seckel, Phys. Rev. D 52, 1780 (1995), [arXiv:astro-ph/9312019].
[262] W. Keil et al., Phys. Rev. D 56, 2419 (1997), [arXiv:astro-ph/9612222].
[263] B. Fore and S. Reddy, Phys. Rev. C 101, 3, 035809 (2020), [arXiv:1911.02632].
[264] P. Carenza et al., Phys. Rev. Lett. 126, 7, 071102 (2021), [arXiv:2010.02943].
[265] J. Engel, D. Seckel and A. C. Hayes, Phys. Rev. Lett. 65, 960 (1990).
[266] N. Iwamoto, Phys. Rev. Lett. 53, 1198 (1984).
[267] N. Iwamoto, Phys. Rev. D 64, 043002 (2001).
[268] A. Sedrakian, Phys. Rev. D93, 6, 065044 (2016), [arXiv:1512.07828].
[269] J. Keller and A. Sedrakian, Nucl. Phys. A897, 62 (2013), [arXiv:1205.6940].
[270] T. Fischer, Astron. Astrophys. 593, A103 (2016), [arXiv:1608.05004].
[271] K. Hamaguchi et al., Phys. Rev. D98, 10, 103015 (2018), [arXiv:1806.07151].
[272] D. Page et al., Phys. Rev. Lett. 106, 081101 (2011), [arXiv:1011.6142].
[273] P. S. Shternin et al., Mon. Not. Roy. Astron. Soc. 412, L108 (2011), [arXiv:1012.0045].
[274] B. Posselt and G. G. Pavlov, Astrophys. J. 864, 2, 135 (2018), [arXiv:1808.00531].
[275] M. V. Beznogov et al., Phys. Rev. C98, 3, 035802 (2018), [arXiv:1806.07991].
[276] G. G. Raffelt, J. Redondo and N. Viaux Maira, Phys. Rev. D84, 103008 (2011), [arXiv:1110.6397].
[277] K. van Bibber et al., Phys. Rev. D39, 2089 (1989).
[278] D. M. Lazarus et al., Phys. Rev. Lett. 69, 2333 (1992).
[279] S. Moriyama et al., Phys. Lett. B434, 147 (1998), [hep-ex/9805026].
[280] Y. Inoue et al., Phys. Lett. B536, 18 (2002), [arXiv:astro-ph/0204388].
[281] Y. Inoue et al., Phys. Lett. B668, 93 (2008), [arXiv:0806.2230].
[282] E. Arik et al. (CAST), JCAP 0902, 008 (2009), [arXiv:0810.4482].
[283] S. Aune et al. (CAST), Phys. Rev. Lett. 107, 261302 (2011), [arXiv:1106.3919].
[284] M. Arik et al. (CAST), Phys. Rev. Lett. 112, 9, 091302 (2014), [arXiv:1307.1985].
[285] M. Arik et al. (CAST), Phys. Rev. D92, 2, 021101 (2015), [arXiv:1503.00610].
[286] E. Armengaud et al., JINST 9, T05002 (2014), [arXiv:1401.3233].
[287] E. Armengaud et al. (IAXO), JCAP 1906, 06, 047 (2019), [arXiv:1904.09155].
[288] M. Giannotti et al., JCAP 1710, 10, 010 (2017), [arXiv:1708.02111].
[289] K. Barth et al., JCAP 1305, 010 (2013), [arXiv:1302.6283].
[290] A. Abeln et al. (BabyIAXO), JCAP 2105, 05, 137 (2021), [arXiv:2010.12076].
[291] E. Aprile et al. (XENON), Phys. Rev. Lett. 129, 16, 161805 (2022), [arXiv:2207.11330].
[292] X. Zhou et al., Chinese Physics Letters 38, 10, 109902 (2021), URL https://dx.doi.org/ 10.1088/0256-307X/38/10/109902.
[293] D. S. Akerib et al. (LUX), Phys. Rev. Lett. 118, 26, 261301 (2017), [arXiv:1704.02297].
[294] J. W. Brockway, E. D. Carlson and G. G. Raffelt, Phys. Lett. B383, 439 (1996), [arXiv:astroph/9605197].
[295] J. A. Grifols, E. Masso and R. Toldra, Phys. Rev. Lett. 77, 2372 (1996), [arXiv:astroph/9606028].
[296] F. Calore et al., Phys. Rev. D 102, 12, 123005 (2020), [arXiv:2008.11741].
[297] C. Dessert, J. W. Foster and B. R. Safdi, Astrophys. J. 904, 1, 42 (2020), [arXiv:1910.02956].
[298] M. Buschmann et al., Phys. Rev. Lett. 126, 2, 021102 (2021), [arXiv:1910.04164].
[299] C. Dessert, A. J. Long and B. R. Safdi, Phys. Rev. Lett. 123, 6, 061104 (2019), [arXiv:1903.05088].
[300] C. Csaki, N. Kaloper and J. Terning, Phys. Rev. Lett. 88, 161302 (2002), [hep-ph/0111311].
[301] A. Mirizzi, G.G. Raffelt, and P.D. Serpico, Lect. Notes Phys. 741, 115 (2008).
[302] D. Horns et al., Phys. Rev. D85, 085021 (2012), [arXiv:1203.2184].
[303] A. Payez, J. R. Cudell and D. Hutsemekers, JCAP 1207, 041 (2012), [arXiv:1204.6187].
[304] R. Gill and J. S. Heyl, Phys. Rev. D84, 085001 (2011), [arXiv:1105.2083].
[305] A. Dominguez, M. A. Sanchez-Conde and F. Prada, JCAP 1111, 020 (2011), [arXiv:1106.1860].
[306] W. Essey and A. Kusenko, Astrophys. J. 751, L11 (2012), [arXiv:1111.0815].
[307] D. Horns and M. Meyer, JCAP 1202, 033 (2012), [arXiv:1201.4711].
[308] G. I. Rubtsov and S. V. Troitsky, JETP Lett. 100, 6, 355 (2014), [Pisma Zh. Eksp. Teor. Fiz.100,no.6,397(2014)], [arXiv:1406.0239].
[309] D. A. Sanchez, S. Fegan and B. Giebels, Astron. Astrophys. 554, A75 (2013), [arXiv:1303.5923].
[310] J. Biteau and D. A. Williams, Astrophys. J. 812, 1, 60 (2015), [arXiv:1502.04166].
[311] A. Domínguez and M. Ajello, Astrophys. J. 813, 2, L34 (2015), [arXiv:1510.07913].
[312] A. Korochkin, G. Rubtsov and S. Troitsky, JCAP 12, 002 (2019), [arXiv:1810.03443].
[313] A. De Angelis, G. Galanti and M. Roncadelli, Phys. Rev. D84, 105030 (2011), [Erratum: Phys. Rev.D87,no.10,109903(2013)], [arXiv:1106.1132].
[314] M. Simet, D. Hooper and P. D. Serpico, Phys. Rev. D77, 063001 (2008), [arXiv:0712.2825].
[315] M. A. Sanchez-Conde et al., Phys. Rev. D79, 123511 (2009), [arXiv:0905.3270].
[316] M. Meyer, D. Horns and M. Raue, Phys. Rev. D87, 3, 035027 (2013), [arXiv:1302.1208].
[317] A. Abramowski et al. (H.E.S.S.), Phys. Rev. D88, 10, 102003 (2013), [arXiv:1311.3148].
[318] C. Zhang et al., Phys. Rev. D97, 6, 063009 (2018), [arXiv:1802.08420].
[319] M. Libanov and S. Troitsky, Phys. Lett. B 802, 135252 (2020), [arXiv:1908.03084].
[320] Z.-Q. Xia et al., Phys. Rev. D97, 6, 063003 (2018), [arXiv:1801.01646].
[321] J. Majumdar, F. Calore and D. Horns, JCAP 1804, 04, 048 (2018), [arXiv:1801.08813].
[322] G. A. Pallathadka et al. (2020), [arXiv:2008.08100].
[323] K. Choi et al., Phys. Rev. D 101, 4, 043007 (2020), [arXiv:1806.09508].
[324] F. Chadha-Day (2021), [arXiv:2107.12813].
[325] M. Berg et al., Astrophys. J. 847, 2, 101 (2017), [arXiv:1605.01043].
[326] J. P. Conlon et al., JCAP 1707, 07, 005 (2017), [arXiv:1704.05256].
[327] L. Chen and J. P. Conlon, Mon. Not. Roy. Astron. Soc. 479, 2, 2243 (2018), [arXiv:1712.08313].
[328] A. Hook and J. Huang, JHEP 06, 036 (2018), [arXiv:1708.08464].
[329] J. Huang et al., Phys. Rev. D 99, 6, 063013 (2019), [arXiv:1807.02133].
[330] J. Zhang et al. (2021), [arXiv:2105.13963].
[331] R. Balkin et al. (2022), [arXiv:2211.02661].
[332] G. Bellini et al. (Borexino), Phys. Rev. D 89, 11, 112007 (2014), [arXiv:1308.0443].
[333] B. P. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. Lett. 119, 16, 161101 (2017), [arXiv:1710.05832].
[334] A. Arvanitaki and S. Dubovsky, Phys. Rev. D83, 044026 (2011), [arXiv:1004.3558].
[335] A. Arvanitaki, M. Baryakhtar and X. Huang, Phys. Rev. D91, 8, 084011 (2015), [arXiv:1411.2263].
[336] V. M. Mehta et al. (2020), [arXiv:2011.08693].
[337] V. M. Mehta et al., JCAP 07, 033 (2021), [arXiv:2103.06812].
[338] M. Baryakhtar et al., Phys. Rev. D 103, 9, 095019 (2021), [arXiv:2011.11646].
[339] M. J. Stott (2020), [arXiv:2009.07206].
[340] G. Ballesteros et al., Phys. Rev. Lett. 118, 071802 (2017), URL https://link.aps.org/ doi/10.1103/PhysRevLett.118.071802.
[341] M. Buschmann et al., Nature Commun. 13, 1, 1049 (2022), [arXiv:2108.05368].
[342] C. Bonati et al., JHEP 03, 155 (2016), [arXiv:1512.06746].
[343] E. Berkowitz, M. I. Buchoff and E. Rinaldi, Phys. Rev. D92, 3, 034507 (2015), [arXiv:1505.07455].
[344] M. Dine et al., Phys. Rev. D96, 9, 095001 (2017), [arXiv:1705.00676].
[345] P. Petreczky, H.-P. Schadler and S. Sharma, Phys. Lett. B762, 498 (2016), [arXiv:1606.03145].
[346] L. Fleury and G. D. Moore, Journal of Cosmology and Astroparticle Physics 2016, 01, 004 (2016), URL https://dx.doi.org/10.1088/1475-7516/2016/01/004.
[347] V. B. Klaer and G. D. Moore, JCAP 1711, 11, 049 (2017), [arXiv:1708.07521].
[348] M. Gorghetto, E. Hardy and G. Villadoro, SciPost Phys. 10, 050 (2021), [arXiv:2007.04990].
[349] M. Kawasaki, K. Saikawa and T. Sekiguchi, Phys. Rev. D91, 6, 065014 (2015), [arXiv:1412.0789].
[350] R. T. Co, L. J. Hall and K. Harigaya, Journal of High Energy Physics 2021, 1, 172 (2021), ISSN 1029-8479, URL https://doi.org/10.1007/JHEP01 (2021) 172.
[351] N. Blinov et al., Phys. Rev. D 100, 015049 (2019), URL https://link.aps.org/doi/10. 1103/PhysRevD. 100.015049.
[352] C. A. J. O'Hare et al., Phys. Rev. D 105, 055025 (2022), URL https://link.aps.org/doi/ 10.1103/PhysRevD.105.055025.
[353] L. D. Luzio et al., Journal of Cosmology and Astroparticle Physics 2021, 10, 001 (2021), URL https://dx.doi.org/10.1088/1475-7516/2021/10/001.
[354] A. Arvanitaki et al., Phys. Rev. D95, 4, 043001 (2017), [arXiv:1604.03958].
[355] K. K. Y. Ng et al., Phys. Rev. D 103, 6, 063010 (2021), [arXiv:1908.02312].
[356] C. Palomba et al., Phys. Rev. Lett. 123, 171101 (2019), [arXiv:1909.08854].
[357] L. Sun, R. Brito and M. Isi, Phys. Rev. D 101, 6, 063020 (2020), [Erratum: Phys.Rev.D 102, 089902 (2020)], [arXiv:1909.11267].
[358] E. Masso, F. Rota and G. Zsembinszki, Phys. Rev. D 66, 023004 (2002), [hep-ph/0203221].
[359] P. Graf and F. D. Steffen, Phys. Rev. D 83, 075011 (2011), [arXiv:1008.4528].
[360] Z. G. Berezhiani, A. S. Sakharov and M. Y. Khlopov, Sov. J. Nucl. Phys. 55, 1063 (1992).
[361] S. Hannestad, A. Mirizzi and G. Raffelt, JCAP 07, 002 (2005), [hep-ph/0504059].
[362] S. Hannestad et al., JCAP 08, 001 (2010), [arXiv:1004.0695].
[363] M. Archidiacono et al., JCAP 10, 020 (2013), [arXiv:1307.0615].
[364] E. Di Valentino et al., Phys. Lett. B 752, 182 (2016), [arXiv:1507.08665].
[365] W. Giarè et al., Mon. Not. Roy. Astron. Soc. 505, 2, 2703 (2021), [arXiv:2011.14704].
[366] L. Di Luzio, G. Martinelli and G. Piazza, Phys. Rev. Lett. 126, 24, 241801 (2021), [arXiv:2101.10330].
[367] A. Notari, F. Rompineve and G. Villadoro, Phys. Rev. Lett. 131, 1, 011004 (2023), [arXiv:2211.03799].
[368] E. Masso and R. Toldra, Phys. Rev. D 52, 1755 (1995), [hep-ph/9503293].
[369] E. Masso and R. Toldra, Phys. Rev. D55, 7967 (1997), [hep-ph/9702275].
[370] J. W. Foster et al., JHEP 12, 119 (2022), [arXiv:2208.10504].
[371] P. Panci et al., Phys. Lett. B 841, 137919 (2023), [arXiv:2209.03371].
[372] E. Todarello et al. (2023), [arXiv:2307.07403].
[373] J. W. Foster et al., Phys. Rev. Lett. 127, 5, 051101 (2021), [arXiv:2102.02207].
[374] J. Preskill, M. B. Wise and F. Wilczek, Phys. Lett. B120, 127 (1983).
[375] L. F. Abbott and P. Sikivie, Phys. Lett. B120, 133 (1983).
[376] M. Dine and W. Fischler, Phys. Lett. B120, 137 (1983).
[377] K. J. Bae, J.-H. Huh and J. E. Kim, JCAP 0809, 005 (2008), [arXiv:0806.0497].
[378] O. Wantz and E. P. S. Shellard, Phys. Rev. D82, 123508 (2010), [arXiv:0910.1066].
[379] G. Ballesteros et al., JCAP 1708, 08, 001 (2017), [arXiv:1610.01639].
[380] R. T. Co, F. D'Eramo and L. J. Hall, Phys. Rev. D 94, 7, 075001 (2016), [arXiv:1603.04439].
[381] M. Tegmark et al., Phys. Rev. D73, 023505 (2006), [arXiv:astro-ph/0511774].
[382] A. D. Linde, Phys. Lett. 158B, 375 (1985).
[383] D. Seckel and M. S. Turner, Phys. Rev. D32, 3178 (1985).
[384] M. Beltran, J. Garcia-Bellido and J. Lesgourgues, Phys. Rev. D75, 103507 (2007), [hepph/0606107].
[385] M. P. Hertzberg, M. Tegmark and F. Wilczek, Phys. Rev. D78, 083507 (2008), [arXiv:0807.1726].
[386] J. Hamann et al., JCAP 0906, 022 (2009), [arXiv:0904.0647].
[387] P. A. R. Ade et al. (Planck), Astron. Astrophys. 571, A22 (2014), [arXiv:1303.5082].
[388] P. A. R. Ade et al. (Planck), Astron. Astrophys. 594, A20 (2016), [arXiv:1502.02114].
[389] B. Bolliet, J. Chluba and R. Battye, Monthly Notices of the Royal Astronomical Society 507, 3, 3148 (2021), ISSN 0035-8711, URL https://doi.org/10.1093/mnras/stab1997.
[390] R. T. Co, L. J. Hall and K. Harigaya, Phys. Rev. Lett. 124, 25, 251802 (2020), [arXiv:1910.14152].
[391] S. Borsanyi et al., Phys. Lett. B752, 175 (2016), [arXiv:1508.06917].
[392] R. Kitano and N. Yamada, JHEP 10, 136 (2015), [arXiv:1506.00370].
[393] Y. Taniguchi et al., Phys. Rev. D95, 5, 054502 (2017), [arXiv:1611.02411].
[394] R. D. Pisarski and L. G. Yaffe, Phys. Lett. 97B, 110 (1980).
[395] S. Chang, C. Hagmann and P. Sikivie, Phys. Rev. D59, 023505 (1999), [hep-ph/9807374].
[396] C. Hagmann, S. Chang and P. Sikivie, Phys. Rev. D63, 125018 (2001), [hep-ph/0012361].
[397] T. Hiramatsu et al., Phys. Rev. D83, 123531 (2011), [arXiv:1012.5502].
[398] T. Hiramatsu et al., Phys. Rev. D85, 105020 (2012), [Erratum: Phys. Rev.D86,089902(2012)], [arXiv:1202.5851].
[399] M. Gorghetto, E. Hardy and G. Villadoro, JHEP 07, 151 (2018), [arXiv:1806.04677].
[400] M. Buschmann, J. W. Foster and B. R. Safdi, Phys. Rev. Lett. 124, 16, 161103 (2020), [arXiv:1906.00967].
[401] M. Hindmarsh et al., Phys. Rev. Lett. 124, 2, 021301 (2020), [arXiv:1908.03522].
[402] M. Dine et al., Journal of Cosmology and Astroparticle Physics 2021, 11, 041 (2021), URL https://dx.doi.org/10.1088/1475-7516/2021/11/041.
[403] M. Hindmarsh et al., Phys. Rev. D 103, 10, 103534 (2021), [arXiv:2102.07723].
[404] A. Ringwald and K. Saikawa, Phys. Rev. D93, 8, 085031 (2016), [Addendum: Phys. Rev.D94,no.4,049908(2016)], [arXiv:1512.06436].
[405] T. Hiramatsu et al., JCAP 1301, 001 (2013), [arXiv:1207.3166].
[406] K. A. Beyer and S. Sarkar, SciPost Phys. 15, 003 (2023), [arXiv:2211.14635].
[407] C. J. Hogan and M. J. Rees, Phys. Lett. B205, 228 (1988).
[408] E. W. Kolb and I. I. Tkachev, Phys. Rev. Lett. 71, 3051 (1993), [hep-ph/9303313].
[409] B. Eggemeier et al., Phys. Rev. Lett. 125, 4, 041301 (2020), [arXiv:1911.09417].
[410] A. Vaquero, J. Redondo and J. Stadler, Journal of Cosmology and Astroparticle Physics 2019, 04, 012 (2019), URL https://dx.doi.org/10.1088/1475-7516/2019/04/012.
[411] E. W. Kolb and I. I. Tkachev, Astrophys. J. 460, L25 (1996), [arXiv:astro-ph/9510043].
[412] M. Fairbairn, D. J. E. Marsh and J. Quevillon, Phys. Rev. Lett. 119, 2, 021101 (2017), [arXiv:1701.04787].
[413] A. Katz et al., JCAP 1812, 005 (2018), [arXiv:1807.11495].
[414] R. Hlozek et al., Phys. Rev. D91, 10, 103512 (2015), [arXiv:1410.2896].
[415] D. J. E. Marsh, Phys. Rept. 643, 1 (2016), [arXiv:1510.07633].
[416] L. Hui et al., Phys. Rev. D95, 4, 043541 (2017), [arXiv:1610.08297].
[417] G. P. Centers et al., Nature Communications 12, 1, 7321 (2021), ISSN 2041-1723, URL https://doi.org/10.1038/s41467-021-27632-7.
[418] A. G. Dias et al., JHEP 06, 037 (2014), [arXiv:1403.5760].
[419] J. E. Kim and D. J. E. Marsh, Phys. Rev. D93, 2, 025027 (2016), [arXiv:1510.01701].
[420] H. Davoudiasl and C. W. Murphy, Phys. Rev. Lett. 118, 14, 141801 (2017), [arXiv:1701.01136].
[421] L. Di Luzio et al., JCAP 10, 001 (2021), [arXiv:2102.01082].
[422] M. Khlopov, B. A. Malomed and I. B. Zeldovich, Mon. Not. Roy. Astron. Soc. 215, 575 (1985).
[423] W. Hu, R. Barkana and A. Gruzinov, Phys. Rev. Lett. 85, 1158 (2000), [arXiv:astroph/0003365].
[424] L. Amendola and R. Barbieri, Phys. Lett. B642, 192 (2006), [hep-ph/0509257].
[425] D. J. E. Marsh and P. G. Ferreira, Phys. Rev. D82, 103528 (2010), [arXiv:1009.3501].
[426] E. Seidel and W. M. Suen, Phys. Rev. Lett. 66, 1659 (1991).
[427] H.-Y. Schive, T. Chiueh and T. Broadhurst, Nature Phys. 10, 496 (2014), [arXiv:1406.6586].
[428] D. G. Levkov, A. G. Panin and I. I. Tkachev, Phys. Rev. Lett. 121, 15, 151301 (2018), [arXiv:1804.05857].
[429] B. Eggemeier and J. C. Niemeyer, Phys. Rev. D 100, 6, 063528 (2019), [arXiv:1906.01348].
[430] R. Hlozek, D. J. E. Marsh and D. Grin, Mon. Not. Roy. Astron. Soc. 476, 3, 3063 (2018), [arXiv:1708.05681].
[431] D. J. E. Marsh and J. Silk, Mon. Not. Roy. Astron. Soc. 437, 3, 2652 (2014), [arXiv:1307.1705].
[432] H.-Y. Schive et al., Astrophys. J. 818, 1, 89 (2016), [arXiv:1508.04621].
[433] B. Bozek et al., Mon. Not. Roy. Astron. Soc. 450, 1, 209 (2015), [arXiv:1409.3544].
[434] P. S. Corasaniti et al., Phys. Rev. D95, 8, 083512 (2017), [arXiv:1611.05892].
[435] K. K. Rogers and H. V. Peiris, Phys. Rev. Lett. 126, 7, 071302 (2021), [arXiv:2007.12705].
[436] H.-Y. Schive and T. Chiueh, Mon. Not. Roy. Astron. Soc. 473, 1, L36 (2018), [arXiv:1706.03723].
[437] E. O. Nadler et al. (DES), Phys. Rev. Lett. 126, 091101 (2021), [arXiv:2008.00022].
[438] B. Schwabe, J. C. Niemeyer and J. F. Engels, Phys. Rev. D94, 4, 043513 (2016), [arXiv:1606.05151].
[439] J. Veltmaat and J. C. Niemeyer, Phys. Rev. D94, 12, 123523 (2016), [arXiv:1608.00802].
[440] P. Mocz et al., Mon. Not. Roy. Astron. Soc. 471, 4, 4559 (2017), [arXiv:1705.05845].
[441] D. G. Levkov, A. G. Panin and I. I. Tkachev, Phys. Rev. Lett. 118, 011301 (2017); T. Helfer et al., JCAP 1703, 03, 055 (2017), [arXiv:1609.04724]; J. Eby et al., Journal of High Energy Physics 2018, 1, 66 (2018), ISSN 1029-8479, URL https://doi.org/10.1007/ JHEP01 (2018) 066.
[442] D. J. E. Marsh and A.-R. Pop, Mon. Not. Roy. Astron. Soc. 451, 3, 2479 (2015), [arXiv:1502.03456].
[443] S.-R. Chen, H.-Y. Schive and T. Chiueh, Mon. Not. Roy. Astron. Soc. 468, 2, 1338 (2017), [arXiv:1606.09030].
[444] A. X. González-Morales et al., Mon. Not. Roy. Astron. Soc. 472, 2, 1346 (2017), [arXiv:1609.05856].
[445] I. De Martino et al., Phys. Dark Univ. 28, 100503 (2020), [arXiv:1807.08153].
[446] T. Broadhurst et al., Phys. Rev. D 101, 8, 083012 (2020), [arXiv:1902.10488].
[447] H.-Y. Schive et al., Phys. Rev. Lett. 113, 26, 261302 (2014), [arXiv:1407.7762].
[448] V. H. Robles, J. S. Bullock and M. Boylan-Kolchin, Mon. Not. Roy. Astron. Soc. 483, 1, 289 (2019), [arXiv:1807.06018].
[449] V. Desjacques and A. Nusser, Monthly Notices of the Royal Astronomical Society 488, 4, 4497 (2019), ISSN 0035-8711, URL https://doi.org/10.1093/mnras/stz1978.
[450] M. Safarzadeh and D. N. Spergel, The Astrophysical Journal 893, 1, 21 (2020), URL https: //dx.doi.org/10.3847/1538-4357/ab7db2.
[451] A. Pontzen and F. Governato, Nature 506, 171 (2014), [arXiv:1402.1764].
[452] P. Mocz et al., Phys. Rev. Lett. 123, 14, 141301 (2019), [arXiv:1910.01653].
[453] J. Veltmaat, B. Schwabe and J. C. Niemeyer, Phys. Rev. D 101, 8, 083518 (2020), [arXiv:1911.09614].
[454] J. Veltmaat, J. C. Niemeyer and B. Schwabe, Phys. Rev. D98, 4, 043509 (2018), [arXiv:1804.09647].
[455] B. Bar-Or, J.-B. Fouvry and S. Tremaine, Astrophys. J. 871, 1,28 (2019), [arXiv:1809.07673].
[456] B. V. Church, P. Mocz and J. P. Ostriker, MNRAS 485, 2861 (2019), [arXiv:1809.04744].
[457] N. C. Amorisco and A. Loeb (2018), [arXiv:1808.00464].
[458] T. S. Li et al. (DES), Astrophys. J. 838, 1, 8 (2017), [arXiv:1611.05052].
[459] D. J. E. Marsh and J. C. Niemeyer, Phys. Rev. Lett. 123, 5, 051103 (2019), [arXiv:1810.08543].
[460] N. Dalal and A. Kravtsov, Phys. Rev. D 106, 6, 063517 (2022), [arXiv:2203.05750].
[461] E. Armengaud et al. (EDELWEISS), Phys. Rev. D 98, 8, 082004 (2018), [arXiv:1808.02340].
[462] E. Aprile et al. (XENON), Phys. Rev. Lett. 123, 25, 251801 (2019), [arXiv:1907.11485].
[463] K. Kelley and P. J. Quinn, Astrophys. J. 845, 1, L4 (2017), [arXiv:1708.01399].
[464] G. Sigl, Phys. Rev. D96, 10, 103014 (2017), [arXiv:1708.08908].
[465] A. Hook et al., Phys. Rev. Lett. 121, 24, 241102 (2018), [arXiv:1804.03145].
[466] B. R. Safdi, Z. Sun and A. Y. Chen, Phys. Rev. D 99, 12, 123021 (2019), [arXiv:1811.01020].
[467] S. J. Witte et al. (2021), [arXiv:2104.07670].
[468] R. A. Battye et al., Journal of High Energy Physics 2021, 9, 105 (2021), ISSN 1029-8479, URL https://doi.org/10.1007/JHEP09(2021) 105.
[469] A. J. Millar et al. (2021), [arXiv:2107.07399].
[470] J. I. McDonald, B. Garbrecht and P. Millington (2023), [arXiv:2307.11812].
[471] A. Caputo et al., JCAP 1903, 03, 027 (2019), [arXiv:1811.08436].
[472] P. Carenza, A. Mirizzi and G. Sigl, Phys. Rev. D 101, 10, 103016 (2020), [arXiv:1911.07838].
[473] D. G. Levkov, A. G. Panin and I. I. Tkachev, Phys. Rev. D 102, 2, 023501 (2020), [arXiv:2004.05179].
[474] T. Fujita et al., Phys. Rev. D 103, 4, 043509 (2021), [arXiv:2011.11894].
[475] T. Liu, G. Smoot and Y. Zhao (2019), [arXiv:1901.10981].
[476] P. Sikivie, Phys. Rev. D32, 2988 (1985), [Erratum: Phys. Rev.D36,974(1987)].
[477] R. Bradley et al., Rev. Mod. Phys. 75, 777 (2003).
[478] P. Sikivie and J. R. Ipser, Phys. Lett. B291, 288 (1992).
[479] P. Sikivie, I. I. Tkachev and Y. Wang, Phys. Rev. Lett. 75, 2911 (1995), [arXiv:astroph/9504052].
[480] C. Bartram et al. (ADMX), Phys. Rev. D 103, 3, 032002 (2021), [arXiv:2010.06183].
[481] R. Khatiwada et al., Review of Scientific Instruments 92, 12, 124502 (2021), ISSN 0034-6748, URL https://doi.org/10.1063/5.0037857.
[482] W. Wuensch et al., Phys. Rev. D40, 3153 (1989).
[483] A. A. Melcón et al. (CAST), JHEP 21, 075 (2020), [arXiv:2104.13798].
[484] B. T. McAllister et al., Annalen der Physik n/a, n/a, 2200622 (2022), URL https: //onlinelibrary.wiley.com/doi/abs/10.1002/andp. 202200622.
[485] S. J. Asztalos et al. (ADMX), Phys. Rev. D69, 011101 (2004), [arXiv:astro-ph/0310042].
[486] L. Duffy et al., Phys. Rev. Lett. 95, 091304 (2005), [arXiv:astro-ph/0505237]; J. Hoskins et al., Phys. Rev. D84, 121302 (2011), [arXiv:1109.4128].
[487] S. J. Asztalos et al. (ADMX), Nucl. Instrum. Meth. A656, 39 (2011), [arXiv:1105.4203].
[488] G. Rybka et al. (ADMX), Phys. Rev. Lett. 105, 051801 (2010), [arXiv:1004.5160].
[489] A. Wagner et al. (ADMX), Phys. Rev. Lett. 105, 171801 (2010), [arXiv:1007.3766].
[490] B. M. Brubaker et al., Phys. Rev. Lett. 118, 6, 061302 (2017), [arXiv:1610.02580].
[491] A. J. Millar et al. (Endorsers), Phys. Rev. D 107, 055013 (2023), URL https://link.aps. org/doi/10.1103/PhysRevD.107.055013.
[492] D. Horns et al., JCAP 1304, 016 (2013), [arXiv:1212.2970].
[493] A. Caldwell et al. (MADMAX Working Group), Phys. Rev. Lett. 118, 9, 091801 (2017), [arXiv:1611.05865].
[494] P. Brun et al. (MADMAX), Eur. Phys. J. C79, 3, 186 (2019), [arXiv:1901.07401].
[495] M. Baryakhtar, J. Huang and R. Lasenby, Phys. Rev. D98, 3, 035006 (2018), [arXiv:1803.11455].
[496] J. Liu et al. (BREAD Collaboration), Phys. Rev. Lett. 128, 131801 (2022), URL https: //link.aps.org/doi/10.1103/PhysRevLett.128.131801.
[497] B. Aja et al., Journal of Cosmology and Astroparticle Physics 2022, 11, 044 (2022), URL https://dx.doi.org/10.1088/1475-7516/2022/11/044.
[498] A. Arvanitaki, S. Dimopoulos and K. Van Tilburg, Phys. Rev. X8, 4, 041001 (2018), [arXiv:1709.05354].
[499] A. Berlin et al., JHEP 07, 07, 088 (2020), [arXiv:1912.11048].
[500] P. Sikivie, Phys. Rev. Lett. 113, 20, 201301 (2014), [Erratum: Phys.Rev.Lett. 125, 029901 (2020)], [arXiv:1409.2806].
[501] R. Li et al., Nature Phys. 6, 284 (2010), [arXiv:0908.1537].
[502] K. Ishiwata, Phys. Rev. D 104, 1, 016004 (2021), [arXiv:2103.02848].
[503] L. Cao et al., Phys. Rev. B 104, 054421 (2021), URL https://link.aps.org/doi/10.1103/ PhysRevB. 104. 054421.
[504] D. J. E. Marsh et al., Phys. Rev. Lett. 123, 12, 121601 (2019), [arXiv:1807.08810].
[505] J. Schütte-Engel et al., JCAP 08, 066 (2021), [arXiv:2102.05366].
[506] P. Sikivie, N. Sullivan, and D. B. Tanner, Phys. Rev. Lett. 112, 131301 (2014).
[507] Y. Kahn, B. R. Safdi and J. Thaler, Phys. Rev. Lett. 117, 14, 141801 (2016), [arXiv:1602.01086].
[508] Y. Oshima et al., Phys. Rev. D 108, 072005 (2023), URL https://link.aps.org/doi/10. 1103/PhysRevD. 108. 072005.
[509] L. Brouwer et al. (DMRadio), Phys. Rev. D 106, 10, 103008 (2022), [arXiv:2204.13781].
[510] L. Brouwer et al. (DMRadio), Phys. Rev. D 106, 11, 112003 (2022), [arXiv:2203.11246].
[511] M. B. Wise, H. Georgi and S. L. Glashow, Phys. Rev. Lett. 47, 402 (1981).
[512] A. Ernst, A. Ringwald and C. Tamarit, JHEP 02, 103 (2018), [arXiv:1801.04906].
[513] L. Di Luzio, A. Ringwald and C. Tamarit, Phys. Rev. D98, 9, 095011 (2018), [arXiv:1807.09769].
[514] P. F. Pérez, C. Murgui and A. D. Plascencia, Journal of High Energy Physics 2019, 11, 93 (2019), ISSN 1029-8479, URL https://doi.org/10.1007/JHEP11 (2019) 093.
[515] I. M. Bloch et al. (NASDUCK) (2021), [arXiv:2105.04603].
[516] S. P. Chang et al., Phys. Rev. D99, 8, 083002 (2019), [arXiv:1710.05271].
[517] L. Krauss et al., Phys. Rev. Lett. 55, 1797 (1985).
[518] R. Barbieri et al., Phys. Lett. B 226, 357 (1989).
[519] R. Barbieri et al., Phys. Dark Univ. 15, 135 (2017), [arXiv:1606.02201].

[^0]: ${ }^{1}$ These limits are still to the left of the canonical QCD axion line. However, as already mention in non-minimal models where the QCD axion is a mediator between strongly interacting hidden sectors enjoying a discrete, $\mathbb{Z}_{\mathcal{N}}$, shift symmetry, the QCD axion line can be shifted to the left in discrete steps, without any fine tuning $[57,58,421]$.

