Quark and Lepton Compositeness, Searches for

The latest unpublished results are described in the "Quark and Lepton Compositeness" review.

See the related review(s):

Searches for Quark and Lepton Compositeness

CONTENTS:

- Scale Limits for Contact Interactions: $\Lambda(eeee)$ Scale Limits for Contact Interactions: $\Lambda(ee\mu\mu)$ Scale Limits for Contact Interactions: $\Lambda(ee\tau\tau)$ Scale Limits for Contact Interactions: $\Lambda(\ell \ell \ell \ell)$ Scale Limits for Contact Interactions: $\Lambda(eeqq)$ Scale Limits for Contact Interactions: $\Lambda(\mu \mu q q)$ Scale Limits for Contact Interactions: $\Lambda(\ell \nu \ell \nu)$ Scale Limits for Contact Interactions: $\Lambda(e\nu qq)$ Scale Limits for Contact Interactions: $\Lambda(q q q q)$ Scale Limits for Contact Interactions: $\Lambda(\nu \nu q q)$ Mass Limits for Excited $e(e^*)$ - Limits for Excited $e(e^*)$ from Pair Production - Limits for Excited $e(e^*)$ from Single Production
 - Limits for Excited e (e^{*}) from $e^+e^- \rightarrow \gamma\gamma$
 - Indirect Limits for Excited $e(e^*)$

Mass Limits for Excited μ (μ^*)

- Limits for Excited μ (μ^*) from Pair Production
- Limits for Excited μ (μ^*) from Single Production
- Indirect Limits for Excited μ (μ^*)

Mass Limits for Excited τ (τ^*)

- Limits for Excited τ (τ^*) from Pair Production
- Limits for Excited τ (τ^*) from Single Production Mass Limits for Excited Neutrino (ν^*)

- Limits for Excited ν (ν^*) from Pair Production
- Limits for Excited ν (ν^*) from Single Production Mass Limits for Excited $q(q^*)$
 - Limits for Excited $q(q^*)$ from Pair Production

- Limits for Excited $q(q^*)$ from Single Production

Mass Limits for Color Sextet Quarks (q_6)

Mass Limits for Color Octet Charged Leptons (ℓ_8)

- Mass Limits for Color Octet Neutrinos (ν_8)
- Mass Limits for W_8 (Color Octet W Boson)

SCALE LIMITS for Contact Interactions: $\Lambda(eee)$

Limits are for Λ_{II}^{\pm} only. For other cases, see each reference. Λ^+_{LL} (TeV) Λ^-_{II} (TeV) DOCUMENT ID TECN COMMENT CL% ¹ BOURILKOV 01 RVUE E_{cm} = 192–208 GeV >10.3 95 >8.3 Created: 5/31/2024 10:16

https://pdg.lbl.gov

Page 1

 \bullet \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet

>4.5	>7.0	95	² SCHAEL	07A	ALEP	$E_{\rm cm} = 189 - 209 {\rm GeV}$
>5.3	>6.8	95	ABDALLAH	06C	DLPH	$E_{\rm cm}^{\rm om} = 130-207 {\rm GeV}$
>4.7	>6.1	95	³ ABBIENDI	0 4G	OPAL	$E_{\rm cm} = 130 - 207 {\rm GeV}$
>4.3	>4.9	95	ACCIARRI	00 P	L3	$E_{\rm cm} = 130 - 189 {\rm GeV}$
¹ A coi ² SCH/ ³ ABB	mbined an AEL 07A li IENDI 04G	alysis of mits are limits a	the data from ALEI from R_c , Q_{FB}^{depl} , and re from $e^+e^- ightarrow$	PH, DI nd had e ⁺ e ⁻	ELPHI, ronic cro cross s	L3, and OPAL. coss section measurements. ection at $\sqrt{s}=1$ 30–207 GeV.

SCALE LIMITS for Contact Interactions: $\Lambda(ee\mu\mu)$ Limits are for Λ_{LL}^{\pm} only. For other cases, see each reference.

Λ^+_{LL} (TeV)	Λ^{LL} (TeV)	CL%	DOCUMENT ID		TECN	COMMENT			
>6.6	>9.5	95	¹ SCHAEL	07A	ALEP	$E_{\rm cm} = 189 - 209 {\rm GeV}$			
> 8.5	>3.8	95	ACCIARRI	00 P	L3	$E_{\rm cm} = 130 - 189 {\rm GeV}$			
• • • We	$\bullet \bullet \bullet$ We do not use the following data for averages, fits, limits, etc. $\bullet \bullet \bullet$								
>7.3	>7.6	95	ABDALLAH	06 C	DLPH	$E_{\rm cm} = 130-207 {\rm GeV}$			
>8.1	>7.3	95	² ABBIENDI	0 4G	OPAL	$E_{\rm cm} = 130-207 {\rm GeV}$			
¹ SCHA ² ABBIE	EL 07A lim ENDI 04G li	its are fro mits are f	m ${\it R}_c$, ${\it Q}_{FB}^{depl}$, and from $e^+e^- ightarrow$,	d had $\mu \mu$ cro	ronic cro oss sectio	oss section measurements. on at $\sqrt{s}=130 extsf{-}207~ extsf{GeV}.$			

SCALE LIMITS for Contact Interactions: $\Lambda(ee\tau\tau)$

Limits are for Λ^\pm_{LL} only. For other cases, see each reference.

Λ^+_{LL} (TeV)	Λ^{-}_{LL} (TeV)	CL%	DOCUMENT ID		TECN	COMMENT		
>7.9	>5.8	95	¹ SCHAEL	07A	ALEP	$E_{\rm cm} = 189 - 209 {\rm GeV}$		
>7.9	>4.6	95	ABDALLAH	06 C	DLPH	$E_{\rm cm} = 130 - 207 {\rm GeV}$		
>4.9	>7.2	95	² ABBIENDI	0 4G	OPAL	$E_{\rm cm} = 130 - 207 {\rm GeV}$		
• • • We	do not use	the follo	owing data for ave	rages,	fits, lim	its, etc. • • •		
>5.4	>4.7	95	ACCIARRI	00 P	L3	$E_{\rm cm} = 130 - 189 {\rm GeV}$		
¹ SCHAEL 07A limits are from R_c , Q_{FB}^{depl} , and hadronic cross section measurements. ² ABBIENDI 04G limits are from $e^+e^- \rightarrow \tau \tau$ cross section at $\sqrt{s} = 130-207$ GeV.								

SCALE LIMITS for Contact Interactions: $\Lambda(\ell\ell\ell\ell)$

Lepton universality assumed. Limits are for Λ^{\pm}_{LL} only. For other cases, see each reference.

Λ^+_{LL} (TeV)	Λ^{-}_{LL} (TeV)	CL%	DOCUMENT ID		TECN	COMMENT
>7.9 > 9.1	> 10.3 >8.2	95 95	¹ SCHAEL ABDALLAH	07A 06C	ALEP DLPH	$E_{\rm cm} = 189-209 {\rm GeV}$ $E_{\rm cm} = 130-207 {\rm GeV}$
• • • We	do not use	the follow	wing data for ave	rages,	fits, lim	its, etc. • • •
>7.7	>9.5	95	² ABBIENDI ³ BABICH	04G 03	OPAL RVUE	$E_{\rm cm} = 130-207 {\rm GeV}$
>9.0	>5.2	95	ACCIARRI	00 P	L3	$E_{\rm cm} = 130 - 189 {\rm GeV}$
https://	pdg.lbl.go	v	Page 2		C	reated: 5/31/2024 10:16

 $^1\,{\rm SCHAEL}$ 07A limits are from ${\it R}_c,~{\it Q}_{FB}^{depl}$, and hadronic cross section measurements.

²ABBIENDI 04G limits are from $e^+e^- \rightarrow \ell^+\ell^-$ cross section at $\sqrt{s} = 130-207 \text{ GeV}$. ³BABICH 03 obtain a bound $-0.175 \text{ TeV}^{-2} < 1/\Lambda_{LL}^2 < 0.095 \text{ TeV}^{-2}$ (95%CL) in a model independent analysis allowing all of Λ_{LL} , Λ_{LR} , Λ_{RL} , Λ_{RR} to coexist.

SCALE LIMITS for Contact Interactions: $\Lambda(eeqq)$

Limits are for Λ_{LL}^{\pm} only. For other cases, see each reference.

Λ^+_{LL} (TeV)	$\Lambda^{-}_{LL}(\text{TeV})$	CL%	DOCUMENT ID		TECN	COMMENT
>24	>37	95	¹ AABOUD	17AT	ATLS	(eeqq)
> 8.4	>10.2	95	² ABDALLAH	09	DLPH	(eebb)
> 9.4	>5.6	95	³ SCHAEL	07A	ALEP	(eecc)
> 9.4	>4.9	95	² SCHAEL	07A	ALEP	(eebb)
>23.3	>12.5	95	⁴ CHEUNG	01 B	RVUE	(eeuu)
>11.1	>26.4	95	⁴ CHEUNG	01 B	RVUE	(eedd)
• • • We	do not use	the fo	llowing data for ave	erages	, fits, lin	nits, etc. • • •
> 7.1	>7.1	95	⁵ AAD	21AU	ATLS	(eebs)
>23.5	>26.1	95	⁶ AAD	21Q	ATLS	(eeqq)
>19.5	>24.0	95	⁷ SIRUNYAN	21N	CMS	(eeqq)
>23.5	>26.1	95	⁸ AAD	20AP	ATLS	(eeqq)
> 4.5	>12.8	95	⁹ ABRAMOWICZ	Z19	ZEUS	(eeqq)
>16.8	>23.9	95	¹⁰ SIRUNYAN	19AC	CMS	(eeqq)
>15.5	>19.5	95	¹¹ AABOUD	16 U	ATLS	(eeqq)
>13.5	>18.3	95	¹² KHACHATRY.	.15AE	CMS	(eeqq)
>16.4	>20.7	95	¹³ AAD	14BE	ATLS	(eeqq)
> 9.5	>12.1	95	¹⁴ AAD	13E	ATLS	(eeqq)
>10.1	>9.4	95	¹⁵ AAD	12ab	ATLS	(eeqq)
> 4.2	>4.0	95	¹⁶ AARON	11C	H1	(eeqq)
> 3.8	>3.8	95	¹⁷ ABDALLAH	11	DLPH	(eetc)
>12.9	>7.2	95	¹⁸ SCHAEL	07A	ALEP	(eeqq)
> 3.7	>5.9	95	¹⁹ ABULENCIA	06L	CDF	(eeqq)

¹AABOUD 17AT limits are from pp collisions at $\sqrt{s} = 13$ TeV. The quoted limit uses a uniform positive prior in $1/\Lambda^2$.

²ABDALLAH 09 and SCHAEL 07A limits are from R_b , A^b_{FB} .

³SCHAEL 07A limits are from R_c , Q_{FB}^{depl} , and hadronic cross section measurements.

⁴ CHEUNG 01B is an update of BARGER 98E.

⁵ AAD 21AU search for new phenomena in final states with e^+e^- and one or no *b*-tagged jets in *pp* collisions at $\sqrt{s} = 13$ TeV. The quoted limits assume $g_*^2 = 4 \pi$.

 6 AAD 21Q limits are from $p\,p$ collisions at $\sqrt{s}=$ 13 TeV. A frequentist statistical framework is used to remove the prior dependence.

⁷SIRUNYAN 21N limits are from e^+e^- mass distribution in pp collisions at $\sqrt{s}=$ 13

TeV. ⁸ AAD 20AP limits are from e^+e^- mass distribution in pp collisions at $\sqrt{s} = 13$ TeV. ⁹ ABRAMOWICZ 19 limits are from Q² spectrum measurements of $e^{\pm}p \rightarrow e^{\pm}X$. ¹⁰ SIRUNYAN 19AC limits are from e^+e^- mass distribution in pp collisions at $\sqrt{s} = 13$ TeV.

 11 AABOUD 16U limits are from pp collisions at $\sqrt{s}=$ 13 TeV. The quoted limit uses a uniform positive prior in $1/\Lambda^2$.

- 12 KHACHATRYAN 15AE limit is from e^+e^- mass distribution in pp collisions at $E_{\rm cm}=$
- 8 TeV. 13 AAD 14BE limits are from *pp* collisions at $\sqrt{s}=$ 8 TeV. The quoted limit uses a uniform positive prior in $1/\Lambda^2$.
- ¹⁴AAD 13E limis are from e^+e^- mass distribution in pp collisions at $E_{\rm cm}=$ 7 TeV.
- ¹⁵ AAD 12AB limis are from e^+e^- mass distribution in pp collisions at $E_{\rm cm}=$ 7 TeV.
- ¹⁶ AARON 11C limits are from Q^2 spectrum measurements of $e^{\pm}p \rightarrow e^{\pm X}$.
- ¹⁷ABDALLAH 11 limit is from $e^+e^- \rightarrow t\overline{c}$ cross section. $\Lambda_{LL} = \Lambda_{LR} = \Lambda_{RL} = \Lambda_{RR}$ is assumed.
- ¹⁸SCHAEL 07A limit assumes quark flavor universality of the contact interactions.

¹⁹ABULENCIA 06L limits are from $p\overline{p}$ collisions at $\sqrt{s} = 1.96$ TeV.

SCALE LIMITS for Contact Interactions: $\Lambda(\mu\mu qq)$

Λ^+_{LL} (TeV)	$\Lambda^{LL}({ m TeV})$	CL%	DOCUMENT ID		TECN	COMMENT
>23.3	>40.0	95	¹ SIRUNYAN	21N	CMS	$(\mu\mu q q)$
• • • We	do not use	e the follo	owing data for avera	iges,	fits, limi	ts, etc. ● ● ●
> 8.5	>8.5	95	² AAD	21AU	ATLS	$(\mu \mu bs)$
>22.3	>32.7	95	³ AAD	21Q	ATLS	$(\mu \mu q q)$
>22.3	>32.7	95	⁴ AAD	20AP	ATLS	$(\mu \mu q q)$
>20.4	>30.4	95	⁵ SIRUNYAN	19AC	CMS	(µµqq)
>20	>30	95	⁶ AABOUD	17AT	ATLS	$(\mu \mu q q)$
>15.8	>21.8	95	⁷ AABOUD	16 U	ATLS	$(\mu \mu q q)$
>12.0	>15.2	95	⁸ KHACHATRY	.15AE	CMS	$(\mu \mu q q)$
>12.5	>16.7	95	⁹ AAD	14BE	ATLS	$(\mu \mu q q)$
> 9.6	>12.9	95	¹⁰ AAD	13E	ATLS	$(\mu \mu q q)$ (isosinglet)
> 9.5	>13.1	95	¹¹ CHATRCHYAN	13K	CMS	$(\mu \mu q q)$ (isosinglet)
> 8.0	>7.0	95	¹² AAD	12ab	ATLS	$(\mu \mu q q)$ (isosinglet)

¹SIRUNYAN 21N limits are from $\mu^+\mu^-$ mass distribution in pp collisions at $\sqrt{s} = 13$ TeV.

 2 AAD 21AU search for new phenomena in final states with $\mu^+\mu^-$ and one or no b-tagged jets in pp collisions at $\sqrt{s} = 13$ TeV. The quoted limits assume $g_{\star}^2 = 4 \pi$.

- 3 AAD 21Q limits are from p p collisions at \sqrt{s} = 13 TeV. A frequentist statistical framework is used to remove the prior dependence.
- ⁴AAD 20AP limits are from $\mu^+\mu^-$ mass distribution in *pp* collisions at $\sqrt{s}=$ 13 TeV.
- ⁵SIRUNYAN 19AC limits are from $\mu^+\mu^-$ mass distribution in pp collisions at $\sqrt{s}=13$ TeV.

⁶AABOUD 17AT limits are from pp collisions at $\sqrt{s} = 13$ TeV. The quoted limit uses a uniform positive prior in $1/\Lambda^2$.

⁷AABOUD 16U limits are from pp collisions at $\sqrt{s} = 13$ TeV. The quoted limit uses a uniform positive prior in $1/\Lambda^2$.

 8 KHACHATRYAN 15AE limit is from $\mu^+\mu^-$ mass distribution in *pp* collisions at $E_{\rm cm}=$

⁸ TeV. ⁹ AAD 14BE limits are from pp collisions at $\sqrt{s} = 8$ TeV. The quoted limit uses a uniform positive prior in $1/\Lambda^2$.

 10 AAD 13E limis are from $\mu^+\mu^-$ mass distribution in pp collisions at $E_{\rm cm}$ = 7 TeV.

- ¹¹CHATRCHYAN 13K limis are from $\mu^+\mu^-$ mass distribution in *pp* collisions at $E_{cm} =$ 7 TeV.
- ¹²AAD 12AB limis are from $\mu^+\mu^-$ mass distribution in *pp* collisions at $E_{\rm cm} =$ 7 TeV.

SCALE LIMITS for Contact Interactions: $\Lambda(\ell \nu \ell \nu)$

				,			
VALUE (TeV)	CL%	DOCUMENT ID		TECN	COMMENT		
>3.10	90	¹ JODIDIO	86	SPEC	$\Lambda^{\pm}_{LR}(\nu_{\mu}\nu_{e}\mu e)$		
$\bullet \bullet \bullet$ We do not use the	following	data for averages	, fits,	limits, e	tc. • • •		
>3.8		² DIAZCRUZ	94	RVUE	$\Lambda_{LL}^+(au u_ au e u_e)$		
>8.1		² DIAZCRUZ	94	RVUE	$\Lambda^{-}_{II}(\tau \nu_{\tau} e \nu_{e})$		
>4.1		³ DIAZCRUZ	94	RVUE	$\Lambda_{LL}^{+}(\tau\nu_{\tau}\mu\nu_{\mu})$		
>6.5		³ DIAZCRUZ	94	RVUE	$\Lambda_{LL}^{-}(\tau\nu_{\tau}\mu\nu_{\mu})$		
_						~	

¹ JODIDIO 86 limit is from $\mu^+ \rightarrow \overline{\nu}_{\mu} e^+ \nu_e$. Chirality invariant interactions $L = (g^2/\Lambda^2)$ $[\eta_{LL} (\overline{\nu}_{\mu L} \gamma^{\alpha} \mu_L) (\overline{e}_L \gamma_{\alpha} \nu_{e L}) + \eta_{LR} (\overline{\nu}_{\mu L} \gamma^{\alpha} \nu_{e L} (\overline{e}_R \gamma_{\alpha} \mu_R)]$ with $g^2/4\pi = 1$ and $(\eta_{LL}, \eta_{LR}) = (0, \pm 1)$ are taken. No limits are given for Λ_{LL}^{\pm} with $(\eta_{LL}, \eta_{LR}) = (\pm 1, 0)$. For more general constraints with right-handed neutrinos and chirality nonconserving contact interactions, see their text.

- ² DIAZCRUZ 94 limits are from $\Gamma(\tau \rightarrow e\nu\nu)$ and assume flavor-dependent contact interactions with $\Lambda(\tau\nu_{\tau}e\nu_{e}) \ll \Lambda(\mu\nu_{\mu}e\nu_{e})$.
- ³DIAZCRUZ 94 limits are from $\Gamma(\tau \rightarrow \mu \nu \nu)$ and assume flavor-dependent contact interactions with $\Lambda(\tau \nu_{\tau} \mu \nu_{\mu}) \ll \Lambda(\mu \nu_{\mu} e \nu_{e})$.

SCALE LIMITS for Contact Interactions: $\Lambda(e\nu qq)$

VALUE (TeV)	CL%	DOCUMENT ID	DOCUMENT ID				
>2.81	95	¹ AFFOLDER	011	CDF			
1							

¹ AFFOLDER 001 bound is for a scalar interaction $\overline{q}_R q_L \overline{\nu} e_L$.

SCALE LIMITS for Contact Interactions: $\Lambda(qqqq)$

Λ^+_{LL} (TeV)	Λ^{-}_{LL} (TeV)	CL%	DOCUMENT ID		TECN	COMMENT
>13.1 none 17.4-29.5 • • • We do not use t	>21.8 he following	95 data for	¹ AABOUD averages, fits, limi	17AK ts, etc	ATLS	<i>pp</i> dijet angl.
>12.8 >11.5 >12.0 > 8.1	>17.5 >14.7 >17.5	95 95 95 95	² AABOUD ³ SIRUNYAN ⁴ SIRUNYAN ⁵ AAD ⁶ AAD ⁷ AAD ⁸ AAD	18AV 18DD 17F 16S 15AR 15BY 15L	ATLS CMS CMS ATLS ATLS ATLS ATLS	$pp \rightarrow t\overline{t}t\overline{t}$ $pp \text{ dijet angl.}$ $pp \text{ dijet angl.}$ $pp \text{ dijet angl.}$ $pp \rightarrow t\overline{t}t\overline{t}$ $pp \rightarrow t\overline{t}t\overline{t}$ $pp \rightarrow t\overline{t}t\overline{t}$ $pp \text{ dijet angl.}$
> 9.0 > 5	>11.7	95 95	⁹ KHACHATRY. ¹⁰ FABBRICHESI	15J 14	CMS RVUE	pp dijet angl. q q t t

¹AABOUD 17AK limit is from dijet angular distribution in pp collisions at $\sqrt{s} = 13$ TeV. *u*, *d*, and *s* quarks are assumed to be composite.

²AABOUD 18AV obtain limit on t_R compositeness $2\pi/\Lambda_{RR}^2 < 1.6 \text{ TeV}^{-2}$ at 95% CL from $t \overline{t} t \overline{t}$ production in the pp collisions at $E_{\rm cm} = 13$ TeV.

³SIRUNYAN 18DD limit is from dijet angular distribution in *pp* collisions at $\sqrt{s} = 13$ TeV. ⁴SIRUNYAN 17F limit is from dijet angular cross sections in *pp* collisions at $E_{cm} = 13$ TeV. All quarks are assumed to be composite.

- ⁵ AAD 16s limit is from dijet angular selections in pp collisions at $E_{cm} = 13$ TeV. u, d, and s quarks are assumed to be composite.
- ⁶AAD 15AR obtain limit on the t_R compositeness $2\pi/\Lambda_{RR}^2 < 6.6 \text{ TeV}^{-2}$ at 95% CL from the $t\overline{t}t\overline{t}$ production in the pp collisions at $E_{cm} = 8$ TeV.
- ⁷AAD 15BY obtain limit on the t_R compositeness $2\pi/\Lambda_{RR}^2 < 15.1 \text{ TeV}^{-2}$ at 95% CL from the $t\overline{t}t\overline{t}$ production in the pp collisions at $E_{\rm cm} = 8$ TeV.
- ⁸ AAD 15L limit is from dijet angular distribution in pp collisions at $E_{\rm cm} = 8$ TeV. u, d, and s quarks are assumed to be composite.
- ⁹KHACHATRYAN 15J limit is from dijet angular distribution in pp collisions at $E_{cm} = 8$ TeV. u, d, s, c, and b quarks are assumed to be composite.
- ¹⁰ FABBRICHESI 14 obtain bounds on chromoelectric and chromomagnetic form factors of the top-quark using $pp \rightarrow t\bar{t}$ and $p\bar{p} \rightarrow t\bar{t}$ cross sections. The quoted limit on the $q\bar{q}t\bar{t}$ contact interaction is derived from their bound on the chromoelectric form factor.

SCALE LIMITS for Contact Interactions: $\Lambda(\nu \nu q q)$

Limits are for Λ_{II}^{\pm} only. For other cases, see each reference.

Λ^+_{LL} (TeV)	Λ^{LL} (TeV)	CL%	DOCUMENT ID	TECN	COMMENT
>5.0	>5.4	95	¹ MCFARLAND 98	CCFR	νN scattering

¹ MCFARLAND 98 assumed a flavor universal interaction. Neutrinos were mostly of muon type.

MASS LIMITS for Excited $e(e^*)$

Most e^+e^- experiments assume one-photon or Z exchange. The limits from some e^+e^- experiments which depend on λ have assumed transition couplings which are chirality violating ($\eta_L = \eta_R$). However they can be interpreted as limits for chirality-conserving interactions after multiplying the coupling value λ by $\sqrt{2}$; see Note.

Excited leptons have the same quantum numbers as other ortholeptons. See also the searches for ortholeptons in the "Searches for Heavy Leptons" section.

Limits for Excited $e(e^*)$ from Pair Production

These limits are obtained from $e^+e^- \rightarrow e^{*+}e^{*-}$ and thus rely only on the (electroweak) charge of e^* . Form factor effects are ignored unless noted. For the case of limits from Z decay, the e^* coupling is assumed to be of sequential type. Possible t channel contribution from transition magnetic coupling is neglected. All limits assume a dominant $e^* \rightarrow e\gamma$ decay except the limits from $\Gamma(Z)$.

For limits prior to 1987, see our 1992 edition (Physical Review D45 S1 (1992)).

VALUE (GeV)	CL%	DOCUMENT ID		TECN	COMME	NT		
>103.2	95 1	ABBIENDI	0 2G	OPAL	e^+e^-	$\rightarrow e$	* e*	Homodoublet type
• • • We do	not use the	following data	for av	/erages,	fits, limi	its, et	c. ●	• •
>102.8	95 2	ACHARD	03 B	L3	e^+e^-	$\rightarrow e$	* e*	Homodoublet type
¹ From e ⁺ ² From e ⁺ obtain lin	e^{-} collisior e^{-} collision hit for $f = -$	is at $\sqrt{s} = 183$ - is at $\sqrt{s} = 189$ $-f'$: $m_{e^*} > 96$.	-209 (–209 6 Ge\	GeV. f = GeV. f /.	= <i>f'</i> is a = <i>f'</i> is	assume assum	ed. ned.	ACHARD 03B also

https://pdg.lbl.gov Page 6

Limits for Excited $e(e^*)$ from Single Production

These limits are from $e^+e^- \rightarrow e^*e$, $W \rightarrow e^*\nu$, or $ep \rightarrow e^*X$ and depend on transition magnetic coupling between e and e^* . All limits assume $e^* \rightarrow e\gamma$ decay except as noted. Limits from LEP, UA2, and H1 are for chiral coupling, whereas all other limits are for nonchiral coupling, $\eta_L = \eta_R = 1$. In most papers, the limit is expressed in the form of an excluded region in the $\lambda - m_{e^*}$ plane. See the original papers.

For limits prior to 1987, see our 1992 edition (Physical Review D45 S1 (1992)).

VALUE (GeV)	CL%	DOCUMENT ID		TECN	COMME	NT
>5600	95	¹ SIRUNYAN	20aj	CMS	pp ightarrow	ee*X
• • • We do not use the	following	data for averages	, fits,	limits, e	tc. • •	•
>4800	95	² AABOUD	19AZ	ATLS	pp ightarrow	ee*X
>3900	95	³ SIRUNYAN	19Z	CMS	pp ightarrow	ee*X
>2450	95	⁴ KHACHATRY	.16AQ	CMS	pp ightarrow	e e* X
>3000	95	⁵ AAD	15 AP	ATLS	pp ightarrow	$e^{(*)}e^{*}X$
>2200	95	⁶ AAD	13 BB	ATLS	pp ightarrow	ee*X
>1900	95	⁷ CHATRCHYAN	13AE	CMS	pp ightarrow	ee*X
>1870	95	⁸ AAD	12AZ	ATLS	pp ightarrow	e ^(*) e [*] X

¹ SIRUNYAN 20AJ search for e^* production in 2e2j final states in pp collisions at $\sqrt{s} = 13$ TeV. The quoted limit assumes $\Lambda = m_{e^*}$, f = f' = 1. The contact interaction is included. See their Fig.11 for exclusion limits in m_{e^*} - Λ plane.

²AABOUD 19AZ search for single e^* production in pp collisions at $\sqrt{s} = 13$ TeV. The limit quoted above is from $e^* \rightarrow eq \overline{q}$ and $e^* \rightarrow \nu W$ decays assuming f = f' = 1 and $m_{e^*} = \Lambda$. The contact interaction is included in e^* production and decay amplitudes. See their Fig.6 for exclusion limits in $m_{e^*} - \Lambda$ plane.

³SIRUNYAN 19Z search for e^* production in $\ell\ell\gamma$ final states in pp collisions at $\sqrt{s} = 13$ TeV. The quoted limit assumes $\Lambda = m_{e^*}$, f = f' = 1. The contact interaction is included in the e^* production and decay amplitudes.

⁴ KHACHATRYAN 16AQ search for single e^* production in pp collisions at $\sqrt{s} = 8$ TeV. The limit above is from the $e^* \rightarrow e\gamma$ search channel assuming f = f' = 1, $m_{e^*} = \Lambda$. See their Table 7 for limits in other search channels or with different assumptions.

- ⁵ AAD 15AP search for e^* production in evens with three or more charged leptons in pp collisions at $\sqrt{s} = 8$ TeV. The quoted limit assumes $\Lambda = m_{e^*}$, f = f' = 1. The contact interaction is included in the e^* production and decay amplitudes.
- ⁶ AAD 13BB search for single e^* production in pp collisions with $e^* \rightarrow e\gamma$ decay. f = f' = 1, and e^* production via contact interaction with $\Lambda = m_{\rho^*}$ are assumed.
- ⁷ CHATRCHYAN 13AE search for single e^* production in pp collisions with $e^* \rightarrow e\gamma$ decay. f = f' = 1, and e^* production via contact interaction with $\Lambda = m_{e^*}$ are assumed.
- ⁸ AAD 12AZ search for e^* production via four-fermion contact interaction in pp collisions with $e^* \rightarrow e\gamma$ decay. The quoted limit assumes $\Lambda = m_{e^*}$. See their Fig. 8 for the exclusion plot in the mass-coupling plane.

Limits for Excited $e~(e^*)$ from $e^+e^- \rightarrow \gamma\gamma$

These limits are derived from indirect effects due to e^* exchange in the t channel and depend on transition magnetic coupling between e and e^* . All limits are for $\lambda_\gamma=1$. All limits except ABE 89J and ACHARD 02D are for nonchiral coupling with $\eta_L=\eta_R$

= 1. We choose the chiral coupling limit as the best limit and list it in the Summary Table.

For limits prior to 1987, see our 1992 edition (Physical Review D45 S1 (1992)).							
VALUE (GeV)	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT		
>356	95 1	ABDALLAH	04N	DLPH	\sqrt{s} = 161–208 GeV		
ullet $ullet$ $ullet$ We do not use the following data for averages, fits, limits, etc. $ullet$ $ullet$							
>310	95	ACHARD	02 D	L3	\sqrt{s} = 192–209 GeV		
1							

¹ ABDALLAH 04N also obtain a limit on the excited electron mass with ee^* chiral coupling, $m_{a^*} > 295$ GeV at 95% CL.

Indirect Limits for Excited $e(e^*)$

These limits make use of loop effects involving e^* and are therefore subject to theoretical uncertainty.

VALUE (GeV)	DOCUMENT ID		TECN	COMMENT
\bullet \bullet We do not use the fol	llowing data for aver	ages,	fits, limi	ts, etc. ● ● ●
	¹ DORENBOS	89	CHRM	$\overline{\nu}_{\mu} e \rightarrow \overline{\nu}_{\mu} e, \nu_{\mu} e \rightarrow \nu_{\mu} e$
	² GRIFOLS	86	THEO	$\nu_{\mu} e \rightarrow \nu_{\mu} e$
	³ RENARD	82	THEO	g-2 of electron
1	2 2	2		

¹DORENBOSCH 89 obtain the limit $\lambda_{\gamma}^2 \Lambda_{\rm cut}^2 / m_{e^*}^2 < 2.6 (95\% \text{ CL})$, where $\Lambda_{\rm cut}$ is the cutoff scale, based on the one-loop calculation by GRIFOLS 86. If one assumes that $\Lambda_{\rm cut} = 1$ TeV and $\lambda_{\gamma} = 1$, one obtains $m_{e^*} > 620$ GeV. However, one generally expects $\lambda_{\gamma} \approx m_{e^*} / \Lambda_{\rm cut}$ in composite models.

² GRIFOLS 86 uses $\nu_{\mu}e \rightarrow \nu_{\mu}e$ and $\overline{\nu}_{\mu}e \rightarrow \overline{\nu}_{\mu}e$ data from CHARM Collaboration to derive mass limits which depend on the scale of compositeness.

³RENARD 82 derived from g-2 data limits on mass and couplings of e^* and μ^* . See figures 2 and 3 of the paper.

MASS LIMITS for Excited μ (μ^*)

Limits for Excited μ (μ^*) from Pair Production

These limits are obtained from $e^+e^- \rightarrow \mu^{*+}\mu^{*-}$ and thus rely only on the (electroweak) charge of μ^* . Form factor effects are ignored unless noted. For the case of limits from Z decay, the μ^* coupling is assumed to be of sequential type. All limits assume a dominant $\mu^* \rightarrow \mu\gamma$ decay except the limits from $\Gamma(Z)$.

For limits prior to 1987, see our 1992 edition (Physical Review D45 S1 (1992)).

DOCUMENT ID TECN COMMENT VALUE (GeV) CL% 02G OPAL $e^+e^- \rightarrow \mu^*\mu^*$ Homodoublet type ¹ ABBIENDI >103.2 95 • • • We do not use the following data for averages, fits, limits, etc. • • • ² ACHARD $e^+\,e^ightarrow\,\mu^*\,\mu^*$ Homodoublet type 03B L3 95 >102.8 ¹From e^+e^- collisions at $\sqrt{s} = 183$ –209 GeV. f = f' is assumed. ² From e^+e^- collisions at $\sqrt{s} = 189-209$ GeV. f = f' is assumed. ACHARD 03B also obtain limit for f = -f': $m_{\mu^*} > 96.6$ GeV.

Limits for Excited μ (μ^*) from Single Production

These limits are from $e^+e^- \rightarrow \mu^*\mu$ and depend on transition magnetic coupling between μ and μ^* . All limits assume $\mu^* \rightarrow \mu\gamma$ decay. Limits from LEP are for chiral coupling, whereas all other limits are for nonchiral coupling, $\eta_L = \eta_R = 1$. In most papers, the limit is expressed in the form of an excluded region in the $\lambda - m_{\mu^*}$ plane. See the original papers.

For limits prior to 1987, see our 1992 edition (Physical Review D45 S1 (1992)).

VALUE (GeV)	CL%	DOCUMENT ID	TECN	COMMENT
>5700	95	¹ SIRUNYAN	20AJ CMS	$pp ightarrow \mu \mu^* X$
$\bullet \bullet \bullet$ We do not use the	following	data for averages	, fits, limits, e	tc. ● ● ●
>3800	95	² SIRUNYAN	19z CMS	$pp ightarrow \mu \mu^* X$
>2800	95	³ AAD	16BMATLS	$pp ightarrow \mu \mu^* X$
>2470	95	⁴ KHACHATRY	16AQ CMS	$pp ightarrow \mu \mu^* X$
>3000	95	⁵ AAD	15AP ATLS	$p p ightarrow \ \mu^{(*)} \mu^* X$
>2200	95	⁶ AAD	13bb ATLS	$p p ightarrow \ \mu \mu^* X$
>1900	95	⁷ CHATRCHYAN	13AE CMS	$p p ightarrow \ \mu \mu^* X$
>1750	95	⁸ AAD	12AZ ATLS	$p p ightarrow \ \mu^{(*)} \mu^* X$

¹ SIRUNYAN 20AJ search for μ^* production in $2\mu 2j$ final states in pp collisions at $\sqrt{s} = 13$ TeV. The quoted limit assumes $\Lambda = m_{\mu^*}$, f = f' = 1. The contact interaction is included. See their Fig.11 for exclusion limits in m_{μ^*} - Λ plane.

²SIRUNYAN 19Z search for μ^* production in $\ell\ell\gamma$ final states in pp collisions at $\sqrt{s} =$ 13 TeV. The quoted limit assumes $\Lambda = m_{\mu^*}$, f = f' = 1. The contact interaction is

included in the μ^* production and decay amplitudes.

³AAD 16BM search for μ^* production in $\mu\mu jj$ events in pp collisions at $\sqrt{s} = 8$ TeV. Both the production and decay are assumed to occur via a contact interaction with $\Lambda = m_{\mu^*}$.

⁴ KHACHATRYAN 16AQ search for single μ^* production in pp collisions at $\sqrt{s} = 8$ TeV. The limit above is from the $\mu^* \rightarrow \mu\gamma$ search channel assuming f = f' = 1, $m_{\mu^*} = \Lambda$. See their Table 7 for limits in other search channels or with different assumptions.

⁵ AAD 15AP search for μ^* production in evens with three or more charged leptons in pp collisions at $\sqrt{s} = 8$ TeV. The quoted limit assumes $\Lambda = m_{\mu^*}$, f = f' = 1. The contact

interaction is included in the μ^* production and decay amplitudes.

⁶ AAD 13BB search for single μ^* production in pp collisions with $\mu^* \to \mu\gamma$ decay. f = f' = 1, and μ^* production via contact interaction with $\Lambda = m_{\mu^*}$ are assumed.

⁷ CHATRCHYAN 13AE search for single μ^* production in pp collisions with $\mu^* \rightarrow \mu\gamma$ decay. f = f' = 1, and μ^* production via contact interaction with $\Lambda = m_{\mu^*}$ are assumed.

⁸ AAD 12AZ search for μ^* production via four-fermion contact interaction in pp collisions with $\mu^* \rightarrow \mu\gamma$ decay. The quoted limit assumes $\Lambda = m_{\mu^*}$. See their Fig. 8 for the exclusion plot in the mass-coupling plane.

Indirect Limits for Excited μ (μ^*)

These limits make use of loop effects involving μ^* and are therefore subject to theoretical uncertainty.

VALUE (GeV)	DOCUMENT ID	1	TECN	COMMENT	
• • • We do not use the follow	ing data for averag	es, fits,	limits, et	tc. ● ● ●	
	¹ RENARD	82	THEO	g-2 of muon	

https://pdg.lbl.gov

Created: 5/31/2024 10:16

¹ RENARD 82 derived from g-2 data limits on mass and couplings of e^* and μ^* . See figures 2 and 3 of the paper.

MASS LIMITS for Excited τ (τ^*)

Limits for Excited τ (τ^*) from Pair Production

These limits are obtained from $e^+e^- \rightarrow \tau^{*+}\tau^{*-}$ and thus rely only on the (electroweak) charge of τ^* . Form factor effects are ignored unless noted. For the case of limits from Z decay, the τ^* coupling is assumed to be of sequential type. All limits assume a dominant $\tau^* \rightarrow \tau \gamma$ decay except the limits from $\Gamma(Z)$.

For limits prior to 1987, see our 1992 edition (Physical Review D45 S1 (1992)).

VALUE (GeV)	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT			
>103.2	95 1	ABBIENDI	0 2G	OPAL	$e^+e^- ightarrow au^* au^*$ Homodoublet type			
• • • We do	not use th	e following data	for av	verages,	fits, limits, etc. • • •			
>102.8	95 2	ACHARD	03 B	L3	$e^+e^- ightarrow au^* au^*$ Homodoublet type			
¹ From e^+e^- collisions at $\sqrt{s} = 183-209$ GeV. $f = f'$ is assumed.								
² From e^+e^- collisions at $\sqrt{s} = 189-209$ GeV. $f = f'$ is assumed. ACHARD 03B also								
obtain limit for $f=-f'$: $m_{ au^*}>$ 96.6 GeV.								

Limits for Excited τ (τ^*) from Single Production

These limits are from $e^+e^- \rightarrow \tau^*\tau$ and depend on transition magnetic coupling between τ and τ^* . All limits assume $\tau^* \rightarrow \tau\gamma$ decay. Limits from LEP are for chiral coupling, whereas all other limits are for nonchiral coupling, $\eta_L = \eta_R = 1$. In most papers, the limit is expressed in the form of an excluded region in the $\lambda - m_{\tau^*}$ plane. See the original papers.

VALUE (GeV)	CL%	DOCUMENT ID		TECN	COMMENT
>4600	95	¹ AAD	23 BJ	ATLS	$pp \rightarrow \tau \tau^*$
$\bullet \bullet \bullet$ We do not use the	following	data for averages	, fits,	limits, e	tc. ● ● ●
>2500	95	² AAD	15 AP	ATLS	$pp ightarrow au^{(*)} au^* X$
> 180	95	³ ACHARD	03 B	L3	$e^+e^- \rightarrow \tau \tau^*$
> 185	95	⁴ ABBIENDI	0 2G	OPAL	$e^+e^- \rightarrow \tau \tau^*$
1					

¹AAD 23BJ search for τ^* produced in association with τ and decaying into $\tau q \overline{q}$ via a contact interaction with $g_{\text{contact}}^2 = (4\pi)^2$. The limit quoted above assumes $\Lambda = m_{\tau^*}$.

² AAD 15AP search for τ^* production in events with three or more charged leptons in pp collisions at $\sqrt{s} = 8$ TeV. The quoted limit assumes $\Lambda = m_{\tau^*}$, f = f' = 1. The contact interaction is included in the τ^* conduction and decay employed.

interaction is included in the τ^* production and decay amplitudes.

³ ACHARD 03B result is from e^+e^- collisions at $\sqrt{s} = 189-209$ GeV. $f = f' = \Lambda/m_{\tau^*}$ is assumed. See their Fig. 4 for the exclusion plot in the mass-coupling plane. ⁴ ABBIENDI 02G result is from e^+e^- collisions at $\sqrt{s} = 183-209$ GeV. $f = f' = \Lambda/m_{\tau^*}$

ABBIENDI 02G result is from e^+e^- collisions at $\sqrt{s} = 183-209$ GeV. $t = t' = \Lambda/m_{\tau^}^+$ is assumed for τ^* coupling. See their Fig. 4c for the exclusion limit in the mass-coupling plane.

MASS LIMITS for Excited Neutrino (ν^*)

Limits for Excited ν (ν^*) from Pair Production

These limits are obtained from $e^+e^- \rightarrow \nu^*\nu^*$ and thus rely only on the (electroweak) charge of ν^* . Form factor effects are ignored unless noted. The ν^* coupling is assumed to be of sequential type unless otherwise noted. All limits assume a dominant $\nu^* \rightarrow \nu \gamma$ decay except the limits from $\Gamma(Z)$.

VALUE (GeV)	CL%	DOCUMENT ID		TECN	COMMENT
>1600	95	¹ AAD	15 AP	ATLS	$pp ightarrow u^* u^* X$
• • • We do	not use	the following data	for a	/erages,	fits, limits, etc. \bullet \bullet
		² ABBIENDI	04N	OPAL	
> 102.6	95	³ ACHARD	03 B	L3	$e^+e^- ightarrow \ u^* u^*$ Homodoublet typ
1					

¹ AAD 15AP search for ν^* pair production in evens with three or more charged leptons in pp collisions at $\sqrt{s} = 8$ TeV. The quoted limit assumes $\Lambda = m_{\nu^*}$, f = f' = 1. The contact interaction is included in the ν^* production and decay amplitudes.

² From e^+e^- collisions at $\sqrt{s} = 192-209$ GeV, ABBIENDI 04N obtain limit on $\sigma(e^+e^- \rightarrow \nu^*\nu^*) B^2(\nu^* \rightarrow \nu\gamma)$. See their Fig.2. The limit ranges from 20 to 45 fb for $m_{\nu^*} > 45$ GeV.

³ From e^+e^- collisions at $\sqrt{s} = 189-209$ GeV. f = -f' is assumed. ACHARD 03B also obtain limit for f = f': $m_{\nu_e^*} > 101.7$ GeV, $m_{\nu_\mu^*} > 101.8$ GeV, and $m_{\nu_\tau^*} > 92.9$ GeV.

See their Fig. 4 for the exclusion plot in the mass-coupling plane.

Limits for Excited ν (ν^*) from Single Production

These limits are from $e^+e^- \rightarrow \nu \nu^*$, $Z \rightarrow \nu \nu^*$, or $ep \rightarrow \nu^* X$ and depend on transition magnetic coupling between ν/e and ν^* . Assumptions about ν^* decay mode are given in footnotes.

VALUE (GeV)	CL%	DOCUMENT ID		TECN	COMMENT
> 213	95	¹ AARON	08	H1	$e p ightarrow u^* X$
• • • We do	not use t	he following data	for a	/erages,	fits, limits, etc. • • •
>6000	95	² TUMASYAN	23AL	CMS	$pp ightarrow \ell u^* ightarrow \ell \ell q q, \ell = e$
> 190	95	³ ACHARD	03 B	L3	$e^+e^- \rightarrow \nu \nu^*$
none 50–150	95	⁴ ADLOFF	02	H1	$e p ightarrow u^* X$
> 158	95	⁵ CHEKANOV	0 2D	ZEUS	$e p ightarrow \ u^* X$

¹ AARON 08 search for single ν^* production in ep collisions with the decays $\nu^* \rightarrow \nu \gamma$, νZ , eW. The quoted limit assumes $f = -f' = \Lambda/m_{\nu^*}$. See their Fig. 3 and Fig. 4 for the exclusion plots in the mass-coupling plane.

- ² TUMASYAN 23AL search for Majorana excited neutrino ν^* produced and decaying via gauge and contact interactions. The limit quoted above is for $\ell = e$ with $\Lambda = M_{\nu^*}$. The limit becomes $M_{\nu^*} > 6.1$ TeV for $\ell = \mu$.
- ³ACHARD 03B result is from e^+e^- collisions at $\sqrt{s} = 189-209$ GeV. The quoted limit is for ν_e^* . $f = -f' = \Lambda/m_{\nu^*}$ is assumed. See their Fig. 4 for the exclusion plot in the mass-coupling plane.

⁴ ADLOFF 02 search for single ν^* production in ep collisions with the decays $\nu^* \rightarrow \nu\gamma$, νZ , eW. The quoted limit assumes $f = -f' = \Lambda/m_{\nu^*}$. See their Fig. 1 for the exclusion plots in the mass-coupling plane.

⁵CHEKANOV 02D search for single ν^* production in ep collisions with the decays $\nu^* \rightarrow \nu\gamma$, νZ , eW. $f = -f' = \Lambda/m_{\nu^*}$ is assumed for the e^* coupling. CHEKANOV 02D

also obtain limit for $f = f' = \Lambda/m_{\nu^*}$: $m_{\nu^*} > 135$ GeV. See their Fig. 5c and Fig. 5d for the exclusion plot in the mass-coupling plane.

MASS LIMITS for Excited $q(q^*)$

Limits for Excited $q(q^*)$ from Pair Production

These limits are mostly obtained from $e^+e^- \rightarrow q^*\overline{q}^*$ and thus rely only on the (electroweak) charge of the q^* . Form factor effects are ignored unless noted. Assumptions about the q^* decay are given in the comments and footnotes.

VALUE (GeV)	CL%	DOCUMENT ID		TECN	COMMENT
>338	95	¹ AALTONEN	10H	CDF	$q^* \rightarrow t W^-$
\bullet \bullet \bullet We do not us	se the followin	ng data for average	es, fits	s, limits,	etc. • • •
none 700–1200	95	² SIRUNYAN	18V	CMS	$pp \rightarrow t^*_{3/2} \overline{t}^*_{3/2} \rightarrow$
					ttgg
		³ BARATE	98 U	ALEP	$Z \rightarrow q^* q^*$
> 45.6	95	⁴ ADRIANI	9 3M	L3	$u \; { m or} \; d \; { m type}, \; Z o \; q^* q^*$
> 41.7	95	⁵ BARDADIN	92	RVUE	u-type, $\Gamma(Z)$
> 44.7	95	⁵ BARDADIN	92	RVUE	d -type, $\Gamma(Z)$
> 40.6	95	⁶ DECAMP	92	ALEP	u -type, $\Gamma(Z)$
> 44.2	95	⁶ DECAMP	92	ALEP	d-type, $\Gamma(Z)$
> 45	95	⁷ DECAMP	92	ALEP	<i>u</i> or <i>d</i> type, $Z \rightarrow q^* q^*$
> 45	95	⁶ ABREU	91F	DLPH	u-type, $\Gamma(Z)$
> 45	95	⁶ ABREU	91F	DLPH	d-type, $\Gamma(Z)$

¹AALTONEN 10H obtain limits on the $q^* q^*$ production cross section in $p\overline{p}$ collisions. See their Fig. 3.

²SIRUNYAN 18V search for pair production of spin 3/2 excited top quarks. $B(t^*_{3/2} \rightarrow tg) = 1$ is assumed.

³BARATE 98U obtain limits on the form factor. See their Fig. 16 for limits in mass-form factor plane.

⁴ ADRIANI 93M limit is valid for B($q^* \rightarrow qg$)> 0.25 (0.17) for up (down) type.

⁵ BARDADIN-OTWINOWSKA 92 limit based on $\Delta\Gamma(Z)$ <36 MeV.

⁶ These limits are independent of decay modes.

⁷Limit is for B($q^* \rightarrow qg$)+B($q^* \rightarrow q\gamma$)=1.

Limits for Excited $q(q^*)$ from Single Production

These limits are from $e^+e^- \rightarrow q^*\overline{q}$, $p\overline{p} \rightarrow q^*X$, or $pp \rightarrow q^*X$ and depend on transition magnetic couplings between q and q^* . Assumptions about q^* decay mode are given in the footnotes and comments.

VALUE (GeV)	CL%	DOCUMENT ID	TECN	COMMENT			
>6700 (CL = 95	%) OUR L	IMIT					
none 1800–2500	95	¹ TUMASYAN	23AF CMS	$pp ightarrow b^*X, \ b^* ightarrow bg$			
none 1000-6000	95	² TUMASYAN	23BC CMS	$pp ightarrow q^{st}X$, $q^{st} ightarrow q\gamma$			
none 1000-2200	95	³ TUMASYAN	23BC CMS	$p p ightarrow \ b^* X$, $b^* ightarrow \ b \gamma$			
none 2000–6700	95	⁴ AAD	20T ATLS	$pp ightarrow q^*X$, $q^* ightarrow qg$			
none 1250–3200	95	⁴ AAD	20⊤ ATLS	$pp \rightarrow b^* X, b^* \rightarrow bg, b\gamma, bZ, tW$			
none 1800–6300	95	⁵ SIRUNYAN	20AI CMS	$pp ightarrow q^*X$, $q^* ightarrow qg$			
none 1500-2600	95	⁶ AABOUD	18AB ATLS	$pp ightarrow b^*X$, $b^* ightarrow bg$			

		7		
none 1500–5300	95	' AABOUD	18ba ATLS	$pp ightarrow q^{*}X$, $q^{*} ightarrow q\gamma$
none 1000–5500	95	⁸ SIRUNYAN	18AG CMS	$pp ightarrow q^{st}X$, $q^{st} ightarrow q\gamma$
none 1000–1800	95	⁹ SIRUNYAN	18AG CMS	$pp ightarrow b^{st}X$, $b^{st} ightarrow b\gamma$
none 600–6000	95	¹⁰ SIRUNYAN	18B0 CMS	$pp ightarrow q^* X$, $q^* ightarrow qg$
none 1200–5000	95	¹¹ SIRUNYAN	18P CMS	$pp ightarrow q^* X, q^* ightarrow q W$
none 1200–4700	95	¹¹ SIRUNYAN	18P CMS	$pp \rightarrow q^* X, q^* \rightarrow q Z$
>6000	95	¹² AABOUD	17ak ATLS	$pp \rightarrow q^* X, q^* \rightarrow qg$
• • • We do not	use the f	ollowing data for av	verages, fits, li	imits, etc. • • •
none 700–3000	95	¹³ TUMASYAN	220 CMS	$pp \rightarrow b^* X, b^* \rightarrow t W$
>2600	95	¹⁴ SIRUNYAN	21AG CMS	$pp \rightarrow b^* X, b^* \rightarrow t W$
none 600–5400	95	¹⁵ KHACHATRY	.17w CMS	$pp \rightarrow q^* X, q^* \rightarrow qg$
none 1100-2100	95	¹⁶ AABOUD	16 ATLS	$pp \rightarrow b^* X, b^* \rightarrow bg$
>1500	95	¹⁷ AAD	16AH ATLS	$pp \rightarrow b^* X, b^* \rightarrow tW$
>4400	95	¹⁸ AAD	16AI ATLS	$pp \rightarrow q^* X, q^* \rightarrow q\gamma$
		¹⁹ AAD	16AV ATLS	$pp \rightarrow q^* X, q^* \rightarrow Wb$
>5200	95	²⁰ AAD	16s ATLS	$pp \rightarrow q^* X, q^* \rightarrow qg$
>1390	95	²¹ KHACHATRY	.161 CMS	$pp \rightarrow b^* X, b^* \rightarrow tW$
>5000	95	²² KHACHATRY	.16K CMS	$pp \rightarrow q^* X, q^* \rightarrow qg$
none 500–1600	95	²³ KHACHATRY	.16L CMS	$pp \rightarrow q^* X, q^* \rightarrow qg$
>4060	95	²⁴ AAD	15v ATLS	$pp \rightarrow q^* X, q^* \rightarrow qg$
>3500	95	²⁵ KHACHATRY	.15v CMS	$pp \rightarrow q^* X, q^* \rightarrow qg$
>3500	95	²⁶ AAD	14A ATLS	$pp \rightarrow q^* X, q^* \rightarrow q\gamma$
>3200	95	²⁷ KHACHATRY	.14 CMS	$pp \rightarrow q^* X, q^* \rightarrow q W$
>2900	95	²⁸ KHACHATRY	.14 CMS	$pp \rightarrow q^* X, q^* \rightarrow q Z$
none 700–3500	95	²⁹ KHACHATRY	.14J CMS	$pp \rightarrow q^* X, q^* \rightarrow q\gamma$
>2380	95	³⁰ CHATRCHYAN	13AJ CMS	$pp \rightarrow q^* X, q^* \rightarrow q W$
>2150	95	³¹ CHATRCHYAN	13AJ CMS	$pp \rightarrow q^*X, q^* \rightarrow qZ$

¹TUMASYAN 23AF limit quoted above assumes $bg \rightarrow b^*$ production. The limit becomes $m_{b^*} > 4$ TeV if contact interaction is included in the b^* production cross section. See their Fig. 5 for limits on $\sigma \cdot B$.

² TUMASYAN 23BC search for excited light flavor quark q^* in pp collisions at $\sqrt{s} = 13$ TeV. f = 1.0 is assumed.

³TUMASYAN 23BC search for excited *b* quark b^* in *pp* collisions at $\sqrt{s} = 13$ TeV. b^* production via gauge interactions and f = 1.0 are assumed. The limit becomes $m_{b^*} > 3.8$ TeV if contact interaction is included in the b^* production cross section.

- ⁴ AAD 20T search for resonances decaying into dijets in pp collisions at $\sqrt{s} = 13$ TeV. Assume $\Lambda = m_{a^*}$, $f_s = f = f' = 1$.
- ⁵ SIRUNYAN 20AI search for resonances decaying into dijets in pp collisions at $\sqrt{s} = 13$ TeV. Assume $\Lambda = m_{q^*}$, $f_s = f = f' = 1$.
- ⁶AABOUD 18AB assume $\Lambda = m_{b^*}$, $f_s = f = f' = 1$. The contact interactions are not included in b^* production and decay amplitudes.
- ⁷ AABOUD 18BA search for first-generation excited quarks (u^* and d^*) with degenerate mass, assuming $\Lambda = m_{q^*}$, $f_s = f = f' = 1$. The contact interactions are not included in q^* production and decay amplitudes.
- ⁸ SIRUNYAN 18AG search for first-generation excited quarks (u^* and d^*) with degenerate mass, assuming $\Lambda = m_{q^*}$, $f_s = f = f' = 1$.

⁹SIRUNYAN 18AG search for excited *b* quark assuming $\Lambda = m_{a^*}$, $f_s = f = f' = 1$.

https://pdg.lbl.gov

- ¹⁰ SIRUNYAN 18BO assume $\Lambda = m_{q^*}$, $f_s = f = f' = 1$. The contact interactions are not included in q^* production and decay amplitudes.
- ¹¹ SIRUNYAN 18P use the hadronic decay of W or Z, assuming $\Lambda = m_{q^*}$, $f_s = f = f' = 1$. ¹² AABOUD 17AK assume $\Lambda = m_{q^*}$, $f_s = f = f' = 1$. The contact interactions are not
- included in q^* production and decay amplitudes. Only the decay of $q^* \rightarrow g u$ and $q^* \rightarrow g d$ is simulated as the benchmark signals in the analysis.
- ¹³ TUMASYAN 220 search for b^* decaying to tW in p collisions at $\sqrt{s} = 13$ TeV. The limit quoted above assumes $\kappa_L^b = g_L = 1$, $\kappa_R^b = g_R = 0$. The limit becomes $m_{b^*} > 3.0$ TeV (>3.2 TeV) if we assume $\kappa_L^b = g_L = 0$, $\kappa_R^b = g_R = 1$ ($\kappa_L^b = g_L = 1$, $\kappa_R^b = g_R = 1$). See their Fig. 3 for limits on $\sigma \cdot B$.
- ¹⁴ SIRUNYAN 21AG search for b^* decaying to tW in pp collisions at $\sqrt{s} = 13$ TeV. The limit quoted above assumes $\kappa_L^b = g_L = 1$, $\kappa_R^b = g_R = 0$. The limit becomes $m_{b^*} > 2.8$ TeV (> 3.1 TeV) if we assume $\kappa_L^b = g_L = 0$, $\kappa_R^b = g_R = 1$ ($\kappa_L^b = g_L = \kappa_R^b = g_R = 1$). See their Fig. 5 for limits on $\sigma \cdot B$.
- ¹⁵ KHACHATRYAN 17W assume $\Lambda = m_{q^*}$, $f_s = f = f' = 1$. The contact interactions are not included in q^* production and decay amplitudes.

¹⁶AABOUD 16 assume $\Lambda = m_{b^*}$, $f_s = f = f' = 1$. The contact interactions are not included in the b^* production and decay amplitudes.

- ¹⁷ AAD 16AH search for b^* decaying to t W in pp collisions at $\sqrt{s} = 8$ TeV. $f_g = f_L = f_R = 1$ are assumed. See their Fig. 12b for limits on $\sigma \cdot B$.
- ¹⁸ AAD 16AI assume $\Lambda = m_{\sigma^*}$, $f_{s} = f = f' = 1$.
- ¹⁹AAD 16AV search for single production of vector-like quarks decaying to Wb in pp collisions. See their Fig. 8 for the limits on couplings and mixings.
- ²⁰ AAD 16S assume $\Lambda = m_{q^*}$, $f_s = f = f' = 1$. The contact interactions are not included

in q^* production and decay amplitudes.

- ²¹ KHACHATRYAN 16I search for b^* decaying to tW in pp collisions at $\sqrt{s} = 8$ TeV. $\kappa_L^b = g_L = 1$, $\kappa_R^b = g_R = 0$ are assumed. See their Fig. 8 for limits on $\sigma \cdot B$.
- ²² KHACHATRYAN 16K assume $\Lambda = m_{q^*}$, $f_s = f = f' = 1$. The contact interactions are

not included in q^* production and decay amplitudes.

- ²³ KHACHATRYAN 16L search for resonances decaying to dijets in pp collisions at $\sqrt{s} = 8$ TeV using the data scouting technique which increases the sensitivity to the low mass resonances.
- ²⁴ AAD 15V assume $\Lambda = m_{q^*}$, $f_s = f = f' = 1$. The contact interactions are not included in q^* production and decay amplitudes.
- 25 KHACHATRYAN 15V assume $\Lambda = m_{q^*}$, $f_s = f = f' = 1$. The contact interactions are

not included in q^* production and decay amplitudes.

- ²⁶ AAD 14A assume $\Lambda = m_{a^*}$, $f_s = f = f' = 1$.
- ²⁷ KHACHATRYAN 14 use the hadronic decay of W, assuming $\Lambda = m_{a^*}$, $f_s = f = f' = 1$.
- ²⁸ KHACHATRYAN 14 use the hadronic decay of Z, assuming $\Lambda = m_{q^*}$, $f_s = f = f' = 1$.

²⁹ KHACHATRYAN 14J assume $f_s = f = f' = \Lambda / m_{a^*}$.

- ³⁰ CHATRCHYAN 13AJ use the hadronic decay of W.
- ³¹ CHATRCHYAN 13AJ use the hadronic decay of Z.

MASS LIMITS for Color Sextet Quarks (q_6)

VALUE (GeV)	CL%	DOCUMENT ID		TECN	COMMENT
>84	95	ABE	89 D	CDF	$p\overline{p} \rightarrow q_6 \overline{q}_6$

¹ ABE 89D look for pair production of unit-charged particles which leave the detector before decaying. In the above limit the color sextet quark is assumed to fragment into a unit-charged or neutral hadron with equal probability and to have long enough lifetime not to decay within the detector. A limit of 121 GeV is obtained for a color decuplet.

MASS LIMITS for Color Octet Charged Leptons (ℓ_8)

$\lambda \equiv m_{\ell_8}/\Lambda$					
VALUE (GeV)	CL%	DOCUMENT ID		TECN	COMMENT
>86	95	¹ ABE	89 D	CDF	Stable $\ell_8: \ p \overline{p} \rightarrow \ \ell_8 \overline{\ell}_8$
• • • We do not use the following data for averages, fits, limits, etc. • •					
		² ABT	93	H1	$e_8: ep \rightarrow e_8 X$

¹ ABE 89D look for pair production of unit-charged particles which leave the detector before decaying. In the above limit the color octet lepton is assumed to fragment into a unit-charged or neutral hadron with equal probability and to have long enough lifetime not to decay within the detector. The limit improves to 99 GeV if it always fragments into a unit-charged hadron.

MASS LIMITS for Color Octet Neutrinos (ν_8)

$\lambda \equiv m_{\ell_8}/\Lambda$						
VALUE (GeV)	CL%	DOCUMENT ID		TECN	COMMENT	
>110	90	¹ BARGER	89	RVUE	$\nu_8: p\overline{p} \rightarrow \nu_8\overline{\nu}_8$	
\bullet \bullet \bullet We do not us	se the follo	wing data for ave	erages	, fits, lim	nits, etc. • • •	
none 3.8–29.8	95	² KIM	90	AMY	$ u_8: e^+e^- ightarrow$ acoplanar jets	
none 9–21.9	95	³ BARTEL	87 B	JADE	ν_8 : $e^+e^- ightarrow$ acoplanar jets	
¹ BARGER 89 used ABE 89 ^B limit for events with large missing transverse momentum. Two-body decay $\nu_8 \rightarrow \nu g$ is assumed.						
² KIM 90 is at $E_{cm} = 50-60.8$ GeV. The same assumptions as in BARTEL 87B are used.						
³ BARTEL 87B is at $E_{\rm cm} = 46.3$ –46.78 GeV. The limit assumes the ν_8 pair production						
-					··· · · · · · · · · · ·	

SARTEL 87B is at $E_{\rm cm} = 46.3-46.78$ GeV. The limit assumes the ν_8 pair production cross section to be eight times larger than that of the corresponding heavy neutrino pair production. This assumption is not valid in general for the weak couplings, and the limit can be sensitive to its SU(2)_L×U(1)_Y quantum numbers.

MASS LIMITS for W_8 (Color Octet W Boson)

VALUE (GeV)	DOCUMENT ID		TECN	COMME	NT		
\bullet \bullet \bullet We do not use the follow	ving data for avera	ages, fi	ts, limits	s, etc. •	• •		
	¹ ALBAJAR	89	UA1	$p \overline{p} ightarrow$	W ₈ X,	$W_8 \rightarrow$	Wg
1 ALBAJAR 89 give $\sigma(W_8$ –	$\rightarrow W + jet) / \sigma(W)$) < 0.0	19 (90%	5 CL) fo	r <i>m</i> W ₈	> 220	GeV.

²ABT 93 search for e_8 production via e-gluon fusion in e_p collisions with $e_8 \rightarrow e_g$. See their Fig. 3 for exclusion plot in the m_{e_8} -A plane for $m_{e_8} = 35-220$ GeV.

REFERENCES FOR Searches for Quark and Lepton Compositeness

AAD	23BJ	JHEP 2306 199	G. Aad <i>et al.</i>	(ATLAS Collab.)
TUMASYAN	23AF	PR D108 012009	A. Tumasyan <i>et al.</i>	(CMS Collab.)
TUMASYAN	23AL	PL B843 137803	A. Tumasyan <i>et al.</i>	(CMS_Collab.)
TUMASYAN	23BC	JHEP 2312 189	A. Tumasyan <i>et al.</i>	(CMS_Collab.)
TUMASYAN	220	JHEP 2204 048	A. Tumasyan <i>et al.</i>	(CMS_Collab.)
AAD	21AU	PRI 127 141801	G Aad et al	(ATLAS Collab)
AAD	210	IHEP 2104 142	G Aad et al	(ATLAS Collab.)
SIRLINYAN	2146	IHEP 2112 106	A M Sirunyan et al	(CMS Collab.)
SIRLINVAN	21/10 21 N	IHEP 2107 208	A M Sirunyan et al	(CMS Collab.)
	2010	IUED 2011 005	C And at al	(ATLAS Collab.)
	20AI	IUED 2002 145	G. Add et al.	(ATLAS Collab.)
	201	JHEF 2003 145	G. Adu et al.	(CMS Collab.)
	20AI	JHEP 2005 055	A.M. Sirunyan et al.	(CIVIS COILAD.)
	20AJ	JHEP 2003 032	A.W. Sirunyan et al.	
AABUUD	19AZ	EPJ C79 803	IVI. Aaboud et al.	(ATLAS Collab.)
ABRAMOWICZ	19	PR D99 092006	H. Abramowicz <i>et al.</i>	(ZEUS Collab.)
SIRUNYAN	19AC	JHEP 1904 114	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN	19Z	JHEP 1904 015	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
AABOUD	18AB	PR D98 032016	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD	18AV	JHEP 1807 089	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD	18BA	EPJ C78 102	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
SIRUNYAN	18AG	PL B781 390	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN	18BO	JHEP 1808 130	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN	18DD	EPJ C78 789	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN	18P	PR D97 072006	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN	18V	PL B778 349	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
AABOUD	17AK	PR D96 052004	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD	17AT	JHEP 1710 182	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
KHACHATRY	17W	PL B769 520	V. Khachatryan <i>et al.</i>	(CMS_Collab.)
SIRUNYAN	17F	JHEP 1707 013	A.M. Sirunvan <i>et al.</i>	(CMS_Collab.)
AABOUD	16	PI B759 229	M Aaboud et al	(ATLAS Collab)
AABOUD	16U	PL B761 372	M Aaboud et al	(ATLAS Collab.)
AAD	16AH	IHEP 1602 110	G Aad et al	(ATLAS Collab.)
	1641	IHEP 1603 041	G Aad et al	(ATLAS Collab.)
	16AV/	EP1 C76 442	G And et al	(ATLAS Collab.)
	16RM	N ID 18 073021	G. And et al.	(ATLAS Collab.)
	165	DI D754 202	G. Add et al.	(ATLAS Collab.)
	1610	ILED 1602 105	G. Adu et al.	(CMS Collab.)
	161	JHEF 1003 123	V. Khachatryan et al	(CIVIS Collab.)
	161	JHEP 1001 100	V. Khachatryan <i>et al.</i>	(CIVIS COILAD.)
	100	PRL 110 0/1801	V. Knacnatryan <i>et al.</i>	
		PRL 117 031802	V. Knachatryan <i>et al.</i>	
AAD	15AP	JHEP 1508 138	G. Aad et al.	(ATLAS COND.)
AAD	15AK	JHEP 1508 105	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	15BY	JHEP 1510 150	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	15L	PRL 114 221802	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	15V	PR D91 052007	G. Aad <i>et al.</i>	(ATLAS Collab.)
KHACHATRY	15AE	JHEP 1504 025	V. Khachatryan <i>et al.</i>	(CMS Collab.)
KHACHATRY	15J	PL B746 79	V. Khachatryan <i>et al.</i>	(CMS Collab.)
KHACHATRY	15V	PR D91 052009	V. Khachatryan <i>et al.</i>	(CMS Collab.)
AAD	14A	PL B728 562	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	14BE	EPJ C74 3134	G. Aad <i>et al.</i>	(ATLAS Collab.)
FABBRICHESI	14	PR D89 074028	M. Fabbrichesi, M. Pinamonti, A.	Tonero
KHACHATRY	14	JHEP 1408 173	V. Khachatryan <i>et al.</i>	(CMS Collab.)
KHACHATRY	14J	PL B738 274	V. Khachatryan <i>et al.</i>	(CMS Collab.)
AAD	13BB	NJP 15 093011	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	13E	PR D87 015010	G. Aad <i>et al.</i>	(ATLAS Collab.)
CHATRCHYAN	13AE	PL B720 309	S. Chatrchyan <i>et al.</i>	(CMS_Collab.)
CHATRCHYAN	13AJ	PL B723 280	S. Chatrchyan et al.	(CMS_Collab.)
CHATRCHYAN	13K	PR D87 032001	S. Chatrchyan <i>et al.</i>	(CMS_Collab.)
AAD	12AB	PL B712 40	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	12AZ	PR D85 072003	G. Aad <i>et al.</i>	(ATLAS Collab.)
AARON	11C	PL B705 52	F. D. Aaron <i>et al.</i>	(H1 Collab.)
ABDALLAH	11	EPJ C71 1555	J. Abdallah <i>et al</i>	(DELPHI Collab)
AALTONEN	10H	PRL 104 091801	T. Aaltonen <i>et al</i>	(CDF Collab.)
ABDALLAH	09	FP1 C60 1	l Abdallah <i>et al</i>	(DELPHI Collab.)
AARON	08	PL B663 382	F.D. Aaron <i>et al</i>	(H1 Collab.)
SCHAEL	07A	EPJ C49 411	S. Schael <i>et al.</i>	(ALEPH Collab.)
ABDALLAH	06C	EPJ C45 589	J. Abdallah <i>et al.</i>	(DELPHI Collab.)
				(

https://pdg.lbl.gov

Created: 5/31/2024 10:16

ABULENCIA ABBIENDI ABBIENDI ABDALLAH ACHARD	06L 04G 04N 04N 03B	PRL 96 211801 EPJ C33 173 PL B602 167 EPJ C37 405 PL B568 23	 A. Abulencia <i>et al.</i> G. Abbiendi <i>et al.</i> G. Abbiendi <i>et al.</i> J. Abdallah <i>et al.</i> P. Achard <i>et al.</i> 	(CDF Collab.) (OPAL Collab.) (OPAL Collab.) (DELPHI Collab.) (L3 Collab.)
BABICH ABBIENDI ACHARD ADLOFF	03 02G 02D 02	EPJ C29 103 PL B544 57 PL B531 28 PL B525 9	A.A. Babich <i>et al.</i> G. Abbiendi <i>et al.</i> P. Achard <i>et al.</i> C. Adloff <i>et al.</i>	(OPAL Collab.) (L3 Collab.) (H1 Collab.)
CHEKANOV AFFOLDER BOURILKOV	02D 01I 01 01B	PL B549 32 PRL 87 231803 PR D64 071701 PL B517 167	S. Chekanov <i>et al.</i> T. Affolder <i>et al.</i> D. Bourilkov	(ZÈUS Collab.) (CDF Collab.)
ACCIARRI AFFOLDER BARATE	01D 00P 00I 98U	PL B317 107 PL B489 81 PR D62 012004 EPJ C4 571	M. Acciarri <i>et al.</i> T. Affolder <i>et al.</i> R. Barate <i>et al.</i>	(L3 Collab.) (CDF Collab.) (ALEPH Collab.)
MCFARLAND DIAZCRUZ ABT	98E 98 94 93	PR D57 391 EPJ C1 509 PR D49 2149 NP B396 3	V. Barger <i>et al.</i> K.S. McFarland <i>et al.</i> J.L. Diaz Cruz, O.A. Sampayo I. Abt <i>et al.</i>	(CCFR/NuTeV Collab.) (CINV) (H1 Collab.)
ADRIANI BARDADIN DECAMP	93M 92 92	PRPL 236 1 ZPHY C55 163 PRPL 216 253	O. Adriani <i>et al.</i> M. Bardadin-Otwinowska D. Decamp <i>et al.</i>	(L3 Collab.) (CLER) (ALEPH Collab.)
PDG ABREU KIM	92 91F 90	PR D45 S1 NP B367 511 PL B240 243	K. Hikasa <i>et al.</i> P. Abreu <i>et al.</i> G.N. Kim <i>et al.</i>	(KEK, LBL, BOST+) (DELPHI Collab.) (AMY Collab.)
ABE ABE ABE	89B 89D 89J	PRL 62 1825 PRL 63 1447 ZPHY C45 175	F. Abe et al. F. Abe et al. K. Abe et al.	(CDF Collab.) (CDF Collab.) (VENUS Collab.)
BARGER DORENBOS BARTEL	89 89 89 87B	2PHY C44 15 PL B220 464 ZPHY C41 567 ZPHY C36 15	V. Barger <i>et al.</i> J. Dorenbosch <i>et al.</i> W. Bartel <i>et al.</i>	(UAT Collab.) (WISC, KEK) (CHARM Collab.) (JADE Collab.)
GRIFOLS JODIDIO Also	86 86	PL 168B 264 PR D34 1967 PR D37 237 (errat.)	J.A. Grifols, S. Peris A. Jodidio <i>et al.</i> A. Jodidio <i>et al.</i>	(BARC) (LBL, NWES, TRIU) (LBL, NWES, TRIU)
RENARD	82	PL 116B 264	F.M. Renard	(CERN)