$$\phi$$
(2170)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

See the review on "Spectroscopy of Light Meson Resonances."

φ(2170) MASS

VALUE	(MeV)		EVTS		DOCUMENT ID		TECN	COMMENT
2164	± 6	our av	/ERAG	Ε				
2178	± 20	\pm 5		1	ABLIKIM	23AX	BES3	$e^+e^- \rightarrow \phi \pi^+\pi^-$
2190	± 19	± 37		2	ABLIKIM	22L	BES3	2.0–3.08 $e^+e^- \rightarrow$
				3			0.500	$K^{+}_{-}K^{-}_{-}\pi^{0}$
2176	± 24	± 3		J 1	ABLIKIM	21A	BES3	$e^+e^- ightarrow \omega \eta$
2163.5	5 ± 6.2	$2\pm$ 3.0		4	ABLIKIM	21T	BES3	$e^+e^- \rightarrow \phi \eta$
2177.5	5 ± 4.8	3 ± 19.5		5	ABLIKIM	20M	BES3	$e^+e^- \rightarrow \eta' \phi$
2126.5	5 ± 16.8	8 ± 12.4		6	ABLIKIM	20s	BES3	$e^+e^- \rightarrow K^+K^-\pi^0\pi^0$
• • •	We do	not use	the fol	lowing	data for averag	ges, fit	s, limits	, etc. ● ● ●
2215 7	7+ 83	3		7	LICHARD	23	RVUE	$e^+e^- \rightarrow \Upsilon(nS) \rightarrow$
	± 0.0							$\phi \eta \gamma$
2169	\pm 5	\pm 6		8	ZHU	23A	RVUE	$e^+e^- \rightarrow \eta \phi$
2273.7	$7\pm$ 5.7	$^{\prime}\pm$ 19.3		9	ABLIKIM	21 AP	BES3	$e^+e^- \rightarrow K^0_S K^0_I$
2135	± 8	± 9	95		ABLIKIM	191	BES3	$e^+e^- \rightarrow \eta \phi f_0(980)$
2239.2	$2\pm$ 7.1	± 11.3		10	ABLIKIM	19L	BES3	$e^+e^- \rightarrow K^+K^-$
2200	\pm 6	\pm 5	471		ABLIKIM	15H	BES3	$J/\psi \rightarrow \eta \phi \pi^+ \pi^-$
2180	± 8	± 8		11,12	LEES	12F	BABR	10.6 $e^+e^- \rightarrow$
								$\phi \pi^+ \pi^- \gamma$
2079	± 13	+79	4.8k	13	SHEN	09	BELL	10.6 $e^+e^- \rightarrow$
		- 28						$K^+ K^- \pi^+ \pi^- \gamma$
2186	± 10	\pm 6	52		ABLIKIM	08F	BES	$J/\psi \rightarrow \eta \phi f_0(980)$
2125	± 22	± 10	483		AUBERT	08S	BABR	10.6 $e^+e^- \rightarrow \phi \eta \gamma$
2192	± 14		116	14	AUBERT	07 AK	BABR	10.6 $e^+e^- \rightarrow$
								$K^+K^-\pi^+\pi^-\gamma$
2169	± 20		149	14	AUBERT	07 AK	BABR	10.6 $e^+e^- \rightarrow 0$
				12 15				$K^+K^-\pi^0\pi^0\gamma$
2175	± 10	± 15	201	12,10	AUBERT,BE	06D	BABR	10.6 $e^+e^- \rightarrow$
								κ' κ π $\pi\gamma$

¹ From a fit to the e^+e^- cross section between 2.00 and 3.08 GeV with a sum of Breit-Wigner amplitude and a non-resonant contribution. ² By a simultaneous fit of the $K_2^*(1430)^+K^-$ and $K^*(892)^+K^-$ intermediate channels

² By a simultaneous fit of the $K_2^*(1430)^+ K^-$ and $K^*(892)^+ K^-$ intermediate channels in a partial-wave analysis, assuming the same structure, modelled with a coherent sum of a nonresonant component and a resonant component by a Breit-Wigner function.

of a nonresonant component and a resonant component by a Breit-Wigner function. ³ From a fit to the cross section between 2.00 and 3.08 GeV with a coherent sum of Breit-Wigner amplitudes, including contributions from $\omega(1420)$ and $\omega(1650)/\phi(1680)$.

⁴ From a fit to the cross section below 3.5 GeV measured by BaBar and BESIII with a coherent sum of two modified Breit-Wigner amplitudes ($\phi(1680)$ and $\phi(2170)$) and a _ nonresonant term.

⁵ From a fit using a coherent sum of a phase-space modified Breit-Wigner function and a phase-space term.

⁶By a simultaneous fit of the intermediate channels in a partial-wave analysis, assuming the same structure, modelled with a coherent sum of a nonresonant component and a resonant component by a Breit-Wigner function.

- ⁷ From a VDM fit to ZHU 23 $\eta \phi \gamma$ data with two resonances, ϕ (1680), ϕ (2170), and a third resonance with mass 1850.7 ± 5.3 MeV and width 25 ± 35 MeV of 1.7 σ statistical evidence.
- ⁸ From the analysis of the combined measurements of $\sigma(e^+e^- \rightarrow \eta\phi)$ from BaBar, Belle, BESIII, CMD3. The statistical significance for $\phi(2170)$ is 7.2 σ .
- ⁹ From a fit to the cross section between 2.00 and 3.08 GeV with a sum of Breit-Wigner amplitude and a nonresonant contribution. The observed structure can be also due to $\rho(2150)$.
- ¹⁰ The observed structure can be due to both the $\phi(2170)$ and $\rho(2150)$.
- ¹¹ Fit includes interference with the $\phi(1680)$.
- ¹² From the $\phi f_0(980)$ component.
- ¹³ From a fit with two incoherent Breit-Wigners.
- ¹⁴ From the $K^+ K^- f_0(980)$ component.
- ¹⁵ Superseded by LEES 12F.

φ(2170) WIDTH

VALU	E (MeV))	EVTS	DOCUMENT ID		TECN	COMMENT
106	+ 24 -18	OUR A	VERAG	E Error includes sca	ale fac	tor of 2.	.0. See the ideogram below.
140	± 36	± 16		¹ ABLIKIM	23AX	BES3	$e^+e^- \rightarrow \phi \pi^+\pi^-$
191	± 28	± 60		² ABLIKIM	22L	BES3	2.0–3.08 $e^+e^- →$
89	± 50	\pm 5		³ ABLIKIM	21A	BES3	$e^+e^- \rightarrow \omega\eta$
31.3	$1^{+21.1}_{-11.6}$	$\frac{1}{5} \pm 1.1$		⁴ ABLIKIM	21T	BES3	$e^+e^- \rightarrow \phi \eta$
149.0	0 ± 15.6	$5\pm$ 8.9		⁵ ABLIKIM	20м	BES3	$e^+e^- ightarrow \eta' \phi$
106.9	9 ± 32.2	1 ± 28.1		⁶ ABLIKIM	20S	BES3	$e^+e^- \rightarrow K^+K^-\pi^0\pi^0$
• • •	• We d	lo not us	e the fo	llowing data for aver	ages, f	its, limi	ts, etc. ● ● ●
35	± 23			⁷ LICHARD	23	RVUE	$e^+e^- \rightarrow \Upsilon(nS) \rightarrow \phi \eta \gamma$
96	$^{+17}_{-14}$	\pm 9		⁸ ZHU	23A	RVUE	$e^+e^- ightarrow \eta \phi$
86	± 44	± 51		⁹ ABLIKIM	21AP	BES3	$e^+e^- ightarrow~\kappa^0_S\kappa^0_L$
104	± 24	± 12	95	ABLIKIM	191	BES3	$e^+e^- \rightarrow \eta \phi f_0(980)$
139.8	3 ± 12.3	3 ± 20.6		¹⁰ ABLIKIM	19L	BES3	$e^+e^- \rightarrow K^+K^-$
104	± 15	± 15	471	ABLIKIM	15H	BES3	$J/\psi ightarrow \eta \phi \pi^+ \pi^-$
77	± 15	± 10		^{11,12} LEES	12F	BABR	$10.6 \ e^+ e^- \rightarrow \ \phi \pi^+ \pi^- \gamma$
192	± 23	$^{+25}_{-61}$	4.8k	¹³ SHEN	09	BELL	$10.6 \ e^+ e^- \rightarrow_{\kappa^+ \kappa^- \pi^+ \pi^- \gamma}$
65	± 23	± 17	52	ABLIKIM	08F	BES	$J/\psi \rightarrow \eta \phi f_0(980)$
61	± 50	± 13	483	AUBERT	08s	BABR	10.6 $e^+e^- \rightarrow \phi \eta \gamma$
71	± 21		116	¹⁴ AUBERT	07 AK	BABR	$10.6 e^+ e^- \rightarrow \qquad $
102	± 27		149	¹⁴ AUBERT	07 AK	BABR	$10.6 \ e^+ e^- \xrightarrow{\pi^+ \pi^- \gamma}_{\kappa^+ \kappa^- \pi^0 \pi^0 \gamma}$
58	± 16	± 20	201	^{12,15} AUBERT,BE	06 D	BABR	$10.6 \ e^+ e^- \rightarrow K^+ K^- \pi \pi \gamma$

¹ From a fit to the e^+e^- cross section between 2.00 and 3.08 GeV with a sum of Breit-Wigner amplitude and a non-resonant contribution. ² By a simultaneous fit of the $K_2^*(1430)^+K^-$ and $K^*(892)^+K^-$ intermediate channels

² By a simultaneous fit of the $K_2^*(1430)^+ K^-$ and $K^*(892)^+ K^-$ intermediate channels in a partial-wave analysis, assuming the same structure, modelled with a coherent sum of a nonresonant component and a resonant component by a Breit-Wigner function.

- ³ From a fit to the cross section between 2.00 and 3.08 GeV with a coherent sum of Breit-Wigner amplitudes, including contributions from $\omega(1420)$ and $\omega(1650)/\phi(1680)$.
- ⁴ From a fit to the cross section below 3.5 GeV measured by BaBar and BESIII with a coherent sum of two modified Breit-Wigner amplitudes ($\phi(1680)$ and $\phi(2170)$) and a nonresonant term.
- ⁵ From a fit using a coherent sum of a phase-space modified Breit-Wigner function and a phase-space term.
- ⁶ By a simultaneous fit of the intermediate channels in a partial-wave analysis, assuming the same structure, modelled with a coherent sum of a nonresonant component and a resonant component by a Breit-Wigner function.
- ⁷ From a VDM fit to ZHU 23 $\eta \phi \gamma$ data with two resonances, $\phi(1680)$, $\phi(2170)$, and a third resonance with mass 1850.7 ± 5.3 MeV and width 25 ± 35 MeV of 1.7σ statistical evidence.
- ⁸ From the analysis of the combined measurements of $\sigma(e^+e^- \rightarrow \eta \phi)$ from BaBar, Belle, BESIII, CMD3. The statistical significance for $\phi(2170)$ is 7.2 σ .
- ⁹ From a fit to the cross section between 2.00 and 3.08 GeV with a sum of Breit-Wigner amplitude and a nonresonant contribution. The observed structure can be also due to $\rho(2150)$.
- ¹⁰ The observed structure can be due to both the $\phi(2170)$ and $\rho(2150)$.
- ¹¹ Fit includes interference with the $\phi(1680)$.
- ¹² From the $\phi f_0(980)$ component.
- ¹³ From a fit with two incoherent Breit-Wigners.
- ¹⁴ From the $K^+ K^- f_0(980)$ component.
- ¹⁵ Superseded by LEES 12F.

	Mode	Fraction (Γ_i/Γ)
Г1	e ⁺ e ⁻	seen
Γ2	$\phi\eta$	seen
Γ ₃	$\omega \eta$	seen
Γ ₄	$\phi \eta'$	seen
Γ ₅	$\phi \pi \pi$	seen
Г ₆	$\phi f_0(980)$	seen
Γ ₇	$K_S^0 K_L^0$	
Г ₈	$K^+ K^- \pi^+ \pi^-$	
Гg	$K^+ K^- f_0(980) \rightarrow K^+ K^- \pi^+ \pi^-$	seen
Γ ₁₀	$K^+ K^- \pi^0 \pi^0$	
Γ_{11}	$K^+ K^- f_0(980) \rightarrow K^+ K^- \pi^0 \pi^0$	seen
Γ ₁₂	$K^{*0}K^{\pm}\pi^{\mp}$	not seen
Γ ₁₃	$K^{*}(892)^{0}\overline{K}^{*}(892)^{0}$	not seen
Γ_{14}	$K^{*}(892)^{+}K^{*}(892)^{-}$	
Γ ₁₅	$K^{*}(892)^{+}K^{-}+$ c.c.	
Γ ₁₆	$K(1460)^+K^-$ + c.c.	
Γ ₁₇	$K_1(1270)^+ K^- + \text{c.c.}$	
Γ ₁₈	$K_1(1400)^+ K^- + \text{c.c.}$	
Γ ₁₉	$K_2^*(1430)^+ K^- + \text{ c.c.}$	
Γ ₁₉	$K_2^*(1430)^+ K^- + \text{ c.c.}$	

$\phi(2170)$ DECAY MODES

$\phi(2170) \Gamma(i)\Gamma(e^+e^-)/\Gamma(total)$

$\Gamma(\phi\eta) \times \Gamma(e^+e^-)/\Gamma_{\rm total}$

 $\Gamma_2\Gamma_1/\Gamma$

VALUE (eV)	CL% EVTS	DOCUMENT ID		TECN	COMMENT
\bullet \bullet \bullet We do not	use the following	data for averages	s, fits,	limits, e	etc. • • •
0.17	90	¹ ZHU	23	BELL	$e^+e^- ightarrow ~~ \Upsilon({\sf nS}) ightarrow$
$0.36^{+0.05}_{-0.03}\pm 0.07$		² ZHU	23A	RVUE	$e^+e^- \rightarrow \eta \phi$
$0.24^{+0.12}_{-0.07}$		³ ABLIKIM	21⊤	BES3	$e^+ e^- \rightarrow \phi \eta$
$1.7 \ \pm 0.7 \ \pm 1.3$	483	AUBERT	08S	BABR	10.6 $e^+e^- \rightarrow \phi \eta \gamma$

¹ From a solution of the fit using a vector meson dominance model with contributions from $\phi(1680)$, $\phi(2170)$ and non resonant contribution with mass and width of $\phi(2170)$ fixed at 2163.5 MeV and 31.1 MeV respectively. Four solutions are found with equal fit quality giving 0.17 eV (solution I and II) and 18.6 eV (III and IV) at 90% CL.

² From the analysis of the combined measurements of $\sigma(e^+e^- \rightarrow \eta\phi)$ from BaBar, Belle, BESIII, CMD3. The statistical significance for $\phi(2170)$ is 7.2 σ . Four solutions are found, with equal fit quality: $(0.56^{+0.03}_{-0.02} \pm 0.07)$ eV, $(0.36^{+0.05}_{-0.03} \pm 0.07)$ eV, $(38 \pm 1 \pm 5)$ eV, $(41 \pm 2 \pm 6)$ eV.

³ From a solution of the fit to the cross section below 3.5 GeV measured by BaBar and BESIII with a coherent sum of two modified Breit-Wigner amplitudes (ϕ (1680) and ϕ (2170)) and a nonresonant term. The other solution gives $10.11^{+3.87}_{-3.13}$ eV.

Citation: S. Navas et al. (Particle Data Group), Phys. Rev. D 110, 030001 (2024)

$\Gamma(\omega\eta) imes \Gamma(e^+ e^-) / \Gamma_{ m total}$				I	Γ ₃ Γ ₁ /Γ
VALUE (eV)	DOCUMENT ID		TECN	COMMENT	
0.43±0.15±0.04	¹ ABLIKIM	21A	BES3	$e^+e^- ightarrow \omega \eta$	

¹ For constructive interference with $\omega(1420)$ and $\omega(1650)/\phi(1680)$. For destructive interference: $1.25 \pm 0.48 \pm 0.18$ eV.

$\Gamma(\phi\eta') imes\Gamma(e^+e^-)/\Gamma_{ m total}$				Γ₄Γ	₁ /Γ
VALUE (eV)	DOCUMENT ID		TECN	COMMENT	
7.1±0.7±0.7	¹ ABLIKIM	20м	BES3	$e^+e^- ightarrow \eta' \phi$	

¹ From a fit using a coherent sum of a phase-space modified Breit-Wigner function and a phase-space term.

$\Gamma(\phi f_0(980)) \times$: Г(e+	e)/Γ _{total}			Г ₆ Г ₁ /Г			
VALUE (eV)	EVTS	DOCUMENT ID	TE	CN	COMMENT			
$\bullet \bullet \bullet$ We do not	• • • We do not use the following data for averages, fits, limits, etc. • • •							
$2.3 \pm 0.3 \pm 0.3$ $2.5 \pm 0.8 \pm 0.4$	201	^{1,2} LEES ^{2,3} AUBERT,BE	12f BA 06d BA	ABR ABR	10.6 $e^+e^- \rightarrow \phi \pi^+\pi^-\gamma$ 10.6 $e^+e^- \rightarrow K^+K^-\pi\pi\gamma$			
¹ From a fit wi	ith const	ructive interference	with the	$\phi(1)$	680). In a fit with destructive			

interference, the value is larger by a factor of 12.

² For $f_0(980) \rightarrow \pi \pi$.

³Superseded by LEES 12F.

$$\begin{array}{c} \Gamma(K^{0}_{S}K^{0}_{L}) \times \Gamma(e^{+}e^{-})/\Gamma_{\text{total}} & \Gamma_{7}\Gamma_{1}/\Gamma \\ \hline \\ \hline \\ \underline{VALUE\ (eV)} & \underline{DOCUMENT\ ID} & \underline{TECN} & \underline{COMMENT} \\ \bullet \bullet \bullet \text{ We do not use the following data for averages, fits, limits, etc. } \bullet \bullet \\ \hline \\ 0.9 \pm 0.6 \pm 0.7 & {}^{1}\text{ ABLIKIM} & 21\text{AP BES3} & e^{+}e^{-} \rightarrow K^{0}_{S}K^{0}_{I} \end{array}$$

¹ From a fit to the cross section between 2.00 and 3.08 GeV with a sum of Breit-Wigner amplitude and a nonresonant contribution. The observed structure can be also due to $\rho(2150)$.

Γ(<i>K</i> *(892) ⁺	K*(892) [_]) ×	: Γ(e ⁺ e ⁻)/Γ _t	otal			$\Gamma_{14}\Gamma_1/\Gamma$
VALUE (eV)	CL%	DOCUMENT ID)	TECN	COMMENT	
<1.9	90	¹ ABLIKIM	20s	BES3	$e^+e^- \rightarrow$	$K^+K^-\pi^0\pi^0$

 $^1\,{\rm By}$ a simultaneous fit of the intermediate channels in a partial-wave analysis, assuming the same structure, modelled with a coherent sum of a nonresonant component and a resonant component by a Breit-Wigner function.

Г(К*(892)+К	$^{-}$ + c.c.) × $\Gamma(e^{+}e$	⁻)/Γ _{total}		Γ ₁₅ Γ ₁ /Γ
VALUE (eV)	DOCUMENT ID	TECN	COMMENT	
• • • We do not	use the following data	for averages, f	its, limits, etc. •	• •
1.0 ± 0.3	¹ ABLIKIM	22L BES3	2.0–3.08 e^+e^-	$\to K^+ K^- \pi^0$
¹ From a solution diate channels coherent sum function. The	on of a simultaneous fit s in a partial-wave anal of a nonresonant comp e other solution gives 7.	of the $K_2^*(1430)$ ysis, assuming onent and a re 1 ± 0.9 eV. Si	$(b)^+ K^-$ and $K^*($ the same structure sonant component gnificance 3.7 σ .	892) ⁺ K ⁻ interme- re, modelled with a it by a Breit-Wigner

https://pdg.lbl.gov

$\Gamma(K(1460)^+K^-+\text{c.c.}) \times \Gamma(e^+e^-)/\Gamma_{\text{total}}$						
VALUE (eV)	DOCUMENT ID	TECN	COMMENT			
• • • We do not use th	ne following data for averages,	, fits, limits	s, etc. ● ● ●			

3.0 \pm 3.8 ¹ ABLIKIM 20S BES3 $e^+e^- \rightarrow K^+K^-\pi^0\pi^0$

¹ By a simultaneous fit of the intermediate channels in a partial-wave analysis, assuming the same structure, modelled with a coherent sum of a nonresonant component and a resonant component by a Breit-Wigner function.

$\Gamma(K_1(1270)^+ K^- + c.c.)$) × Г(e ⁺ e ⁻)/Γ _{total}			Γ ₁₇ Γ ₁ /Γ
VALUE (eV)	CL%	DOCUMENT ID		TECN	COMMENT
<12.5	90	¹ ABLIKIM	20s	BES3	$\overline{e^+ e^{K^+ K^- \pi^0 \pi^0}}$

¹ By a simultaneous fit of the intermediate channels in a partial-wave analysis, assuming the same structure, modelled with a coherent sum of a nonresonant component and a resonant component by a Breit-Wigner function. A second solution of the fit with equal fit quality gives an upper limit value of 297.6 eV.

$\Gamma(K_1(1400)^+K^-+c)$	$(.c.) \times \Gamma(e^+e^-)/\Gamma_{total}$	ł		Γ ₁₈ Γ ₁ /Γ
VALUE (eV)	DOCUMENT ID	TECN	COMMENT	
$\bullet \bullet \bullet$ We do not use the	e following data for averages	s, fits, limits	s, etc. • • •	
4.7±3.3	¹ ABLIKIM 2	0s BES3	$e^+e^- \rightarrow$	$K^+ K^- \pi^0 \pi^0$
¹ By a simultaneous fi the same structure, resonant component fit quality gives a va	t of the intermediate chann modelled with a coherent so by a Breit-Wigner function. lue of 98.8 + 7.8 eV.	els in a par um of a noi . A second s	tial-wave ana nresonant co solution of th	alysis, assuming mponent and a e fit with equal

Γ(<i>K</i> [*] ₂ (1430) ⁺	Γ ₁₉ Γ ₁ /Γ				
VALUE (eV)	DOCUMENT ID	-	TECN	COMMENT	
• • • We do not	use the following data for	or aver	ages, fit	s, limits, etc. • •	• •
12.6 ± 2.4	¹ ABLIKIM	22L	BES3	2.0–3.08 e^+e^-	$\to K^+ K^- \pi^0$
¹ From a solution diate channel coherent sum function. The	on of a simultaneous fit o s in a partial-wave analys of a nonresonant compo e other solution gives 161	f the K sis, ass nent a 1 ± 2	(*(1430) Suming t nd a rese 20.6 eV.) ⁺ K ⁻ and K*(8 he same structur onant component	92) ⁺ K^- interme- e, modelled with a by a Breit-Wigner

$\phi(2170) \Gamma(i)\Gamma(e^+e^-)/\Gamma^2(\text{total})$

DOCUMENT ID TECN COMMENT

$\Gamma(\phi \pi \pi)/\Gamma_{\text{total}} \times \Gamma(e^+e^-)/\Gamma_{\text{total}}$

 $\Gamma_5/\Gamma \times \Gamma_1/\Gamma$

• • We do not use the following data for averages, fits, limits, etc. • •

1.65±0.15±0.18 4.8k ¹ SHEN 09 BELL 10.6 e^+e^- → $K^+K^-\pi^+\pi^-\gamma^-$ ¹ Multiplied by 3/2 to take into account the $\phi\pi^0\pi^0$ mode. Using B(ϕ → K^+K^-) = (49.2±0.6)%.

<u>VALUE (units 10^{-7})</u> EVTS

ϕ (2170) BRANCHING RATIOS

$\Gamma(\phi\pi\pi)$	/Γ _{total}					Г5/Г
VALUE	-		DOCUMENT ID	TECN	COMMENT	
seen		1	ABLIKIM	23AX BES3	$e^+e^- \rightarrow e^-$	$\phi \pi^+ \pi^-$
¹ From Wigne	a fit to the er amplitude	e ⁺ e ⁻ cross se e and a non-rese	ection between onant contribut	2.00 and 3.08 tion.	GeV with a s	um of Breit-
Γ(K ⁺ K ⁺ VALUE	⁻ f ₀ (980)	$\rightarrow K^+ K^- \pi^-$	+ π)/Γ _{total}	CN COMMEN	Т	Γ9/Γ
seen		AUBERT	07AK BA	ABR 10.6 e^+	$e^- \rightarrow K^+ K$	$r - \pi^+ \pi^- \gamma$
$\Gamma(K^+K)$ VALUE	f ₀ (980)	$\rightarrow K^+ K^- \pi^0$	$(\pi^0)/\Gamma_{\text{total}}$	CN COMMEN	Т	Г ₁₁ /Г
seen		AUBERT	07AK BA	BR 10.6 e ⁺	$e^- \rightarrow K^+ K$	$-\pi^0\pi^0\gamma$
Γ(K ^{*0} K _{VALUE}	^{′±} π [∓])/Γ _t	otal	DOCUMENT ID	TECN	COMMENT	Г ₁₂ /Г
not seen			AUBERT	07AK BABR	10.6 GeV e	+ e ⁻
Γ(K*(89 VALUE	02) ⁰ K *(89	92) ⁰)/Γ _{total}	OCUMENT ID	TECN C	OMMENT	Г ₁₃ /Г
not seen		Al	3LIKIM 1	.0c BES2 J	$\gamma/\psi \rightarrow \eta K^+$	$\pi^- \kappa^- \pi^+$
		φ(2)	170) REFER	ENCES		
ABLIKIM LICHARD ZHU ZHU ABLIKIM	23AX PR 23 PR 23 PR 23A CP 22L JH	D108 032011 D108 092005 D107 012006 C47 113003 EP 2207 045	M. Ablikim <i>e</i> P. Lichard W. Zhu <i>et al</i> W. Zhu, X. V M. Ablikim <i>e</i>	t al. Vang t al.	(BESI (OPA (BELL (BESI	II Collab.) V, CTUP) E Collab.) (RVUE) II Collab.)

M. Ablikim et al.

M. Ablikim *et al.* M. Ablikim *et al.*

M. Ablikim et al.

M. Ablikim et al.

C.P. Shen et al.

M. Ablikim et al.

B. Aubert et al.

B. Aubert et al.

B. Aubert et al.

J.P. Lees et al.

https://pdg.lbl.gov

ABLIKIM

AUBERT

AUBERT

AUBERT, BE

LEES

SHEN

21A PL B813 136059

21AP PR D104 092014

21T

20M

20S

19I

19L

15H

12F

10C

09

08F

08S

06D

PR D104 032007

PR D102 012008

PRL 124 112001

PR D99 012014

PR D99 032001

PR D91 052017

PR D86 012008

PR D80 031101

PRL 100 102003

PR D77 092002

PR D74 091103

PL B685 27

07AK PR D76 012008

(BESIII Collab.)

(BABAR Collab.)

(BES II Collab.)

(BELLE Collab.)

(BABAR Collab.)

(BABAR Collab.)

(BABAR Collab.)

(BES Collab.)