Other Particle Searches

OMITTED FROM SUMMARY TABLE OTHER PARTICLE SEARCHES

Revised February 2018 by K. Hikasa (Tohoku University).

We collect here those searches which do not appear in any other search categories. These are listed in the following order:

- Concentration of stable particles in matter
- General new physics searches
- Limits on jet-jet resonance in hadron collisions
- Limits on neutral particle production at accelerators
- Limits on charged particles in e^+e^- collisions
- Limits on charged particles in hadron reactions
- Limits on charged particles in cosmic rays
- Searches for quantum black hole production

Note that searches appear in separate sections elsewhere for Higgs bosons (and technipions), other heavy bosons (including W_R , W', Z', leptoquarks, axigluons), axions (including pseudo-Goldstone bosons, Majorons, familons), WIMPs, heavy leptons, heavy neutrinos, free quarks, monopoles, supersymmetric particles, and compositeness.

We no longer list for limits on tachyons and centauros. See our 1994 edition for these limits.

CONCENTRATION OF STABLE PARTICLES IN MATTER

Concentration of Heavy (Charge +1) Stable Particles in Matter

VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
• • • We do not use the	e following	g data for average	s, fits,	limits,	etc. • • •
$<4 \times 10^{-17}$	95	¹ YAMAGATA			Deep sea water, $M=5-1600m_p$
$< 6 \times 10^{-15}$	95	² VERKERK	92	SPEC	Water, $M=10^5$ to 3 \times
$< 7 \times 10^{-15}$	95	² VERKERK			10^{7} GeV Water, $M = 10^{4}$, 6 ×
$ < 9 \times 10^{-15} $ $ < 3 \times 10^{-23} $	95	² VERKERK	92	SPEC	10^7 GeV Water, $M=10^8$ GeV
$<3 \times 10^{-23}$	90	³ HEMMICK	90	SPEC	Water, $M = 1000 m_p$

https://pdg.lbl.gov

Page 1

$< 2 \times 10^{-21}$	90	³ HEMMICK	90	SPEC	Water, $M = 5000 m_p$
$< 3 \times 10^{-20}$	90	³ HEMMICK	90	SPEC	Water, $M = 10000 m_p$
$< 1. \times 10^{-29}$		SMITH	82 B	SPEC	Water, <i>M</i> =30–400 m_p
$< 2. \times 10^{-28}$		SMITH	82 B	SPEC	Water, $M=12-1000m_p$
$< 1. \times 10^{-14}$		SMITH	82 B	SPEC	Water, $M > 1000 m_p$
$<$ (0.2–1.) \times 10 ⁻²¹		SMITH	79	SPEC	Water, $M=6-350 \ m_{p}$

 $^{^{}m 1}$ YAMAGATA 93 used deep sea water at 4000 m since the concentration is enhanced in deep sea due to gravity.

Concentration of Heavy Stable Particles Bound to Nuclei

VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT			
• • • We do not use the following data for averages, fits, limits, etc. • •								
$<~2\times10^{-17}/\text{nucleon}$	95	¹ AFEK	21		millicharged particle search			
$< 1.2 \times 10^{-11}$	95	² JAVORSEK	01	SPEC	Au, $M=3$ GeV			
$< 6.9 \times 10^{-10}$	95	² JAVORSEK	01	SPEC	Au, <i>M</i> = 144 GeV			
$<1 \times 10^{-11}$	95	³ JAVORSEK	01 B	SPEC	Au, <i>M</i> = 188 GeV			
$<1 \times 10^{-8}$	95	³ JAVORSEK	01 B	SPEC	Au, <i>M</i> = 1669 GeV			
$< 6 \times 10^{-9}$	95	³ JAVORSEK	01 B	SPEC	Fe, <i>M</i> = 188 GeV			
$<1 \times 10^{-8}$	95	³ JAVORSEK	01 B	SPEC	Fe, <i>M</i> = 647 GeV			
$< 4 \times 10^{-20}$	90	⁴ HEMMICK	90	SPEC	C, $M = 100 m_{p}$			
$< 8 \times 10^{-20}$	90	⁴ HEMMICK	90	SPEC	C, $M = 1000 m_{p}$			
$< 2 \times 10^{-16}$	90	⁴ HEMMICK	90	SPEC	C, $M = 10000 m_p$			
$< 6 \times 10^{-13}$	90	⁴ HEMMICK	90	SPEC	Li, $M = 1000 m_p$			
$< 1 \times 10^{-11}$	90	⁴ HEMMICK	90	SPEC	Be, $M = 1000 m_p$			
$< 6 \times 10^{-14}$	90	⁴ HEMMICK	90	SPEC	B, $M = 1000 m_{p}$			
$< 4 \times 10^{-17}$	90	⁴ HEMMICK	90	SPEC	O, $M = 1000 m_p$			
$< 4 \times 10^{-15}$	90	⁴ HEMMICK	90	SPEC	F, $M = 1000 m_p$			
$< 1.5 imes 10^{-13} / nucleon$	68	⁵ NORMAN	89	SPEC	²⁰⁶ Pb <i>X</i> -			
$< 1.2 \times 10^{-12}$ /nucleon	68	⁵ NORMAN	87	SPEC	^{56,58} Fe <i>X</i> ⁻			

¹AFEK 21 search for millicharged particles bound to matter using an optomechanical device. No signal was observed. Limits placed in the abundance vs. charge plane (Fig. 3). This is translated to the mass versus charge plane by requiring bound states to be

²VERKERK 92 looked for heavy isotopes in sea water and put a bound on concentration of stable charged massive particle in sea water. The above bound can be translated into into a bound on charged dark matter particle (5 \times 10⁶ GeV), assuming the local density, ρ =0.3 GeV/cm³, and the mean velocity $\langle v \rangle$ =300 km/s.

³ See HEMMICK 90 Fig. 7 for other masses $100-10000 m_p$.

stable. 2 JAVORSEK 01 search for (neutral) SIMPs (strongly interacting massive particles) bound to Au nuclei. Here *M* is the effective SIMP mass.

3 JAVORSEK 01B search for (neutral) SIMPs (strongly interacting massive particles) bound

to Au and Fe nuclei from various origins with exposures on the earth's surface, in a satellite, heavy ion collisions, etc. Here M is the mass of the anomalous nucleus. See also JAVORSEK 02. 4 See HEMMICK 90 Fig. 7 for other masses 100–10000 $m_{\mbox{\scriptsize p}}$.

⁵ Bound valid up to $m_{\chi^-} \sim 100$ TeV.

GENERAL NEW PHYSICS SEARCHES

This subsection lists some of the search experiments which look for general signatures characteristic of new physics, independent of the framework of a specific model.

The observed events are compatible with Standard Model expectation, unless noted otherwise.

VALUE DOCUMENT ID TECN COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • • ¹ ALKHATIB 21A SCDM CDMSlite search for fractionally charged relics 2 AGUILAR-AR...20B CONN $\,
u$ elastic scatter on nuclei ³ FEDDERKE CHAMPs from white dwarfs ⁴ SIRUNYAN 20A CMS SUSY/LQ search with mT2 or long-lived charged particles ⁵ ALCANTARA 19 Auger, superheavy DM ⁶ PORAYKO 18 **PPTA** pulsar timing fuzzy DM search ⁷ AAD 15AT ATLS $t + \not\!\!E_T$ ⁸ KHACHATRY...15F CMS $t + \cancel{E}_T$ ⁹ AALTONEN 14J CDF W + 2 jets 10 AAD $WW \rightarrow \ell \nu \ell' \nu$ 13A ATLS $^{11}\,\mathrm{AAD}$ 13C ATLS $\gamma + \not\!\!E_T$ ¹² AALTONEN 13ı CDF Delayed $\gamma + \not\!\!E_T$ ¹³ CHATRCHYAN 13 $\ell^+\ell^- + \text{jets} + \cancel{E}_T$ CMS 14 AAD 12C ATLS $t\overline{t} + \cancel{E}_T$ ¹⁵ AALTONEN 12M CDF $jet + \cancel{E}_T$ ¹⁶ CHATRCHYAN 12AP CMS $jet + \cancel{E}_T$ ¹⁷ CHATRCHYAN 12Q CMS Z + jets + E_T ¹⁸ CHATRCHYAN 12⊤ CMS $\gamma + \not\!\!E_T$ ¹⁹ AAD 11s ATLS $jet +
ot\!\!\!E_T$ ²⁰ AALTONEN $\ell^{\pm}\ell^{\pm}$ 11AF CDF ²¹ CHATRCHYAN 11c CMS $\ell^+\ell^-$ + jets + E_T 22 CHATRCHYAN 11U CMS $jet + \cancel{E}_T$ ²³ AALTONEN 10AF CDF $\gamma \gamma + \ell, \not\!\!E_T$ ²⁴ AALTONEN 09AF CDF $\ell \gamma b \not\!\!E_T$ ²⁵ AALTONEN 09G CDF $\ell\ell\ell \not\!\! E_T$

 $^{^1}$ ALKHATIB 21A search for lightly ionizing fractionally charged relics scattering from Ge. No signal observed. Limits plotted in fractional charge f vs. vertical intensity plane for m ~ 5 MeV to 100 TeV.

 $^{^2}$ AGUILAR-AREVALO 20B search for light BSM mediator effect on ν elastic scatter on nuclei; no signal; limits placed in m(mediator) vs. coupling plane for two models of MeV-scale mediators.

³ FEDDERKE 20 place limits on cosmic relic charged massive particles (CHAMPs) due to their capture and subsequent disruption of old white dwarf stars; limits placed in the m(CHAMP) vs. relic density parameter plane.

⁴SIRUNYAN 20A search for SUSY and LQ production using mT2 or presence of long-lived charged particle; no signal, limits placed in various mass planes for different BSM scenarios and various assumed lifetimes.

⁵ ALCANTARA 19 place limits on m(WIMPzilla=X) vs lifetime from upper bound on ultra high energy cosmic rays at Auger experiment: e.g. $\tau(X) < 4 \times 10^{22}$ yr for m(X) = 10^{16} GeV.

- ⁶ PORAYKO 18 search for deviations in the residuals of pulsar timing data using PPTA. No signal observed. Limits set on fuzzy DM with 3×10^{-24} < m(DM) < 2×10^{-22} eV.
- ⁷AAD 15AT search for events with a top quark and mssing E_T in pp collisions at $E_{\rm cm}$ = 8 TeV with $L=20.3~{\rm fb}^{-1}$.
- ⁸ KHACHATRYAN 15F search for events with a top quark and mssing E_T in pp collisions at $E_{\rm cm}=8$ TeV with L=19.7 fb $^{-1}$.
- ⁹ AALTONEN 14J examine events with a W and two jets in $p\overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV with $L=8.9~{\rm fb}^{-1}$. Invariant mass distributions of the two jets are consistent with the Standard Model expectation.
- 10 AAD 13A search for resonant WW production in pp collisions at $E_{\rm cm}=7$ TeV with $L=4.7~{\rm fb}^{-1}$
- 11 AAD 13C search for events with a photon and missing E_T in pp collisions at $E_{\rm cm}=7$ TeV with $L=4.6~{\rm fb}^{-1}$.
- ^12 AALTONEN 13I search for events with a photon and missing E_T , where the photon is detected after the expected timing, in $p\overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV with L=6.3 fb $^{-1}$. The data are consistent with the Standard Model expectation.
- ¹³CHATRCHYAN 13 search for events with an opposite-sign lepton pair, jets, and missing E_T in pp collisions at $E_{cm} = 7$ TeV with L = 4.98 fb⁻¹.
- ¹⁴ AAD 12C search for events with a $t\overline{t}$ pair and missing \mathbb{E}_T in pp collisions at $E_{\rm cm}=7$ TeV with L=1.04 fb⁻¹.
- ¹⁵ AALTONEN 12M search for events with a jet and missing E_T in $p\bar{p}$ collisions at $E_{\rm cm}$ = 1.96 TeV with L=6.7 fb⁻¹.
- 16 CHATRCHYAN 12AP search for events with a jet and missing E_T in pp collisions at $E_{\rm cm}=7$ TeV with L=5.0 fb $^{-1}$.
- ¹⁷ CHATRCHYAN 12Q search for events with a Z, jets, and missing E_T in pp collisions at $E_{\rm cm}=7$ TeV with L=4.98 fb⁻¹.
- 18 CHATRCHYAN 12T search for events with a photon and missing E_T in pp collisions at $E_{\rm cm}=7$ TeV with $L=5.0~{\rm fb}^{-1}.$
- ¹⁹ AAD 11S search for events with one jet and missing E_T in pp collisions at $E_{\rm cm}=7$ TeV with $L=33\,{\rm pb}^{-1}$.
- ²⁰ AALTONEN 11AF search for high- p_T like-sign dileptons in $p_{\overline{p}}$ collisions at $E_{\rm cm}=1.96\,{\rm TeV}$ with $L=6.1\,{\rm fb}^{-1}$.
- ²¹ CHATRCHYAN 11C search for events with an opposite-sign lepton pair, jets, and missing E_T in pp collisions at $E_{\rm cm}=7$ TeV with L=34 pb $^{-1}$.
- 22 CHATRCHYAN 110 search for events with one jet and missing E_T in pp collisions at $E_{\rm cm}=7$ TeV with $L=36\,{\rm pb}^{-1}.$
- ²³ AALTONEN 10AF search for $\gamma\gamma$ events with e, μ, τ , or missing E_T in $p\overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV with L=1.1–2.0 fb $^{-1}$.
- ²⁴ AALTONEN 09AF search for $\ell\gamma b$ events with missing E_T in $p\overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV with L=1.9 fb $^{-1}$. The observed events are compatible with Standard Model expectation including $t\overline{t}\gamma$ production.
- ²⁵ AALTONEN 09G search for $\mu\mu\mu$ and $\mu\mu e$ events with missing E_T in $p\overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV with L=976 pb $^{-1}$.

LIMITS ON JET-JET RESONANCES

Heavy Particle Production Cross Section

Limits are for a particle decaying to two hadronic jets.

Units(pb) CL% Mass(GeV) DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, fits, limits, etc. • • •

¹ TUMASYAN 23L CMS dijet resonance in 4-jet events ² AAD pp at 13 TeV, dijet resonance 20AD ATLS 3 AAD 20T ATLS dijet resonance search ⁴ AAD 20W ATLS dijet resonance plus lepton ⁵ SIRUNYAN 20AI CMS dijet resonance search ⁶ AABOUD 19AJ ATLS $pp \rightarrow \gamma X, X \rightarrow jj$ ⁷ SIRUNYAN $pp \rightarrow jA, A \rightarrow b\overline{b}$ 19B CMS ⁸ SIRUNYAN $pp \rightarrow Z'\gamma, Z' \rightarrow jj$ 19CD CMS ⁹ AABOUD 18AD ATLS $pp \rightarrow Y \rightarrow HX \rightarrow (bb) +$ (qq)¹⁰ AABOUD 18CK ATLS $pp \rightarrow bbb + \not\!\!E_T$ ¹¹ AABOUD 18CL ATLS $pp \rightarrow \text{vector-like quarks}$ ¹² AABOUD 18N ATLS $pp \rightarrow jj$ resonance ¹³ SIRUNYAN $pp \rightarrow ZZ \text{ or } WZ \rightarrow \ell \overline{\ell} jj$ 18DJ CMS ¹⁴ SIRUNYAN 18DY CMS $pp \rightarrow RR; R \rightarrow jj$ ¹⁵ KHACHATRY...17W CMS $pp \rightarrow jj$ resonance ¹⁶ KHACHATRY...17Y CMS $pp \rightarrow (8-10) j + \cancel{E}_T$ ¹⁷ SIRUNYAN CMS $pp \rightarrow jj$ angular distribution ¹⁸ AABOUD 16 **ATLS** $pp \rightarrow b + jet$ ¹⁹ AAD 16N ATLS $pp \rightarrow 3 \text{ high } E_T \text{ jets}$ 20 AAD 16s ATLS $pp \rightarrow jj$ resonance ²¹ KHACHATRY...16K CMS $pp \rightarrow jj$ resonance ²² KHACHATRY...16L $pp \rightarrow jj$ resonance CMS ²³ AAD 13D ATLS 7 TeV $pp \rightarrow 2$ jets ²⁴ AALTONEN 13R CDF 1.96 TeV $p\overline{p} \rightarrow 4$ jets ²⁵ CHATRCHYAN 13A CMS 7 TeV $pp \rightarrow 2$ jets ²⁶ CHATRCHYAN 13A CMS 7 TeV $pp \rightarrow b\overline{b}X$ ²⁷ AAD 12S ATLS 7 TeV $pp \rightarrow 2$ jets ²⁸ CHATRCHYAN 12BL CMS 7 TeV $pp \rightarrow t\overline{t}X$ ²⁹ AAD 11AG ATLS 7 TeV $pp \rightarrow 2$ jets ³⁰ AALTONEN 11M CDF 1.96 TeV $p\overline{p} \rightarrow W+ 2$ jets ³¹ ABAZOV 111 D0 1.96 TeV $p\overline{p} \rightarrow W+ 2$ jets 32 AAD 10 **ATLS** 7 TeV $pp \rightarrow 2$ jets ³³ KHACHATRY...10 **CMS** 7 TeV $pp \rightarrow 2$ jets ³⁴ ABE 99F CDF 1.8 TeV $p\overline{p} \rightarrow b\overline{b}$ + anything ³⁵ ABE 97G CDF 1.8 TeV $p\overline{p} \rightarrow 2$ jets ³⁶ ABE 1.8 TeV $p\overline{p} \rightarrow 2$ jets < 2603 200 93G CDF ³⁶ ABE 44 95 400 93G CDF 1.8 TeV $p\overline{p} \rightarrow 2$ jets ³⁶ ABE 93G CDF 1.8 TeV $p\overline{p} \rightarrow 2$ jets

 $^{^1}$ TUMASYAN 23L search for dijet resonance in 4-jet events with 138 fb $^{-1}$ fb of data. There are two events in the tails of the distributions, each with a four-jet mass of 8 TeV and an average dijet mass of 2 TeV, resulting in local and global significances of 3.9 and 1.6 standard deviations, respectively, if interpreted as a signal. Limits set for simplified diquark model.

- 2 AAD 20AD search for weakly supervised dijet resonance in ATLAS with 139 fb $^{-1}$ at 13 TeV; no signal; various limits placed depending on kinematics and production cross section.
- ³ AAD 20T search for dijet resonance with or without *b*-jets at 13 TeV and 139 fb⁻¹; no signal; limits placed in σ · BF vs mass plane for various BSM models.
- ⁴AAD 20W search for dijet resonance plus lepton with ATLAS at 13 TeV and 139 fb⁻¹; no signal; limits placed in $\sigma \cdot BF$ vs. mass plane for various BSM models.
- 5 SIRUNYAN 20AI search for dijet resonance in CMS at 13 TeV with 137 fb $^{-1}$; no signal; limits set in σ vs. mass plane for various BSM models .
- ⁶ AABOUD 19AJ search for low mass dijet resonance in $pp \to \gamma X$, $X \to jj$ at 13 TeV with 79.8 fb⁻¹ of data; no signal found; limits placed on Z' model in coupling vs. m(Z') plane.
- ⁷ SIRUNYAN 19B search for low mass resonance $pp \rightarrow jA$, $A \rightarrow b\overline{b}$ at 13 TeV using 35.9 fb⁻¹; no signal; exclude resonances 50–350 GeV depending on production and decay.
- ⁸ SIRUNYAN 19CD search for $pp \to Z'\gamma$, $Z' \to jj$ with fat jet (jj); no signal, limits placed in m(Z') vs. coupling plane for Z' masses from 10 to 125 GeV.
- ⁹ AABOUD 18AD search for new heavy particle $Y \to HX \to (bb) + (qq)$. No signal observed. Limits set on m(Y) vs. m(X) in the ranges of m(Y) in 1–4 TeV and m(X) in 50–1000 GeV.
- 10 AABOUD 18CK search for SUSY Higgsinos in gauge-mediation via $pp \to bbb + E_T$ at 13 TeV using two complementary analyses with 24.3/36.1 fb $^{-1}$; no signal is found and Higgsinos with masses between 130 and 230 GeV and between 290 and 880 GeV are excluded at the 95% confidence level.
- ¹¹ AABOUD 18CL search for $pp \to \text{vector-like quarks} \to \text{jets}$ at 13 TeV with 36 fb⁻¹; no signal seen; limits set on various VLQ scenarios. For pure $B \to Hb$ or $T \to Ht$, set the mass limit m > 1010 GeV.
- 12 AABOUD 18N search for dijet resonance at Atlas with 13 TeV and 29.3 fb $^{-1}$; limits set on m(Z') in the mass range of 450–1800 GeV.
- 13 SIRUNYAN 18DJ search for $pp\to ZZ$ or $WZ\to \ell \overline{\ell} jj$ resonance at 13 TeV, 35.9 fb $^{-1}$; no signal; limits set in the 400–4500 GeV mass range, exclusion of W' up to 2270 GeV in the HVT model A, and up to 2330 GeV for HVT model B. WED bulk graviton exclusion up to 925 GeV.
- ¹⁴ SIRUNYAN 18DY search for $pp \to RR$; $R \to jj$ two dijet resonances at 13 TeV 35.9 fb⁻¹; no signal; limits placed on RPV top-squark pair production.
- 15 KHACHATRYAN 17W search for dijet resonance in 12.9 fb $^{-1}$ data at 13 TeV; see Fig. 2 for limits on axigluons, diquarks, dark matter mediators etc.
- ¹⁶ KHACHATRYAN 17Y search for $pp \rightarrow (8-10)j$ in 19.7 fb⁻¹ at 8 TeV. No signal seen. Limits set on colorons, axigluons, RPV, and SUSY.
- 17 SIRUNYAN 17F measure $pp \to jj$ angular distribution in 2.6 fb $^{-1}$ at 13 TeV; limits set on LEDs and quantum black holes.
- 18 AABOUD 16 search for resonant dijets including one or two b-jets with 3.2 fb $^{-1}$ at 13 TeV; exclude excited b^* quark from 1.1–2.1 TeV; exclude leptophilic Z' with SM couplings from 1.1–1.5 TeV.
- 19 AAD 16N search for \geq 3 jets with 3.6 fb $^{-1}$ at 13 TeV; limits placed on micro black holes (Fig. 10) and string balls (Fig. 11).
- 20 AAD 16S search for high mass jet-jet resonance with 3.6 fb $^{-1}$ at 13 TeV; exclude portions of excited quarks, W', Z' and contact interaction parameter space.
- 21 KHACHATRYAN 16K search for dijet resonance in 2.4 fb $^{-1}$ data at 13 TeV; see Fig. 3 for limits on axigluons, diquarks etc.
- ²² KHACHATRYAN 16L use data scouting technique to search for jj resonance on 18.8 fb⁻¹ of data at 8 TeV. Limits on the coupling of a leptophobic Z' to quarks are set, improving on the results by other experiments in the mass range between 500–800 GeV.

- ²³ AAD 13D search for dijet resonances in pp collisions at $E_{\rm cm}=7$ TeV with L=4.8 fb⁻¹. The observed events are compatible with Standard Model expectation. See their Fig. 6 and Table 2 for limits on resonance cross section in the range m=1.0–4.0 TeV.
- ²⁴ AALTONEN 13R search for production of a pair of jet-jet resonances in $p\overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV with L=6.6 fb $^{-1}$. See their Fig. 5 and Tables I, II for cross section limits.
- ²⁵ CHATRCHYAN 13A search for qq, qg, and gg resonances in pp collisions at $E_{\rm cm}=7$ TeV with L=4.8 fb⁻¹. See their Fig. 3 and Table 1 for limits on resonance cross section in the range m=1.0–4.3 TeV.
- ²⁶ CHATRCHYAN 13A search for $b\overline{b}$ resonances in pp collisions at $E_{\rm cm}=7$ TeV with L=4.8 fb⁻¹. See their Fig. 8 and Table 4 for limits on resonance cross section in the range m=1.0–4.0 TeV.
- ²⁷ AAD 12S search for dijet resonances in pp collisions at $E_{\rm cm}=7$ TeV with L=1.0 fb⁻¹. See their Fig. 3 and Table 2 for limits on resonance cross section in the range m=0.9–4.0 TeV.
- ²⁸ CHATRCHYAN 12BL search for $t\bar{t}$ resonances in pp collisions at $E_{\rm cm}=7$ TeV with L=4.4 fb⁻¹. See their Fig. 4 for limits on resonance cross section in the range m=0.5-3.0 TeV
- 29 AAD 11AG search for dijet resonances in pp collisions at $E_{\rm cm} = 7$ TeV with L = 36 pb⁻¹. Limits on number of events for m = 0.6–4 TeV are given in their Table 3.
- ³⁰ AALTONEN 11M find a peak in two jet invariant mass distribution around 140 GeV in W+2 jet events in $p\overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV with L = 4.3 fb⁻¹.
- ³¹ ABAZOV 11I search for two-jet resonances in W+2 jet events in $p\overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV with L = 4.3 fb $^{-1}$ and give limits $\sigma<(2.6-1.3)$ pb (95% CL) for m=110-170 GeV. The result is incompatible with AALTONEN 11M.
- 32 AAD 10 search for narrow dijet resonances in pp collisions at $E_{\rm cm}=7$ TeV with L $=315\,{\rm nb}^{-1}$. Limits on the cross section in the range 10– 10^3 pb is given for m=0.3–1.7 TeV.
- 33 KHACHATRYAN 10 search for narrow dijet resonances in pp collisions at $E_{\rm cm}=7\,{\rm TeV}$ with L = 2.9 pb⁻¹. Limits on the cross section in the range 1–300 pb is given for m=0.5–2.6 TeV separately in the final states qq, qg, and gg.
- ³⁴ ABE 99F search for narrow $b\overline{b}$ resonances in $p\overline{p}$ collisions at $E_{\rm cm}=1.8$ TeV. Limits on $\sigma(p\overline{p}\to X+{\rm anything})\times {\rm B}(X\to b\overline{b})$ in the range 3–10³ pb (95%CL) are given for $m_X=200$ –750 GeV. See their Table I.
- 35 ABE 97G search for narrow dijet resonances in $p\overline{p}$ collisions with $106~{\rm pb}^{-1}$ of data at $E_{\rm cm}=1.8~{\rm TeV}$. Limits on $\sigma(p\overline{p}\to X+{\rm anything})\cdot {\rm B}(X\to jj)$ in the range $10^4-10^{-1}~{\rm pb}$ (95%CL) are given for dijet mass m=200–1150 GeV with both jets having $|\eta|<2.0$ and the dijet system having $|\cos\theta^*|<0.67$. See their Table I for the list of limits. Supersedes ABE 93G.
- ³⁶ ABE 93G give cross section times branching ratio into light (d, u, s, c, b) quarks for $\Gamma = 0.02 \, M$. Their Table II gives limits for M = 200-900 GeV and $\Gamma = (0.02-0.2) \, M$.

LIMITS ON NEUTRAL PARTICLE PRODUCTION

Production Cross Section of Radiatively-Decaying Neutral Particle

VALUE (pb)	CL%	DOCUMENT ID	TECN COMMENT
\bullet \bullet We do not use t	he followir	ng data for averages, fit	s, limits, etc. • • •
<0.0008	95	² KHACHATRY17t ³ AAD 16A	HAWC γ from Sun CMS $Z\gamma$ resonance A ATLS $pp \rightarrow \gamma + \text{jet}$ M CMS $pp \rightarrow \gamma \gamma$ resonance
https://pdg.lbl.gov		Page 7	Created: 5/31/2024 10:15

<(0.043-0.17)	95	⁵ ABBIENDI	00 D	OPAL	$e^+e^- \rightarrow$	
<(0.05-0.8)	95	⁶ ABBIENDI	00 D	OPAL	$e^+e^- ightarrow$	
<(2.5–0.5)	95	⁷ ACKERSTAFF			$\chi^0 o$	$Y^0\gamma$
,					$x^0 o$	$Y^0\gamma$
<(1.6–0.9)	95	⁸ ACKERSTAFF	97 B	OPAL	$e^+e^- ightarrow X^0 ightarrow$	

 $^{^{}m 1}$ ALBERT 18C search for WIMP annihilation in Sun to long-lived, radiatively decaying mediator; no signal; limits set on $\sigma^{SD}(\chi p)$ assuming long-lived mediator.

Heavy Particle Production Cross Section

DOCUMENT ID TECN COMMENT CL%

• • • We do not use the following data for averages, fits, limits, etc. • •

O	0 , ,	•
¹ AAD	23P ATLS	exotica search in association with $h o \gamma \gamma$
² TUMASYAN	23BC CMS	γ -jet resonance search
³ TUMASYAN	23BF CMS	$pp + \gamma/Z + X$ search
⁴ TUMASYAN	22AG CMS	SIMP search
⁵ AAD	21F ATLS	monojet search
⁶ AAIJ	20AL LHCB	pp at 13 TeV, dimuon res-
7		onance
⁷ SIRUNYAN	20AY CMS	$\Upsilon(1S)\mu^+\mu^-$ decay states
⁸ SIRUNYAN	20Z CMS	multilepton BSM search, 13 TeV
⁹ AABOUD	19H ATLS	di-photon-jet resonance
¹⁰ AABOUD	19V ATLS	review, mediator-based DM
¹¹ SIRUNYAN	190 CMS	$pp ightarrow \ \gamma ot \!\!\!\!E_T$
¹² AABOUD	18CJ ATLS	$pp \rightarrow VV/\ell\ell/\ell\nu, V = W.Z.h$
¹³ AABOUD	18CM ATLS	$pp \rightarrow e\mu/e\tau/\mu\tau$
¹⁴ AAIJ	18AJ LHCB	$pp \rightarrow A' \rightarrow \mu^+\mu^-;$
		dark photon
¹⁵ BANERJEE	18 NA64	$eZ \rightarrow eZX(A')$
¹⁶ BANERJEE	18A NA64	$eZ \rightarrow eZA'$, $A' \rightarrow \chi\chi$

 $^{^2}$ KHACHATRYAN 17D search for new scalar resonance decaying to $Z\gamma$ with $Z
ightarrow e^+e^-$, $\mu^+\mu^-$ in pp collisions at 8 and 13 TeV; no signal seen.

 $^{^3}$ AAD 16AI search for excited quarks (EQ) and quantum black holes (QBH) in 3.2 fb $^{-1}$ at 13 TeV of data; exclude EQ below 4.4 TeV and QBH below 3.8 (6.2) TeV for RS1 (ADD) models. The visible cross section limit was obtained for 5 TeV resonance with $\sigma_G/M_G=2\%$.

 $^{^4\,\}rm KHACHATRYAN~16M$ search for $\gamma\gamma$ resonance using 19.7 fb $^{-1}$ at 8 TeV and 3.3 fb $^{-1}$ at 13 Tev; slight excess at 750 GeV noted; limit set on RS graviton.

 $^{^5\,\}mathrm{ABBIENDI}$ 00D associated production limit is for $m_{\chi0} =$ 90–188 GeV, $m_{\chi0} =$ 0 at $E_{\rm cm}$ =189 GeV. See also their Fig. 9.

 $^{^6}$ ABBIENDI 00D pair production limit is for $m_{\chi 0} =$ 45–94 GeV, $m_{\chi 0} =$ 0 at $E_{\rm cm} =$ 189 GeV. See also their Fig. 12.

 $^{^7}$ ACKERSTAFF 97B associated production limit is for $m_{\chi 0} =$ 80–160 GeV, $m_{\chi 0} =$ 0 from

 $^{10.0\,{\}rm pb}^{-1}$ at $E_{\rm cm}=161$ GeV. See their Fig. 3(a). 8 ACKERSTAFF 97B pair production limit is for $m_{\chi^0}=$ 40–80 GeV, $m_{\gamma^0}{=}0$ from $10.0 \, \text{pb}^{-1}$ at $E_{cm} = 161 \, \text{GeV}$. See their Fig. 3(b).

```
<sup>17</sup> MARSICANO
                                                                       18
                                                                               E137
                                                                                            e^+e^- \rightarrow A'(\gamma) visible
                                                                                           decay pp 	o Z' 	o \ell^+\ell^- at 13
                                            <sup>18</sup> SIRUNYAN
                                                                        18BB CMS
                                                                                                TeV
                                            <sup>19</sup> SIRUNYAN
                                                                        18DA CMS
                                                                                            pp \rightarrow Black Hole, string
                                                                                                ball, sphaleron
                                            <sup>20</sup> SIRUNYAN
                                                                        18DD CMS
                                                                                            pp \rightarrow jj
                                            <sup>21</sup> SIRUNYAN
                                                                        18DR CMS
                                                                                           pp \rightarrow b\mu \overline{\mu}
                                            <sup>22</sup> SIRUNYAN
                                                                        18DU CMS
                                                                                           pp \rightarrow \gamma \gamma
                                            <sup>23</sup> SIRUNYAN
                                                                        18ED CMS
                                                                                            pp \rightarrow V \rightarrow Wh; h \rightarrow
                                                                                                b\overline{b}; W \rightarrow \ell \nu
                                            <sup>24</sup> AABOUD
                                                                                           WH, ZH resonance
                                                                        17B ATLS
                                            <sup>25</sup> AAIJ
                                                                        17BR LHCB pp 
ightarrow \pi_{_{m{V}}}\pi_{_{m{V}}},\,\pi_{_{m{V}}} 
ightarrow jj
                                            26 AAD
                                                                        160 ATLS
                                                                                           \ell + (\ell s \text{ or jets})
                                            27 AAD
                                                                        16R ATLS
                                                                                           WW, WZ, ZZ resonance
                                            <sup>28</sup> KRASZNAHO...16
                                                                                           p^7 \text{Li} \rightarrow {}^8 \text{Be} \rightarrow X(17) N,
                                                                                                X(17) \rightarrow e^+e^-
                                            <sup>29</sup> LEES
                                                                        15E BABR e^+e^- collisions
                                            <sup>30</sup> ADAMS
                                                                        97B
                                                                                           m = 1.2 - 5 \text{ GeV}
                                                                               KTEV
< 10^{-36} - 10^{-33}
                                            <sup>31</sup> GALLAS
                                 90
                                                                        95
                                                                                TOF
                                                                                            m = 0.5 - 20 \text{ GeV}
<(4–0.3) \times 10<sup>-31</sup>
                                            32 AKESSON
                                 95
                                                                        91
                                                                                CNTR m = 0-5 \text{ GeV}
                                            <sup>33</sup> BADIER
< 2 \times 10^{-36}
                                                                               BDMP \tau = (0.05-1.) \times 10^{-8} \text{s}
CNTR \tau > 10^{-7} \text{ s}
                                 90
                                                                        86
< 2.5 \times 10^{-35}
                                            <sup>34</sup> GUSTAFSON
                                                                       76
```

 1 AAD 23P search in 22 channels for exotica produced in association with $h \to \gamma \gamma$ in 139 fb $^{-1}$ of data. No signal observed. Limits placed on production cross section in various channels.

 2 TUMASYAN 23BC search for $\gamma\text{-jet}$ resonance at CMS with 138 fb $^{-1}$ of data. No signal observed. Limits placed on quantum black hole and excited quark models.

³ TUMASYAN 23BF search for $pp \to pp + \gamma/Z + X$ search where X is missing particle using CMS-TOTEM with 37.2 fb⁻¹ of data. No signal observed. Limits placed on σ vs. m plane.

 4 TUMASYAN 22AG search for strongly interacting neutral massive particles via trackless jets with 16.1 fb $^{-1}$ at 13 TeV; no signal detected; limits placed in mass vs. cross section plane for various simplified models.

 5 AAD 21F search for hard monojet production at ATLAS with 139 $^{-1}$ of 13 TeV data. No signal observed. Limits placed on invisible production cross-section recoiling against ISR and interpreted in variety of BSM models.

⁶ AAIJ 20AL search for dimuon resonance from promptly decaying X particle; no signal; limits placed on m(X) up to 60 GeV depending on mixing in 2HDM .

 7 SIRUNYAN 20AY measured $\Upsilon(1\text{S})$ pair production cross section and searched for new states decaying into $\Upsilon(1S)\,\mu^+\,\mu^-$ at CMS with 13 TeV with 35.9 fb $^{-1}$. No signal is found and limits are set in $\sigma\cdot\text{BF}$ vs. mass plane for tetra-b-quarks with masses between 17.5 and 19 GeV and for generic search for narrow resonances with mass between 16.5 and 27 GeV.

 8 SIRUNYAN 20Z search for BSM physics via multilepton production with CMS at 13 TeV with 137 fb $^{-1}$; no signal is found and limits are set on type-III seesaw and other BSM models.

 9 AABOUD 19H searches for di-photon-jet resonance at 13 TeV and 36.7 fb $^{-1}$ of data; no signal found and limits placed on $\sigma \cdot$ BR vs. mass plane for various simplified models.

 10 AABOUD 19V review ATLAS searches for mediator-based DM at 7, 8, and 13 TeV with up to 37 fb $^{-1}$ of data; no signal found and limits set for wide variety of simplified models of dark matter.

 11 SIRUNYAN 190 search for $pp\to \gamma \not\!\! E_T$ at 13 TeV with 36.1 fb $^{-1}$; no signal found and limits set for various simplified models.

- ¹² AABOUD 18CJ make multichannel search for $pp \to VV/\ell\ell/\ell\nu$, V=W,Z,h at 13 TeV, 36.1 fb⁻¹; no signal found; limits placed for several BSM models.
- ¹³ AABOUD 18CM search for lepton-flavor violating resonance in $pp \rightarrow e\mu/e\tau/\mu\tau$ at 13 TeV, 36.1 fb⁻¹; no signal is found and limits placed for various BSM models.
- ¹⁴ AAIJ 18AJ search for prompt and delayed dark photon decay $A' \rightarrow \mu^+\mu^-$ at LHCb detector using 1.6 fb⁻¹ of pp collisions at 13 TeV; limits on m(A') vs. kinetic mixing are set.
- ¹⁵ BANERJEE 18 search for dark photon A'/16.7 MeV boson X at NA64 via $eZ \rightarrow eZX(A')$; no signal found and limits set on the $X-e^-$ coupling ϵ_e in the range $1.3 \times 10^{-4} \le \epsilon_e \le 4.2 \times 10^{-4}$ excluding part of the allowed parameter space.
- ¹⁶ BANERJEE 18A search for invisibly decaying dark photons in $eZ \rightarrow eZA'$, $A' \rightarrow$ invisible; no signal found and limits set on mixing for m(A') < 1 GeV.
- ¹⁷ MARSICANO 18 search for dark photon $e^+e^- \rightarrow A'(\gamma)$ visible decay in SLAC E137 e beam dump data. No signal observed and limits set in ϵ coupling vs m(A') plane, see their figure 7.
- ¹⁸ SIRUNYAN 18BB search for high mass dilepton resonance; no signal found and exclude portions of p-space of Z', KK graviton models.
- ¹⁹ SIRUNYAN 18DA search for $pp \rightarrow \text{Black Hole}$, string ball, sphaleron via high multiplicity events at 13 TeV, 35.9 fb⁻¹; no signal, require e.g. m(BH) > 10.1 TeV.
- ²⁰ SIRUNYAN 18DD search for $pp \to jj$ deviations in dijet angular distribution. No signal observed. Set limits on large extra dimensions, black holes and DM mediators e.g. m(BH) > 5.9–8.2 TeV.
- ²¹ SIRUNYAN 18DR search for dimuon resonance in $pp \to b\mu\overline{\mu}$ at 8 and 13 TeV. Slight excess seen at m($\mu\overline{\mu}$) \sim 28 GeV in some channels.
- ²² SIRUNYAN 18DU search for high mass diphoton resonance in $pp \to \gamma \gamma$ at 13 TeV using 35.9 fb⁻¹; no signal; limits placed on RS Graviton, LED, and clockwork.
- ²³ SIRUNYAN 18ED search for $pp \to V \to Wh$; $h \to b\overline{b}$; $W \to \ell \nu$ at 13 TeV with 35.9 fb⁻¹; no signal; limits set on m(W') > 2.9 TeV.
- ²⁴ AABOUD 17B exclude m(W', Z') < 1.49–2.31 TeV depending on the couplings and W'/Z' degeneracy assumptions via WH, ZH search in pp collisions at 13 TeV with 3.2 fb⁻¹ of data.
- 25 AAIJ 17BR search for long-lived hidden valley pions from Higgs decay. Limits are set on the signal strength as a function of the mass and lifetime of the long-lived particle in their Fig. 4 and Tab. 4.
- ²⁶ AAD 160 search for high E_T ℓ + (ℓ s or jets) with 3.2 fb⁻¹ at 13 TeV; exclude micro black holes mass < 8 TeV (Fig. 3) for models with two extra dimensions.
- ²⁷ AAD 16R search for WW, WZ, ZZ resonance in 20.3 fb⁻¹ at 8 TeV data; limits placed on massive RS graviton (Fig. 4).
- ²⁸ KRASZNAHORKAY 16 report $p \text{Li} \rightarrow \text{Be} \rightarrow e \overline{e} N 5 \sigma$ resonance at 16.7 MeV– possible evidence for nuclear interference or new light boson . However, such nuclear interference was ruled out already by ZANG 17.
- ²⁹ LEES 15E search for long-lived neutral particles produced in e^+e^- collisions in the Upsilon region, which decays into e^+e^- , $\mu^+\mu^-$, $e^\pm\mu^\mp$, $\pi^+\pi^-$, K^+K^- , or $\pi^\pm K^\mp$. See their Fig. 2 for cross section limits.
- 30 ADAMS 97B search for a hadron-like neutral particle produced in pN interactions, which decays into a ρ^0 and a weakly interacting massive particle. Upper limits are given for the ratio to K_L production for the mass range 1.2–5 GeV and lifetime 10^{-9} – 10^{-4} s. See also our Light Gluino Section.
- 31 GALLAS 95 limit is for a weakly interacting neutral particle produced in 800 GeV/c p N interactions decaying with a lifetime of 10^{-4} – 10^{-8} s. See their Figs. 8 and 9. Similar limits are obtained for a stable particle with interaction cross section 10^{-29} – 10^{-33} cm 2 . See Fig. 10.

- 32 AKESSON 91 limit is from weakly interacting neutral long-lived particles produced in $_{p}$ N reaction at 450 GeV/c performed at CERN SPS. Bourquin-Gaillard formula is used as the production model. The above limit is for $\tau > 10^{-7}$ s. For $\tau > 10^{-9}$ s, $\sigma < 10^{-30}$ cm $^{-2}$ /nucleon is obtained.
- 33 BADIER 86 looked for long-lived particles at 300 GeV π^- beam dump. The limit applies for nonstrongly interacting neutral or charged particles with mass >2 GeV. The limit applies for particle modes, $\mu^+\pi^-$, $\mu^+\mu^-$, $\pi^+\pi^-$ X, $\pi^+\pi^-\pi^\pm$ etc. See their figure 5 for the contours of limits in the mass- τ plane for each mode.
- 34 GUSTAFSON 76 is a 300 GeV FNAL experiment looking for heavy (m>2 GeV) long-lived neutral hadrons in the M4 neutral beam. The above typical value is for m=3 GeV and assumes an interaction cross section of 1 mb. Values as a function of mass and interaction cross section are given in figure 2.

Production of New Penetrating Non- ν Like States in Beam Dump

<u>VALUE</u>	DOCUMENT ID			COMMENT
• • • We do not use the follow	ing data for averages	s, fits,	limits, e	etc. • • •
	¹ ABRATENKO			
	² ANDREEV	22A	NA64	search for new boson X
	³ ANDREEV	21	NA64	in $eZ \rightarrow eZX$ search for new boson X in $eZ \rightarrow eZX$
	⁴ LOSECCO	81	CALO	28 GeV protons

- ¹ ABRATENKO 22A search for LLPs from kaon decay in MicroBooNE absorber; no signal observed; limits placed for heavy neutral leptons (HNLs) and Higgs portal scalars (HPSs) in the MeV mass range.
- ² ANDREEV 22A search for new light B-L gauge boson $Z' \to \nu \overline{\nu}$ in electron beam dump at NA64; no signal observed; limits set in m(Z') vs coupling plane for m(Z') $\sim 10^{-6}$ –1 GeV.
- ³ANDREEV 21 search for new invisibly decaying boson X in $eZ \rightarrow eZX$ at NA64. No signal observed. Limits set in coupling vs. m(X) plane for m(X) $\sim 10^{-3}$ to 1 GeV.
- 4 No excess neutral-current events leads to $\sigma(\text{production}) \times \sigma(\text{interaction}) \times \text{acceptance}$ $< 2.26 \times 10^{-71} \text{ cm}^4/\text{nucleon}^2$ (CL = 90%) for light neutrals. Acceptance depends on models (0.1 to 4. \times 10 $^{-4}$).

LIMITS ON CHARGED PARTICLES IN e^+e^-

Heavy Particle Production Cross Section in e⁺e⁻

Ratio to $\sigma(e^+e^- \to \mu^+\mu^-)$ unless noted. See also entries in Free Quark Search and Magnetic Monopole Searches.

VALUE	CL%	DOCUMENT ID		TECN	COMMENT			
• • • We do not use the following data for averages, fits, limits, etc. • •								
<1 × 10 ⁻³	90	¹ ADACHI ² KILE ³ ABLIKIM ⁴ ACKERSTAFF	18 17A	ALEP BES3	search for LLP in B decays $e^+e^- oup 4$ jets $e^+e^- oup \ell \overline{\ell} \gamma$ $Q{=}1,2/3,~m{=}45{-}89.5~{\rm GeV}$			
$<2 \times 10^{-5}$ $<1 \times 10^{-5}$ $<2 \times 10^{-3}$ $<(10^{-2}-1)$	95 95 90 95	⁵ ABREU ⁶ BARATE ⁷ AKERS ⁷ AKERS ⁸ BUSKULIC ⁹ ADACHI	97K 95R 95R 93C	ALEP OPAL OPAL ALEP	Q=1, $m=5-45$ GeV Q=2, $m=5-45$ GeV			
$<7 \times 10^{-2}$	90	¹⁰ ADACHI			Q = 1, m = 125 GeV			
https://pdg.lbl.g	gov	Page 11		Cr	eated: 5/31/2024 10:15			

 $<1.6 \times 10^{-2}$ 95 11 KINOSHITA 82 PLAS Q=3–180, m <14.5 GeV $<5.0 \times 10^{-2}$ 90 12 BARTEL 80 JADE Q=(3,4,5)/3 2–12 GeV

Branching Fraction of Z^0 to a Pair of Stable Charged Heavy Fermions

<u>VALUE</u>	CL%	DOCUMENT ID	1	<u>TECN</u>	COMMENT	
• • • We do not use	the followin	g data for average	es, fits,	limits, e	etc. • • •	
$< 5 \times 10^{-6}$	95	¹ AKERS	95 R	OPAL	m= 40.4-45.6 GeV	
$< 1 \times 10^{-3}$	95	AKRAWY	900	OPAL	$m = 29-40 \mathrm{GeV}$	

 $^{^1}$ AKERS 95R give the 95% CL limit $\sigma(X\overline{X})/\sigma(\mu\mu)<1.8\times10^{-4}$ for the pair production of singly- or doubly-charged stable particles. The limit applies for the mass range 40.4–45.6 GeV for X^\pm and < 45.6 GeV for $X^{\pm\pm}$. See the paper for bounds for $Q=\pm2/3,\,\pm4/3.$

 $^{^1}$ ADACHI 23K search for spin-0 LLP called S in B decays. No signal observed. Limits placed in branching fraction vs. m(S) plane.

 $^{^2}$ KILE 18 investigate archived ALEPH $e^+\,e^- \to 4$ jets data and see 4–5 σ excess at 110 GeV.

³ ABLIKIM 17AA search for dark photon $A \to \ell \bar{\ell}$ at 3.773 GeV with 2.93 fb⁻¹. Limits are set in ϵ vs m(A) plane.

⁴ ACKERSTAFF 98P search for pair production of long-lived charged particles at $E_{\rm cm}$ between 130 and 183 GeV and give limits $\sigma < (0.05-0.2)$ pb (95%CL) for spin-0 and spin-1/2 particles with m=45-89.5 GeV, charge 1 and 2/3. The limit is translated to the cross section at $E_{\rm cm}=183$ GeV with the s dependence described in the paper. See their Figs. 2–4.

⁵ ABREU 97D search for pair production of long-lived particles and give limits $\sigma < (0.4-2.3)$ pb (95%CL) for various center-of-mass energies $E_{\rm cm} = 130-136$, 161, and 172 GeV, assuming an almost flat production distribution in $\cos\theta$.

 $^{^6}$ BARATE 97K search for pair production of long-lived charged particles at $E_{\rm Cm}=130,\,136,\,161,\,{\rm and}\,172$ GeV and give limits $\sigma<(0.2-0.4)\,{\rm pb}\,(95\%{\rm CL})$ for spin-0 and spin-1/2 particles with $m{=}45{-}85$ GeV. The limit is translated to the cross section at $E_{\rm cm}{=}172$ GeV with the $E_{\rm cm}$ dependence described in the paper. See their Figs. 2 and 3 for limits on J=1/2 and J=0 cases.

⁷ AKERS 95R is a CERN-LEP experiment with W_{cm} $\sim m_Z$. The limit is for the production of a stable particle in multihadron events normalized to $\sigma(e^+e^- \to \text{hadrons})$. Constant phase space distribution is assumed. See their Fig. 3 for bounds for $Q=\pm 2/3$, $\pm 4/3$.

⁸ BUSKULIC 93C is a CERN-LEP experiment with $W_{cm} = m_Z$. The limit is for a pair or single production of heavy particles with unusual ionization loss in TPC. See their Fig. 5 and Table 1.

and Table 1. 9 ADACHI 90C is a KEK-TRISTAN experiment with $W_{\rm cm}=52\text{--}60$ GeV. The limit is for pair production of a scalar or spin-1/2 particle. See Figs. 3 and 4.

 $^{^{10}}$ ADACHI 90E is KEK-TRISTAN experiment with W_{cm} = 52–61.4 GeV. The above limit is for inclusive production cross section normalized to $\sigma(e^+e^-\to\mu^+\mu^-)\cdot\beta(3-\beta^2)/2$, where $\beta=(1-4m^2/\mathrm{W}_{cm}^2)^{1/2}$. See the paper for the assumption about the production mechanism.

 $^{^{11}}$ KINOSHITA 82 is SLAC PEP experiment at $\rm W_{cm}=29~GeV$ using lexan and $\rm ^{39}Cr$ plastic sheets sensitive to highly ionizing particles.

 $^{^{12}}$ BARTEL 80 is DESY-PETRA experiment with W_{cm} = 27–35 GeV. Above limit is for inclusive pair production and ranges between $1.\times10^{-1}$ and $1.\times10^{-2}$ depending on mass and production momentum distributions. (See their figures 9, 10, 11).

LIMITS ON CHARGED PARTICLES IN HADRONIC REACTIONS

MASS LIMITS for Long-Lived Charged Heavy Fermions

Limits are for spin 1/2 particles with no color and $SU(2)_L$ charge. The electric charge Q of the particle (in the unit of e) is therefore equal to its weak hypercharge. Pair production by Drell-Yan like γ and Z exchange is assumed to derive the limits.

VALUE (GeV)	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
ullet $ullet$ We do not use the	following	data for averages,	fits,	limits, et	:c. • • •
			23BT	ATLS	multi-charged LLP
			20N	CMS	disappearing track LLP
>660				ATLS	Q =2
>200	95	⁴ CHATRCHYAN			Q = 1/3
>480	95	⁴ CHATRCHYAN			Q = 2/3
>574		⁴ CHATRCHYAN			Q =1
>685		⁴ CHATRCHYAN			Q =2
>140	95	⁵ CHATRCHYAN	13 AR	CMS	Q = 1/3
>310	95	⁵ CHATRCHYAN	13 AR	CMS	Q = 2/3

 $^{^1}$ AAD 23BT search for multi-charged long-lived particles with ATLAS detector using 139 fb $^{-1}$. No signal observed. Limits placed on LLP mass vs. charge plane.

Heavy Particle Production Cross Section

VALUE (nb)	CL% DOCUMENT ID	TECN	COMMENT
• • • We do not use t	the following data for aver	rages, fits, lim	its, etc. • • •
	¹ AAD	24B ATLS	non-resonant jet search
	² AAD	22G ATLS	vector-like matter search
	³ TUMASYAN	22H CMS	search for new matter via multileptons
	⁴ SIRUNYAN	21T CMS	model independent search
	⁵ SIRUNYAN	20c CMS	4t search via multileptons
	⁶ AABOUD	19AA ATLS	BSM search
	⁷ AABOUD	19Q ATLS	single top $+MET$
	⁸ AABOUD	17D ATLS	anomalous <i>W W j j</i> , <i>W Z j j</i>
	⁹ AABOUD	17L ATLS	m $>$ 870 GeV, $Z(ightarrow~ u u$) tX
	¹⁰ SIRUNYAN	17B CMS	t H
	¹¹ SIRUNYAN	17C CMS	Z + (t or b)
	¹² SIRUNYAN	17J CMS	$X_{5/3} \rightarrow tW$
	13 AAIJ	15BD LHCB	m=124-309 GeV
	¹⁴ AAD	13AH ATLS	q =(2-6) <i>e</i> , <i>m</i> =50-600 GeV
$< 1.2 \times 10^{-3}$	95 ¹⁵ AAD	11ı ATLS	q =10e, m=0.2-1 TeV
$< 1.0 \times 10^{-5}$	$_{95}$ 16,17 AALTONEN	09z CDF	m>100 GeV, noncolored
$<4.8 \times 10^{-5}$	$95~^{16,18}$ AALTONEN	09z CDF	m>100 GeV, colored
$< 0.31 – 0.04 \times 10^{-3}$	95 ¹⁹ ABAZOV	09м D0	pair production
https://pdg.lbl.gov	Page 13	C	Freated: 5/31/2024 10:15

 $^{^2}$ SIRUNYAN 20N search for LLPs using disappearing track signature at CMS at 13 TeV with 101 fb $^{-1}$; no signal; limits placed on long-lived winos and higgsinos from SUSY depending on mass and lifetime: e.g. at 95% CL, for a purely higgsino neurtalino, m(chargino) > 750 (175) GeV for $\tau=3$ (0.05) ns, and for a purely wino neutralino, m(chargino) > 884 (474) GeV for $\tau=3$ (0.2) ns.

³ AAD 15BJ use 20.3 fb⁻¹ of pp collisions at $E_{\rm cm}=8$ TeV. See paper for limits for $|Q|=3,\,4,\,5,\,6$.

 $^{^4}$ CHATRCHYAN 13AB use 5.0 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV and 18.8 fb $^{-1}$ at $E_{\rm cm}=8$ TeV. See paper for limits for $|Q|=3,\,4,\ldots,\,8.$

⁵ CHATRCHYAN 13AR use 5.0 fb⁻¹ of pp collisions at $E_{\rm cm}=7$ TeV.

< 0.19		²⁰ AKTAS	04 C	H1	m=3-10 GeV
< 0.05	95	²¹ ABE	92 J	CDF	m=50-200 GeV
<30-130		²² CARROLL		-	m=2-2.5 GeV
<100		²³ LEIPUNER	73	CNTR	m=3-11 GeV

 $^{^1}$ AAD 24B search for non-resonant jets +MET at $\sqrt{s}=$ 13 TeV with 139 fb $^{-1}.$ No excess observed. Limits placed on dark sector model mediator mass and coupling.

² AAD 22G search for single vector-like quark T with $T \to th$ in all hadronic mode with 139 fb⁻¹ at 13 TeV; no signal observed; limits placed in mass vs. coupling plane.

 $^{^3}$ TUMASYAN 22H search for new states of matter via non-resonant mutilepton production based on a luminosity of $138~{\rm fb}^{-1}$; no signal observed; limits placed on vector-like leptons, leptoquarks, and new fermions from type-III seesaw model.

 $^{^4}$ SIRUNYAN 21T perform model unspecific search for deviations from SM with CMS at 13 TeV with 35.9^{-1} fb data in numerous signature channels. No deviations from SM found.

⁵ SIRUNYAN 20C search for four top-quark production with decay to multileptons at CMS at 13 TeV with 137 fb⁻¹; no signal is found and limits are placed on the Higgs boson oblique parameter in the effective field theory framework (EFT) and the model parameters $(\tan \beta)$.

 $^{^6}$ AABOUD 19AA search for BSM physics at 13 TeV with 3.2 fb $^{-1}$ in > 10 5 regions of > 700 event classes; no significant signal found.

 $^{^7}$ AABOUD 19Q search for single top+MET events at 13 TeV with 36.1 fb $^{-1}$ of data; no signal found and limits set in σ or coupling vs. mass plane for variety of simplified models including DM and vector-like top quark T.

⁸ AABOUD 17D search for WWjj, WZjj in pp collisions at 8 TeV with 3.2 fb⁻¹; set limits on anomalous couplings.

⁹AABOUD 17L search for the pair production of heavy vector-like T quarks in the $Z(\rightarrow \nu\nu)tX$ final state.

 $^{^{10}}$ SIRUNYAN 17B search for vector-like quark $pp\to TX\to tHX$ in 2.3 fb $^{-1}$ at 13 TeV; no signal seen; limits placed.

¹¹ SIRUNYAN 17C search for vector-like quark $pp \to TX \to Z + (t \text{ or } b)$ in 2.3 fb⁻¹ at 13 TeV; no signal seen; limits placed.

 $^{^{12}}$ SIRUNYAN 17J search for $p\,p\to X_{5/3}\,X_{5/3}\to t\,W\,t\,W$ with 2.3 fb $^{-1}$ at 13 TeV. No signal seen: m(X) > 1020 (990) GeV for RH (LH) new charge 5/3 quark.

 $^{^{13}}$ AAIJ 15BD search for production of long-lived particles in pp collisions at $E_{\rm cm}=7$ and 8 TeV. See their Table 6 for cross section limits.

¹⁴ AAD 13AH search for production of long-lived particles with |q|=(2-6)e in pp collisions at $E_{cm}=7$ TeV with 4.4 fb⁻¹. See their Fig. 8 for cross section limits.

 $^{^{15}}$ AAD 11 search for production of highly ionizing massive particles in pp collisions at $E_{\rm cm}=7\,{\rm TeV}$ with L $=3.1~{\rm pb}^{-1}.$ See their Table 5 for similar limits for $|{\bf q}|=6e$ and 17e, Table 6 for limits on pair production cross section.

 $^{^{16}}$ AALTONEN 09Z search for long-lived charged particles in $p\overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV with $L=1.0~{\rm fb^{-1}}$. The limits are on production cross section for a particle of mass above 100 GeV in the region $|\eta|\lesssim 0.7,\,p_T>$ 40 GeV, and 0.4 $<\beta<1.0.$

¹⁷ Limit for weakly interacting charge-1 particle.

¹⁸ Limit for up-quark like particle.

 $^{^{19}}$ ABAZOV 09M search for pair production of long-lived charged particles in $p\overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV with L=1.1 fb $^{-1}$. Limit on the cross section of (0.31–0.04) pb (95% CL) is given for the mass range of 60–300 GeV, assuming the kinematics of stau pair production.

²⁰ AKTAS 04C look for charged particle photoproduction at HERA with mean c.m. energy of 200 GeV.

- 21 ABE 92J look for pair production of unit-charged particles which leave detector before decaying. Limit shown here is for m=50 GeV. See their Fig. 5 for different charges and stronger limits for higher mass.
- ²² CARROLL 78 look for neutral, S=-2 dihyperon resonance in $pp \to 2K^+X$. Cross section varies within above limits over mass range and $p_{lab}=5.1$ –5.9 GeV/c.
- 23 LEIPUNER 73 is an NAL 300 GeV p experiment. Would have detected particles with lifetime greater than 200 ns.

Heavy Particle Production Differential Cross Section

VALUE (cm ² sr ⁻¹ GeV ⁻¹)	CL 0/	DOCUMENT ID		TECN CUC	COMMENT
(cm ² sr ¹ GeV ¹)	<u>CL%</u>	DOCUMENT ID		TECN CHG	COMMENT
• • • We do not	use the fo	llowing data for a	verage	es, fits, limits,	etc. • • •
		¹ HAYRAPETY.	23F	CMS	$top o \ell s \; via \; EFT \; ops.$
$< 2.6 \times 10^{-36}$	90	² BALDIN	76	CNTR -	Q=1, $m=2.1-9.4$ GeV
$< 2.2 \times 10^{-33}$	90	³ ALBROW	75	SPEC \pm	$Q=$ ± 1 , $m=$ 4 -15 GeV
$<1.1 \times 10^{-33}$	90	³ ALBROW	75	SPEC \pm	$Q=\pm2$, $m=6-27$ GeV
$< 8. \times 10^{-35}$	90	⁴ JOVANOV	75	CNTR \pm	<i>m</i> =15–26 GeV
$< 1.5 \times 10^{-34}$	90	⁴ JOVANOV	75	CNTR \pm	$Q=\pm2$, $m=3-10$ GeV
$<6. \times 10^{-35}$	90	⁴ JOVANOV	75	CNTR \pm	$Q=\pm2$, $m=10-26$ GeV
$<1. \times 10^{-31}$	90	⁵ APPEL	74	CNTR \pm	<i>m</i> =3.2–7.2 GeV
$< 5.8 \times 10^{-34}$	90	⁶ ALPER	73	SPEC \pm	<i>m</i> =1.5–24 GeV
$<1.2 \times 10^{-35}$	90	⁷ ANTIPOV	71 B	CNTR -	Q=-, m=2.2-2.8
$< 2.4 \times 10^{-35}$	90	⁸ ANTIPOV	71 C	CNTR -	Q=-, m=1.2-1.7, 2.1-4
$< 2.4 \times 10^{-35}$	90	BINON	69	CNTR -	Q = -, m = 1 - 1.8 GeV
$< 1.5 \times 10^{-36}$		⁹ DORFAN	65	CNTR	Be target $m=3-7$ GeV
$< 3.0 \times 10^{-36}$		⁹ DORFAN	65	CNTR	Fe target $m=3-7$ GeV

- $^1\,\text{HAYRAPETYAN}$ 23F search for anomalous top \to leptons decay via effective operators. No signal observed. Limits placed on EFT operators.
- 2 BALDIN 76 is a 70 GeV Serpukhov experiment. Value is per Al nucleus at $\theta=0.$ For other charges in range -0.5 to -3.0, CL =90% limit is $(2.6\times10^{-36})/|(\text{charge})|$ for mass range $(2.1\text{--}9.4~\text{GeV})\times|(\text{charge})|$. Assumes stable particle interacting with matter as do antiprotons.
- 3 ALBROW 75 is a CERN ISR experiment with $E_{\rm cm}=53$ GeV. $\theta=40$ mr. See figure 5 for mass ranges up to 35 GeV.
- ⁴ JOVANOVICH 75 is a CERN ISR 26+26 and 15+15 GeV pp experiment. Figure 4 covers ranges Q = 1/3 to 2 and m = 3 to 26 GeV. Value is per GeV momentum.
- ⁵ APPEL 74 is NAL 300 GeV pW experiment. Studies forward production of heavy (up to 24 GeV) charged particles with momenta 24–200 GeV (–charge) and 40–150 GeV (+charge). Above typical value is for 75 GeV and is per GeV momentum per nucleon.
- ⁶ ALPER 73 is CERN ISR 26+26 GeV pp experiment. p > 0.9 GeV, $0.2 < \beta < 0.65$.
- 7 ANTIPOV 71B is from same 70 GeV p experiment as ANTIPOV 71C and BINON 69.
- ⁸ ANTIPOV 71C limit inferred from flux ratio. 70 GeV *p* experiment.
- 9 DORFAN 65 is a 30 GeV/c p experiment at BNL. Units are per GeV momentum per nucleus.

Long-Lived Heavy Particle Invariant Cross Section

<i>VALUE</i> (cm ² /GeV ² /N)	CL%	DOCUMENT ID		TECN CH	HG (COMMENT	
• • • We do not us	se the fol	lowing data for ave	rages	, fits, limits	s, etc.	• • •	
$< 5-700 \times 10^{-35}$ $< 5-700 \times 10^{-37}$	90 90	¹ BERNSTEIN ¹ BERNSTEIN		CNTR CNTR			
https://pdg.lbl.g	OV	Page 15		Cre	ated	: 5/31/2024	10:15

$< 2.5 \times 10^{-36}$	90	² THRON	85	CNTR -	Q=1, m=4-12 GeV
$< 1. \times 10^{-35}$	90	² THRON	85	CNTR +	Q=1, m=4-12 GeV
$< 6. \times 10^{-33}$	90	³ ARMITAGE	79	SPEC	<i>m</i> =1.87 GeV
$< 1.5 \times 10^{-33}$	90	³ ARMITAGE	79	SPEC	m=1.5-3.0 GeV
		⁴ BOZZOLI	79	CNTR \pm	Q=(2/3, 1, 4/3, 2)
$< 1.1 \times 10^{-37}$	90	⁵ CUTTS	78	CNTR	m=4-10 GeV
$< 3.0 \times 10^{-37}$	90	⁶ VIDAL	78	CNTR	<i>m</i> =4.5–6 GeV

¹BERNSTEIN 88 limits apply at x = 0.2 and $p_T = 0$. Mass and lifetime dependence of limits are shown in the regions: m=1.5-7.5 GeV and $\tau=10^{-8}$ -2 \times 10^{-6} s. First number is for hadrons; second is for weakly interacting particles.

THRON 85 is FNAL 400 GeV proton experiment. Mass determined from measured velocity and momentum. Limits are for $\tau > 3 \times 10^{-9}$ s.

antideuterons. 4 BOZZOLI 79 is CERN-SPS 200 GeV pN experiment. Looks for particle with au larger

Long-Lived Heavy Particle Production $(\sigma(\text{Heavy Particle}) / \sigma(\pi))$

VALUE	<u>EVTS</u>	DOCUMENT ID		TECN	<u>CHG</u>	COMMENT
• • • We do not u	se the following	data for averages	s, fits,	limits,	etc. •	• •
$< 10^{-8}$						$Q = (-5/3, \pm 2)$
	0	² BUSSIERE	80	CNTR	\pm	Q=(2/3,1,4/3,2)

 $^{^{1}}$ NAKAMURA 89 is KEK experiment with 12 GeV protons on Pt target. The limit applies for mass \lesssim 1.6 GeV and lifetime \gtrsim 10⁻⁷ s. ² BUSSIERE 80 is CERN-SPS experiment with 200–240 GeV protons on Be and Al target.

Production and Capture of Long-Lived Massive Particles

$VALUE (10^{-36} \text{ cm}^2)$	DOCUMENT ID		TECN	COMMENT
• • • We do not use the follo	wing data for ave	rages,	fits, limi	ts, etc. • • •
	¹ AAD		ATLS	search for captured LLPs
	² ACHARYA	21	INDU	dyons production, capture
<20 to 800	³ ALEKSEEV	76	ELEC	au=5 ms to 1 day
<200 to 2000	³ ALEKSEEV	76 B	ELEC	$ au{=}100$ ms to 1 day
<1.4 to 9	⁴ FRANKEL	75	CNTR	$ au{=}50$ ms to 10 hours
<0.1 to 9	⁵ FRANKEL	74	CNTR	$ au{=}1$ to 1000 hours

 $^{^{}m 1}$ AAD 21X search for LLPs which come to rest in ATLAS detector to deposit energy between collisions. No signal observed in $111 \; \mathrm{fb}^{-1}$ of data. Limits placed in lifetime vs. mass place assuming model with gluino hadrons: e.g. m > 1.4 TeV for $\tau \sim 10^{-5}$ to

³ ARMITAGE 79 is CERN-ISR experiment at $E_{\rm cm}=53$ GeV. Value is for x=0.1 and $p_T=0.15$. Observed particles at m=1.87 GeV are found all consistent with being

than 10^{-8} s. See their figure 11–18 for production cross-section upper limits vs mass. 5 CUTTS 78 is pBe experiment at FNAL sensitive to particles of $\tau > 5 \times 10^{-8}$ s. Value is for -0.3 < x < 0 and $p_T = 0.175$.

⁶ VIDAL 78 is FNAL 400 GeV proton experiment. Value is for x = 0 and $p_T = 0$. Puts lifetime limit of $< 5 \times 10^{-8}$ s on particle in this mass range.

See their figures 6 and 7 for cross-section ratio vs mass.

 $^{^{10^3}\,{\}rm sec.}$ $^2\,{\rm ACHARYA}$ 21 search for dyons (carrying electric and magnetic charge) and monopoles via production and capture in 6.46 fb $^{-1}$ of 13 TeV LHC data. No signal observed. Limits placed in mass vs. magnetic charge plane.

 $^{^3}$ ALEKSEEV 76 and ALEKSEEV 76B are 61–70 GeV p Serpukhov experiment. Cross section is per Pb nucleus.

⁴ FRANKEL 75 is extension of FRANKEL 74. ⁵ FRANKEL 74 looks for particles produced in thick Al targets by 300–400 GeV/c protons.

Long-Lived Particle (LLP) Search at Hadron Collisions

Limits are for cross section times branching ratio.

E (fb) CL% DOCUMENT ID TECN CO

VALUE (fb)	CL%	DOCUMENT ID	TECN	COMMENT
• • • We do	not use	the following data f	or averages, fi	ts, limits, etc. • • •
		¹ AAD	23AM ATLS	LLP higgsino search
		² AAD	23AR ATLS	LLP search via displaced γ
		³ AAD	23BQ ATLS	displaced dimuon search
		⁴ AAD	23co ATLS	highly ionizing LLP/monopole
		⁵ AAD	23G ATLS	heavy highly ionizing LLP search
		⁶ AAD	23ı ATLS	light LLP via collimated decays
		⁷ TUMASYAN	23AO CMS	LLP search via trackless jets
		⁸ TUMASYAN	23G CMS	LLP search via displaced dimuons
		⁹ AAD	22H ATLS	LLP search with μ spectrometer
		¹⁰ AAD	22K ATLS	LLP search via displaced jets in
		11	00: ATL 6	the calorimeter
		¹¹ AAD	22U ATLS	LLP/chargino search via tracklet
		¹² AAIJ	22U LHCB	LLP semileptonic decay to muon
		13 ACHARYA	22A MOED	. ,
		14 TUMASYAN	22AD CMS	heavy neutral lepton LLP search
		¹⁵ TUMASYAN	22AF CMS	LLP search via displaced lepton tracks
		¹⁶ TUMASYAN	22м CMS	LLP search via ZH production
		¹⁷ TUMASYAN	22N CMS	LLP search via dimuons
		¹⁸ AAD	21AL ATLS	charged LLPs search
		¹⁹ AAD	21BA ATLS	LLP from higgs decay search
		²⁰ AAIJ	21V LHCB	$LLP o \ e\mu u$ search
		²¹ SIRUNYAN	21AF CMS	LLP search via displaced jets
< 0.07	95	²² SIRUNYAN	21U CMS	LLP search via displaced jets
		²³ TUMASYAN	21 CMS	LLP endcap muon detector
		²⁴ AAD	20D ATLS	searches $pp \rightarrow \text{LLPs}$ at 13 TeV
		²⁵ AAD	20J ATLS	scalar boson decay to LLPs
		²⁶ AAD	20M ATLS	LLP top squark decay to μ
		²⁷ AAD	20P ATLS	LLP dark photon search
		²⁸ AAIJ	20AL LHCB	pp dimuon resonance
		²⁹ BALL	20	LLP milli-charged particles at LHC
		³⁰ AABOUD	19AE ATLS	pp at 13 TeV
		³¹ AABOUD	19AK ATLS	$pp \rightarrow \Phi \rightarrow ZZ_d$
		32 AABOUD	19AM ATLS	DY multi-charged LLP production
		³³ AABOUD	19AO ATLS	LLP via displaced jets
		³⁴ AABOUD	19AT ATLS	heavy, charged LLPs
		³⁵ AABOUD	19G ATLS	LLP decay to $\mu^+\mu^-$
		³⁶ SIRUNYAN	19вн CMS	LLP via displaced jets
		³⁷ SIRUNYAN	19BT CMS	LLP via displaced jets+MET
		³⁸ SIRUNYAN	19ca CMS	LLP $ ightarrow \gamma$ search
		³⁹ SIRUNYAN	19Q CMS	pp ightarrow j + displaced dark quark
		⁴⁰ SIRUNYAN	18AW CMS	jet Long-lived particle search
		41 AAIJ	16AR LHCB	Long-lived particle search $H \rightarrow XX$ LLPs
		42 KHACHATRY		$H \rightarrow XX$ LLPs direct production: HSCPs
<2000	90	43 BADIER		$\tau = (0.05-1.) \times 10^{-8} \text{s}$
\2000	50	DADIEN	30 DDIVII	, — (0.03 1.) \ 10 3

- ¹ AAD 23AM search for long-lived higgsinos from gauge-mediation which decay to Z or H. No signal observed. Limits placed in $c\tau$ vs $m(\chi)$ plane for various simplified models.
- 2 AAD 23AR search for long-lived particles via decay to displaced γ with 139 fb $^{-1}$ of data. No signal observed. Limits placed in m vs. τ and BF vs. τ planes for gauge-mediated SUSY model
- ³ AAD 23BQ search for displaced dimuon events in ATLAS detector. No signal observed. Limits placed in smuon lifetime vs. mass plane for long-lived smuon model.
- 4 AAD 23CO search for monopoles and high-electric-charge LLPs in ATLAS with 139 fb $^{-1}$ of data. No signal observed. Limits placed in mass vs. charge plane.
- 5 AAD 23G search for heavy highly ionizing long-lived particles with 139 fb $^{-1}$ of data. No signal observed. Limits placed in m vs. τ plane for several SUSY models.
- ⁶ AAD 23I search for light long-lived particles decaying to collimated decay products (e.g. dileptons). No signal observed. Limits placed in BF vs. τ plane.
- ⁷ TUMASYAN 23AO search for trackless jets from LLP production at CMS. No signal observed. Limits placed for SUSY model with long-lived neutralino in m(χ) vs. $c\tau$ plane.
- ⁸ TUMASYAN 23G search for LLP decaying to displaced dimuons at CM with 97.6 fb⁻¹ fb of data. No signal observed. Limits placed in $c\tau$ vs. m plane for hidden Abelian Higgs simplified model.
- ⁹ AAD 22H search for scalar mediator decay to two LLPs which decay in muon chambers with 139 fb⁻¹ at 13 TeV; no signal detected; limits placed on various simplified models.
- 10 AAD 22K search for LLP pair production via scalar mediator with LLP decay in hadron calorimeter; no signal detected; limits placed for various simplified models.
- 11 AAD 22U search for chargino LLP via disappearing tracks; no signal observed; limits placed in m(chargino) vs lifetime plane for cases of higgsino- or wino-like chargino
- 12 AAIJ 22 U reports search for LLP production at LHCB with $^{5.4}$ fb $^{-1}$ at 13 TeV followed by semileptonic decay to muon; no signal detected; limits placed in mass or lifetime vs. cross section plane for several simplified models.
- 13 ACHARYA 22A report search for monople and HECO production via DY at 8 TeV LHC with 2.2 fb $^{-1}$ with MoEDAL detector; no signal detected; limits placed in mass vs. cross section plane for various electric/magnetic charge scenarios.
- 14 TUMASYAN 22AD search for heavy neutral lepton which decays as LLP to trilepton state with 138 fb $^{-1}$ at 13 TeV; no signal detected; limits placed in mass vs. coupling plane.
- 15 TUMASYAN 22AF search for LLPs via displaced lepton vertices. The analysis is performed with an integrated luminosity of 118 (113) fb $^{-1}$ when analyzing the ee ($e\mu$, $\mu\mu$) channel; no signal detected; limits placed for a variety of simplified models.
- 16 TUMASYAN 22M search in 117 fb $^{-1}$ of 13 TeV data for ZH production with $H \to SS$ where S is a LLP; no signal observed; limits placed in decay length vs. branching fraction plane.
- 17 TUMASYAN 22N search in 101 fb $^{-1}$ of 13 TeV data for LLP production via decay to dimuons; no signal observed; limits placed on mass vs. coupling or lifetime for a variety of simplified models.
- 18 AAD 21AL reports on ATLAS search for long-lived charged particles with 139 fb $^{-1}$ at 13 TeV. No signal observed. Limits placed in lifetime vs. mass plane: e.g. for $\tau(\text{LLP})$ ~ 0.1 ns, m(selectron) > 720 GeV.
- 19 AAD 21BA search for long-lived particles from ZH production $(H \to b \, \overline{b})$ with 2 displaced vertices in 139 fb $^{-1}$ of data at 13 TeV. No signal detected. Limits placed in branching fraction vs. lifetime plane.
- ²⁰ AAIJ 21V search for $pp \to \text{LLP} + \text{LLP}$ with LLP $\to e\mu\nu$ in the lifetime range between 2 and 50 ps at LHCb with 5.4 fb⁻¹ at 13 TeV. No signal observed. Limits placed in LLP cross section vs. mass or lifetime plane for m(LLP) \sim 7 to 50 GeV.
- 21 SIRUNYAN 21 AF search for LLPs at CMS via jets with 2 displaced vertices in 140 fb $^{-1}$ of data at 13 TeV. No signal observed. Limits placed for RPV SUSY models in which a long-lived neutralino or gluino decays into a multijet final state with top, bottom, and strange quarks.

- ²² SIRUNYAN 210 search for long-lived particles (LLPs) via displaced jets at CMS with LHC13 and 132 fb⁻¹. No signal detected. Limits placed on simplified model production of LLP $X \to q \overline{q}$ with $\sigma < 0.07$ fb for m(X) > 500 GeV and c $\tau \sim 2$ to 250 mm.
- 23 TUMASYAN 21 search for long-lived particles in CMS muon endcap detector in 137 fb $^{-1}$ of data at 13 TeV. No signal detected. Limits are placed depending on the branching fraction of Higgs boson to LLP decaying to $d\,d,\,b\,b,$ and $\tau^+\,\tau^-,$ depending on proper decay length, and LLP masses.
- ²⁴ AAD ^{20D} search for opposite-sign dileptons originating from long-lived particles in pp collisions at 13 Tev with 32.8 fb⁻¹; limits placed in squark cross section vs. $c\tau$ plane for RPV SUSY.
- 25 AAD 20J search for scalar boson decay to two long-lived particles; no signal; limits placed in BF vs $c\tau$ plane for various mass hypotheses. This search is also combined with other ATLAS displaced-jet searches.
- ²⁶ AAD 20M search for long-lived top-squarks decay to μ and hadrons; no signal; limits placed in cross section vs. mass and mass vs. lifetime planes .
- AAD 20P search for long-lived dark photons produced from the decay of a scalar boson, with each dark photon decaying into displaced collimated leptons or light hadrons at 13 TeV with 36 fb⁻¹; no signal; limits placed in $\sigma \cdot BF$ vs. $c\tau$ and other planes.
- ²⁸ AAIJ 20AL search for long-lived $X \to \mu^+\mu^-$ decays in 5.1 fb $^{-1}$ of LHCb data at 13 TeV; no signal; limits placed on m(X) up to 3 GeV depending on kinetic mixing.
- ²⁹ BALL 20 search for long-lived milli-charged particles produced at LHC; limits placed in charge vs. mass plane (Fig. 8).
- 30 AABOUD 19AE search for long-lived particles via displaced jets using $10.8~{\rm fb}^{-1}$ or $33.0~{\rm fb}^{-1}$ data (depending on a trigger) at 13 TeV; no signal found and limits set in branching ratio vs. decay length plane.
- ³¹ AABOUD 19AK searches for long-lived particle Z_d via $pp \to \phi \to ZZ_d$ at 13 TeV with 36.1 fb⁻¹; no signal found and limits set in $\sigma \times$ BR vs. lifetime plane for simplified model.
- ³² AABOUD 19AM search for Drell-Yan (DY) production of long-lived multi-charge particles at 13 TeV with 36.1 fb⁻¹ of data; no signal found and exclude 50 GeV < m(LLMCP) < 980–1220 GeV for electric charge |q| = (2-7)e.
- 33 AABOUD 19AO search for neutral long-lived particles producing displaced jets at 13 TeV with 36.1 fb $^{-1}$ of data; no signal found and exclude regions of σ · BR vs. lifetime plane for various models.
- 34 AABOUD 19AT search for heavy, charged long-lived particles at 13 TeV with 36.1 fb⁻¹; no signal found and upper limits set on masses of various hypothetical particles.
- ³⁵ AABOUD 19G search for long-lived particle with decay to $\mu^+\mu^-$ at 13 TeV with 32.9 fb⁻¹; no signal found and limits set in combinations of lifetime, mass and coupling planes for various simplified models.
- 36 SIRUNYAN 19BH search for long-lived SUSY particles via displaced jets at 13 TeV with 35.9 fb $^{-1}$; no signal found and limits placed in mass vs lifetime plane for various hypothetical models.
- 37 SIRUNYAN 19BT search for displaced jet(s)+ \cancel{E}_T at 13 TeV with 137 fb $^{-1}$; no signal found and limits placed in mass vs lifetime plane for gauge mediated SUSY breaking models.
- 38 SIRUNYAN 19CA search for gluino/squark decay to long-lived neutralino, decay to γ in GMSB; no signal, limits placed in m(χ) vs. lifetime plane for SPS8 GMSB benchmark point .
- ³⁹ SIRUNYAN 19Q search for $pp \to j$ + displaced jet via dark quark with 13 TeV at 16.1 fb⁻¹; no signal found and limits set in mass vs lifetime plane for dark quark/dark pion model.
- 40 SIRUNYAN 18AW search for very long lived particles (LLPs) decaying hadronically or to $\mu \overline{\mu}$ in CMS detector; none seen/limits set on lifetime vs. cross section.
- 41 AAIJ 16AR search for long lived particles from $H \to XX$ with displaced X decay vertex using 0.62 fb⁻¹ at 7 TeV; limits set in Fig. 7.

Long-Lived Heavy Particle Cross Section

VALUE (pb/sr)	CL%	DOCUMENT	- ID	TECN	COMMENT
• • • We do not	use the follow	wing data for a	averages, f	its, limit	s, etc. • •
<34	95	$^{ m 1}$ RAM	94	SPEC	$1015 < m_{\chi^{++}} < 1085 \text{ MeV}$
<75	95	$^{ m 1}$ RAM			$920 < m_{\chi^{++}} < 1025 \text{ MeV}$

 $^{^1}$ RAM 94 search for a long-lived doubly-charged fermion X^{++} with mass between m_N and m_N+m_π and baryon number +1 in the reaction $p\,p\to X^{++}\,n$. No candidate is found. The limit is for the cross section at 15° scattering angle at 460 MeV incident energy and applies for $\tau(X^{++})\gg 0.1\,\mu\mathrm{s}.$

LIMITS ON CHARGED PARTICLES IN COSMIC RAYS

Heavy Particle Flux in Cosmic Rays

VALUE (cm	$-2_{sr}-1_{s}-1_{)}$	CL% EV	/TS	DOCUMENT ID		TECN	COMMENT
• • • We	e do not use	the follo	wing	data for averages, f	its, lir	nits, etc.	• • •
< 6.2	$\times 10^{-10}$	90	0	¹ ALEMANNO	22	DAMP	fractionally charged
				² CAO	22		particles in space superheavy DM $\rightarrow \gamma$ rays
				³ ALVIS	18	MAJD	Fractionally charged
< 1	$\times 10^{-8}$	90		⁴ AGNESE	15	CDM2	Q = 1/6
~ 6	× 10 ⁻⁹		2	⁵ SAITO	90		$Q \simeq 14, m \simeq 370 m_p$
< 1.4	$\times 10^{-12}$	90	0	⁶ MINCER	85	CALO	$m \geq 1 \text{ TeV}$
				⁷ SAKUYAMA	83 B	PLAS	$m \sim ~1~{\sf TeV}$
< 1.7	\times 10 ⁻¹¹	99	0	⁸ BHAT	82	CC	
< 1.	$\times 10^{-9}$	90	0	⁹ MARINI	82	CNTR	$Q=1$, $m\sim 4.5 m_p$
2.	$\times 10^{-9}$		3	¹⁰ YOCK	81		$Q=1, m\sim 4.5m_p^r$
			3	¹⁰ YOCK	81	SPRK	Fractionally charged
3.0	$\times 10^{-9}$		3	¹¹ YOCK	80	SPRK	$m \sim 4.5 m_D$
(4 ± 1)	$(1) \times 10^{-11}$		3	GOODMAN	79	ELEC	$m \geq 5 \text{ GeV}$
< 1.3	\times 10 ⁻⁹	90		¹² BHAT	78	CNTR	m>1 GeV
< 1.0	$\times 10^{-9}$		0	BRIATORE	76	ELEC	
< 7.	$\times 10^{-10}$	90	0	YOCK	75	ELEC	Q > 7e or $< -7e$
> 6.	$\times 10^{-9}$		5	¹³ YOCK	74	CNTR	m >6 GeV
< 3.0	$\times 10^{-8}$		0	DARDO	72	CNTR	
< 1.5	$\times 10^{-9}$		0	TONWAR	72	CNTR	m >10 GeV
< 3.0	$\times 10^{-10}$		0	BJORNBOE	68	CNTR	m >5 GeV
< 5.0	\times 10 ⁻¹¹	90	0	JONES	67	ELEC	<i>m</i> =5–15 GeV
1							

¹ ALEMANNO 22 search for flux of fractionally charged particles (FCPs) in space; no signal observed; limits set in flux vs charge plane for mass as low as GeV.

 $^{^{42}\,\}rm KHACHATRYAN~16BW$ search for heavy stable charged particles via ToF with 2.5 fb $^{-1}$ at 13 TeV; require stable m(gluinoball) > 1610 GeV.

⁴³ BADIER 86 looked for long-lived particles at 300 GeV π^- beam dump. The limit applies for nonstrongly interacting neutral or charged particles with mass >2 GeV. The limit applies for particle modes, $\mu^+\pi^-$, $\mu^+\mu^-$, $\pi^+\pi^-$ X, $\pi^+\pi^-\pi^\pm$ etc. See their figure 5 for the contours of limits in the mass- τ plane for each mode.

- ² CAO 22 search for superheavy DM decaying to gamma rays; no signal observed; limits placed in mass vs. lifetime plane for m $\sim 10^5 10^9$ GeV for DM decays to $b\overline{b}$ or $\tau \overline{\tau}$.
- 3 ALVIS 18 search for fractional charged flux of cosmic matter at Majorana demonstrator; no signal observed and limits are set on the flux of lightly ionizing particles for charge as low as e/1000.
- ⁴ See AGNESE 15 Fig. 6 for limits extending down to Q=1/200.
- $^5\,\text{SAITO}$ 90 candidates carry about 450 MeV/nucleon. Cannot be accounted for by conventional backgrounds. Consistent with strange quark matter hypothesis.
- ⁶ MINCER 85 is high statistics study of calorimeter signals delayed by 20–200 ns. Calibration with AGS beam shows they can be accounted for by rare fluctuations in signals from low-energy hadrons in the shower. Claim that previous delayed signals including BJORNBOE 68, DARDO 72, BHAT 82, SAKUYAMA 83B below may be due to this fake effect.
- effect. $^7\,\text{SAKUYAMA}$ 83B analyzed 6000 extended air shower events. Increase of delayed particles and change of lateral distribution above $10^{17}\,$ eV may indicate production of very heavy parent at top of atmosphere.
- 8 BHAT 82 observed 12 events with delay $> 2. \times 10^{-8}$ s and with more than 40 particles. 1 eV has good hadron shower. However all events are delayed in only one of two detectors in cloud chamber, and could not be due to strongly interacting massive particle.
- ⁹ MARINI 82 applied PEP-counter for TOF. Above limit is for velocity = 0.54 of light. Limit is inconsistent with YOCK 80 YOCK 81 events if isotropic dependence on zenith angle is assumed.
- 10 YOCK 81 saw another 3 events with $Q=\pm 1$ and m about $4.5m_p$ as well as 2 events with $m>>5.3m_p,~Q=\pm 0.75\pm 0.05$ and $m>2.8m_p,~Q=\pm 0.70\pm 0.05$ and 1 event with $m=(9.3\pm 3.)m_p,~Q=\pm 0.89\pm 0.06$ as possible heavy candidates.
- ¹¹ YOCK 80 events are with charge exactly or approximately equal to unity.
- 12 BHAT 78 is at Kolar gold fields. Limit is for $au > 10^{-6}$ s.
- ¹³YOCK 74 events could be tritons.

Superheavy Particle (Quark Matter) Flux in Cosmic Rays

$_{(cm^{-2}sr^{-1}s^{-1})}^{\mathit{VALUE}}$	CL%	DOCUMENT ID		TECN	COMMENT
ullet $ullet$ We do not	use the	following data for a	verage	es, fits, li	imits, etc. • • •
		¹ ADRIANI	15	PMLA	$4 < m < 1.2 \times 10^5 \ m_p$
$<$ 5 \times 10 ⁻¹⁶	90	² AMBROSIO	00 B		$m>5 imes10^{14}~{ m GeV}$
$< 1.8 \times 10^{-12}$	90	³ ASTONE	93		$m \ge 1.5 imes 10^{-13}$ gram
$< 1.1 \times 10^{-14}$	90	⁴ AHLEN	92	MCRO	$10^{-10} < m < 0.1 \; { m gram}$
$< 2.2 \times 10^{-14}$	90	⁵ NAKAMURA	91	PLAS	$m>10^{11}$ GeV
$<$ 6.4 \times 10 ⁻¹⁶	90	⁶ ORITO	91	PLAS	$m > 10^{12} \text{ GeV}$
$<$ 2.0 \times 10 ⁻¹¹	90	⁷ LIU	88	BOLO	$m>1.5\times10^{-13}~\mathrm{gram}$
$<$ 4.7 \times 10 ⁻¹²	90	⁸ BARISH	87	CNTR	$1.4 \times 10^8 < m < 10^{12} \text{ GeV}$
$< 3.2 \times 10^{-11}$	90	⁹ NAKAMURA	85	CNTR	$m>1.5 imes10^{-13}$ gram
$< 3.5 \times 10^{-11}$	90	¹⁰ ULLMAN	81	CNTR	Planck-mass 10 ¹⁹ GeV
$< 7. \times 10^{-11}$	90	¹⁰ ULLMAN	81	CNTR	$\mathit{m} \leq 10^{16} \; GeV$

¹ ADRIANI 15 search for relatively light quark matter with charge Z=1–8. See their Figs. 2 and 3 for flux upper limits.

²AMBROSIO 00B searched for quark matter ("nuclearites") in the velocity range $(10^{-5}-1) c$. The listed limit is for $2 \times 10^{-3} c$.

 $^{^3}$ ASTONE 93 searched for quark matter ("nuclearites") in the velocity range (10^{-3} –1) c. Their Table 1 gives a compilation of searches for nuclearites.

⁴ AHLEN 92 searched for quark matter ("nuclearites"). The bound applies to velocity $< 2.5 \times 10^{-3} c$. See their Fig. 3 for other velocity/c and heavier mass range.

- 5 NAKAMURA 91 searched for quark matter in the velocity range (4 \times 10 $^{-5}$ –1) c.
- ⁶ ORITO 91 searched for quark matter. The limit is for the velocity range $(10^{-4}-10^{-3})$ c.
- ⁷ LIU 88 searched for quark matter ("nuclearites") in the velocity range $(2.5 \times 10^{-3} 1)c$. A less stringent limit of 5.8×10^{-11} applies for $(1-2.5) \times 10^{-3}c$.
- ⁸ BARISH 87 searched for quark matter ("nuclearites") in the velocity range (2.7 \times 10⁻⁴–5 \times 10⁻³)c.
- ⁹ NAKAMURA 85 at KEK searched for quark-matter. These might be lumps of strange quark matter with roughly equal numbers of u, d, s quarks. These lumps or nuclearites were assumed to have velocity of $(10^{-4}-10^{-3}) c$.
- 10 ULLMAN 81 is sensitive for heavy slow singly charge particle reaching earth with vertical velocity 10 – 350 km/s.

Highly Ionizing Particle Flux

VALUE (m ⁻² yr ⁻¹)	CL% E	<u>EVTS</u>	DOCUMENT ID	TECN	COMMENT
• • • We do not use	the follo	wing data	for averages, fit	s, limits, etc.	• • •
< 0.4	95	0	KINOSHITA	81B PLAS	Z/eta 30–100

SEARCHES FOR BLACK HOLE PRODUCTION

VALUE	DOCUMENT ID	TECN	COMMENT
• • • We do not use the fo	ollowing data for avera	ages, fits, lir	nits, etc. • • •
not seen	2 AAD 19 3 AAD 14 4 AAD 14 5 AAD 12 6 AAD 13 7 CHATRCHYAN 13 8 CHATRCHYAN 13 9 AAD 12 10 CHATRCHYAN 13	5AN ATLS 4AL ATLS 4AL ATLS 4CL ATLS 3DL ATLS 3AL CMS 3AD CMS 2AK ATLS 2WL CMS	13 TeV $pp \rightarrow e\mu, e\tau, \mu\tau$ 8 TeV $pp \rightarrow \text{multijets}$ 8 TeV $pp \rightarrow \gamma + \text{jet}$ 8 TeV $pp \rightarrow \ell + \text{jet}$ 8 TeV $pp \rightarrow \ell + (\ell \text{ or jets})$ 7 TeV $pp \rightarrow 2 \text{ jets}$ 7 TeV $pp \rightarrow 2 \text{ jets}$ 8 TeV $pp \rightarrow \text{multijets}$ 7 TeV $pp \rightarrow \ell + (\ell \text{ or jets})$ 7 TeV $pp \rightarrow \text{multijets}$ 7 TeV $pp \rightarrow \text{multijets}$ 7 TeV $pp \rightarrow 2 \text{ jets}$

¹ AABOUD 16P set limits on quantum BH production in n = 6 ADD or n = 1 RS models.

 $^{^2}$ AAD 15AN search for black hole or string ball formation followed by its decay to multijet final states, in pp collisions at $E_{\rm cm}=8$ TeV with L=20.3 fb $^{-1}$. See their Figs. 6–8 for limits.

³ AAD 14A search for quantum black hole formation followed by its decay to a γ and a jet, in pp collisions at $E_{\rm cm}=8$ TeV with L=20 fb⁻¹. See their Fig. 3 for limits.

⁴ AAD 14AL search for quantum black hole formation followed by its decay to a lepton and a jet, in pp collisions at $E_{\rm cm}=8$ TeV with L=20.3 fb⁻¹. See their Fig. 2 for limits.

⁵ AAD 14C search for microscopic (semiclassical) black hole formation followed by its decay to final states with a lepton and ≥ 2 (leptons or jets), in pp collisions at $E_{\rm cm}=8$ TeV with L=20.3 fb⁻¹. See their Figures 8–11, Tables 7, 8 for limits.

 $^{^6}$ AAD 13D search for quantum black hole formation followed by its decay to two jets, in pp collisions at $E_{\rm cm}=7$ TeV with L=4.8 fb $^{-1}$. See their Fig. 8 and Table 3 for limits.

⁷CHATRCHYAN 13A search for quantum black hole formation followed by its decay to two jets, in pp collisions at $E_{\rm cm}=7$ TeV with L=5 fb $^{-1}$. See their Figs. 5 and 6 for limits.

- 8 CHATRCHYAN 13AD search for microscopic (semiclassical) black hole formation followed by its evapolation to multiparticle final states, in multijet (including $\gamma,\,\ell)$ events in $p\,p$ collisions at $E_{\rm cm}=8$ TeV with $L=12~{\rm fb}^{-1}.$ See their Figs. 5–7 for limits.
- ⁹ AAD 12AK search for microscopic (semiclassical) black hole formation followed by its decay to final states with a lepton and ≥ 2 (leptons or jets), in pp collisions at $E_{\rm cm}=7$ TeV with L=1.04 fb $^{-1}$. See their Fig. 4 and 5 for limits.
- 10 CHATRCHYAN 12W search for microscopic (semiclassical) black hole formation followed by its evapolation to multiparticle final states, in multijet (including $\gamma,\,\ell)$ events in $p\,p$ collisions at $E_{\rm cm}=7$ TeV with L=4.7 fb $^{-1}$. See their Figs. 5–8 for limits.
- 11 AAD 11AG search for quantum black hole formation followed by its decay to two jets, in pp collisions at $E_{\rm cm}=7$ TeV with L $=36\,{\rm pb}^{-1}$. See their Fig. 11 and Table 4 for limits.

REFERENCES FOR Other Particle Searches

AAD	24B	PL B848 138324	G. Aad <i>et al.</i>	(ΔΤΙ Δς	Collab.)
AAD		PR D108 012012	G. Aad et al.	`	Collab.)
AAD		PR D108 032016	G. Aad et al.	`	Collab.)
AAD		PL B846 138172	G. Aad et al.	`	Collab.)
AAD		PL B847 138316	G. Aad et al.	,	Collab.)
AAD		JHEP 2311 112	G. Aad et al.	` ·	Collab.)
AAD	23G	JHEP 2306 158	G. Aad et al.	` ·	Collab.)
AAD	23I	JHEP 2306 153	G. Aad et al.		Collab.)
AAD	23P	JHEP 2307 176	G. Aad et al.	`	Collab.)
ADACHI	23K	PR D108 L111104	I. Adachi <i>et al.</i>	(BELLE II	
HAYRAPETY		JHEP 2312 068	A. Hayrapetyan <i>et al.</i>	`	Collab.)
TUMASYAN		JHEP 2307 210	A. Tumasyan <i>et al.</i>		Collab.)
TUMASYAN		JHEP 2312 189	A. Tumasyan <i>et al.</i>		Collab.)
TUMASYAN		EPJ C83 827	A. Tumasyan <i>et al.</i>		Collab.)
TUMASYAN	23G	JHEP 2305 228	A. Tumasyan <i>et al.</i>		Collab.)
TUMASYAN	23L	JHEP 2307 161	A. Tumasyan et al.		Collab.)
AAD	22G	PR D105 092012	G. Aad <i>et al.</i>	,	Collab.)
AAD	22H	PR D106 032005	G. Aad <i>et al.</i>	` ·	Collab.)
AAD	22K	JHEP 2206 005	G. Aad <i>et al.</i>	(ATLAS	Collab.)
AAD	22U	EPJ C82 606	G. Aad <i>et al.</i>	(ATLAS	Collab.)
AAIJ	22U	EPJ C82 373	R. Aaij <i>et al.</i>	`(LHCb	Collab.)
ABRATENKO	22A	PR D106 092006	P. Abratenko <i>et al.</i>	(MicroBooNE	Collab.)
ACHARYA	22A	EPJ C82 694	B. Acharya <i>et al.</i>	(MoEDAL	Collab.)
ALEMANNO	22	PR D106 063026	F. Alemanno <i>et al.</i>	(DAMPE	Collab.)
ANDREEV	22A	PRL 129 161801	Yu.M. Andreev et al.		Collab.)
CAO	22	PRL 129 261103	Z. Cao <i>et al.</i>	(LHAASO	
TUMASYAN		JHEP 2207 081	A. Tumasyan <i>et al.</i>		Collab.)
TUMASYAN		EPJ C82 153	A. Tumasyan <i>et al.</i>		Collab.)
TUMASYAN		EPJ C82 213	A. Tumasyan <i>et al.</i>		Collab.)
TUMASYAN	22H	PR D105 112007	A. Tumasyan et al.	,	Collab.)
TUMASYAN	22M	JHEP 2203 160	A. Tumasyan et al.	,	Collab.)
TUMASYAN	22N	JHEP 2204 062	A. Tumasyan et al.	,	Collab.)
AAD		PRL 127 051802	G. Aad <i>et al.</i>	(ATLAS	
AAD		JHEP 2111 229	G. Aad <i>et al.</i>		Collab.)
AAD	21F 21X	PR D103 112006	G. Aad et al.	`	Collab.)
AAD AAIJ	21V	JHEP 2107 173 EPJ C81 261	G. Aad <i>et al.</i>	`	Collab.)
ACHARYA	21 v 21	PRL 126 071801	R. Aaij <i>et al.</i> B. Acharya <i>et al.</i>	(MoEDAL	Collab.)
AFEK	21	PR D104 012004	G. Afek <i>et al.</i>	(MOLDAL	(YALE)
ALKHATIB	21A	PRL 127 081802	I. Alkhatib <i>et al.</i>	(SuperCDMS	,
ANDREEV	21	PRL 126 211802	Yu.M. Andreev <i>et al.</i>	` · .	Collab.)
SIRUNYAN	21AF		A.M. Sirunyan <i>et al.</i>	`	Collab.)
SIRUNYAN	21T	EPJ C81 629	A.M. Sirunyan <i>et al.</i>	,	Collab.)
SIRUNYAN	21U	PR D104 012015	A.M. Sirunyan <i>et al.</i>		Collab.)
TUMASYAN	21	PRL 127 261804	A. Tumasyan <i>et al.</i>	,	Collab.)
AAD		PRL 125 131801	G. Aad <i>et al.</i>	,	Collab.)
AAD	20D	PL B801 135114	G. Aad et al.		Collab.)
AAD	20J	PR D101 052013	G. Aad <i>et al.</i>	` ·	Collab.)
AAD	20M	PR D102 032006	G. Aad <i>et al.</i>	`	Collab.)
AAD	20P	EPJ C80 450	G. Aad et al.		Collab.)
AAD	20T	JHEP 2003 145	G. Aad <i>et al.</i>	(ATLAS	Collab.)

AAD AAIJ AGUILAR-AR BALL FEDDERKE		JHEP 2006 151 JHEP 2010 156 JHEP 2004 054 PR D102 032002 PR D101 115021	G. Aad <i>et al.</i> R. Aaij <i>et al.</i> A. Aguilar-Arevalo <i>et al.</i> A.H. Ball <i>et al.</i> M.A. Fedderke, P.W. Graham, S. Raj	(ATLAS Collab.) (LHCb Collab.) (CONNIE Collab.) (milliQan) endran (STAN+)
SIRUNYAN	20A	EPJ C80 3	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN	20AI	JHEP 2005 033	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN SIRUNYAN	20AY 20C	PL B808 135578 EPJ C80 75	A.M. Sirunyan <i>et al.</i> A.M. Sirunyan <i>et al.</i>	(CMS Collab.) (CMS Collab.)
SIRUNYAN	20N	PL B806 135502	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN	20Z	JHEP 2003 051	A.M. Sirunyan et al.	(CMS Collab.)
AABOUD AABOUD		EPJ C79 120 EPJ C79 481	M. Aaboud <i>et al.</i> M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD		PL B795 56	M. Aaboud <i>et al.</i>	(ATLAS Collab.) (ATLAS Collab.)
AABOUD		PRL 122 151801	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD		PR D99 052003	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD AABOUD		PR D99 052005 PR D99 092007	M. Aaboud <i>et al.</i> M. Aaboud <i>et al.</i>	(ATLAS Collab.) (ATLAS Collab.)
AABOUD	19G	PR D99 012001	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD	19H	PR D99 012008	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD AABOUD	19Q 19V	JHEP 1905 041 JHEP 1905 142	M. Aaboud <i>et al.</i> M. Aaboud <i>et al.</i>	(ATLAS Collab.) (ATLAS Collab.)
ALCANTARA	19	PR D99 103016	E. Alcantara, L.A. Anchordoqui, J.F.	. '
SIRUNYAN	19B	PR D99 012005	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN SIRUNYAN		PR D99 032011 PL B797 134876	A.M. Sirunyan <i>et al.</i> A.M. Sirunyan <i>et al.</i>	(CMS Collab.) (CMS Collab.)
SIRUNYAN	-	PR D100 112003	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN		PRL 123 231803	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	190	JHEP 1902 074	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN AABOUD	19Q 18AD	JHEP 1902 179 PL B779 24	A.M. Sirunyan <i>et al.</i> M. Aaboud <i>et al.</i>	(CMS Collab.) (ATLAS Collab.)
AABOUD		PR D98 052008	M. Aaboud et al.	(ATLAS Collab.)
AABOUD		PR D98 092002	M. Aabaud <i>et al.</i>	(ATLAS Collab.)
AABOUD AABOUD		PR D98 092005 PR D98 092008	M. Aaboud <i>et al.</i> M. Aaboud <i>et al.</i>	(ATLAS Collab.) (ATLAS Collab.)
AABOUD	18N	PRL 121 081801	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AAIJ		PRL 120 061801	R. Aaij <i>et al.</i>	(LHCb Collab.)
ALBERT ALVIS	18C 18	PR D98 123012 PRL 120 211804	A. Albert <i>et al.</i> S.I. Alvis <i>et al.</i> (N	(HAWC Collab.) //AJORANA Collab.)
BANERJEE	18	PRL 120 231802	D. Banerjee et al.	(NA64 Collab.)
BANERJEE	18A	PR D97 072002	D. Banerjee et al.	(NA64 Collab.)
KILE MARSICANO	18 18	JHEP 1810 116 PR D98 015031	J. Kile, J. von Wimmersperg-Toeller L. Marsicano <i>et al.</i>	(LISBT)
PORAYKO	18	PR D98 102002	N.K. Porayako <i>et al.</i>	(PPTA Collab.)
SIRUNYAN	-	JHEP 1805 127	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN SIRUNYAN		JHEP 1806 120 JHEP 1811 042	A.M. Sirunyan <i>et al.</i> A.M. Sirunyan <i>et al.</i>	(CMS Collab.) (CMS Collab.)
SIRUNYAN		EPJ C78 789	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN		JHEP 1809 101	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN SIRUNYAN		JHEP 1811 161 PR D98 092001	A.M. Sirunyan <i>et al.</i> A.M. Sirunyan <i>et al.</i>	(CMS Collab.) (CMS Collab.)
SIRUNYAN		PR D98 112014	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN	18ED	JHEP 1811 172	A.M. Sirunyan et al.	(CMS Collab.)
AABOUD AABOUD	17B 17D	PL B765 32 PR D95 032001	M. Aaboud <i>et al.</i> M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD	17L	JHEP 1708 052	M. Aaboud <i>et al.</i>	(ATLAS Collab.) (ATLAS Collab.)
AAIJ	17BR	EPJ C77 812	R. Aaij et al.	`(LHCb Collab.)
ABLIKIM KHACHATRY		PL B774 252 JHEP 1701 076	M. Ablikim <i>et al.</i> V. Khachatryan <i>et al.</i>	(BESIII Collab.) (CMS Collab.)
KHACHATRY		PL B769 520	V. Khachatryan <i>et al.</i>	(CMS Collab.)
KHACHATRY		PL B770 257	V. Khachatryan et al.	(CMS Collab.)
SIRUNYAN SIRUNYAN	17B 17C	JHEP 1704 136 JHEP 1705 029	A.M. Sirunyan <i>et al.</i> A.M. Sirunyan <i>et al.</i>	(CMS Collab.) (CMS Collab.)
SIRUNYAN	17F	JHEP 1707 013	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN	17J	JHEP 1708 073	A.M. Sirunyan et al.	(CMS Collab.)
ZANG AABOUD	17 16	PL B773 159 PL B759 229	X. Zang, G.A. Miller M. Aaboud <i>et al.</i>	(WASH) (ATLAS Collab.)
AABOUD	16P	EPJ C76 541	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AAD	16AI	JHEP 1603 041	G. Aad et al.	(ATLAS Collab.)
AAD AAD	16N 16O	JHEP 1603 026 PL B760 520	G. Aad <i>et al.</i> G. Aad <i>et al.</i>	(ATLAS Collab.) (ATLAS Collab.)
, , , , ,	100	1 2 0100 320	S. Add Ct al.	(/// L//3 Collab.)

AAD	16R	PL B755 285	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	16S	PL B754 302	G. Aad et al.	(ATLAS Collab.)
AAIJ	16AR	EPJ C76 664	R. Aaij et al.	`(LHCb Collab.)
		PR D94 112004		
			V. Khachatryan <i>et al.</i>	(CMS Collab.)
		PRL 116 071801	V. Khachatryan et al.	(CMS Collab.)
KHACHATRY	16L	PRL 117 031802	V. Khachatryan <i>et al.</i>	(CMS Collab.)
KHACHATRY	16M	PRL 117 051802	V. Khachatryan et al.	(CMS Collab.)
KRASZNAHO	16	PRL 116 042501	A.J. Krasznahorkay et al.	(HINR, ANIK+)
AAD		JHEP 1507 032	G. Aad et al.	(ATLAS Collab.)
AAD		EPJ C75 79	G. Aad et al.	(ATLAS Collab.)
AAD		EPJ C75 362		
			G. Aad <i>et al.</i>	(ATLAS Collab.)
AAIJ		EPJ C75 595	R. Aaij <i>et al.</i>	(LHCb Collab.)
ADRIANI	15	PRL 115 111101	O. Adriani <i>et al.</i>	(PAMELA Collab.)
AGNESE	15	PRL 114 111302	R. Agnese et al.	(CDMS Collab.)
KHACHATRY	15F	PRL 114 101801	V. Khachatryan et al.	(CMS Collab.)
LEES	15E	PRL 114 171801	J.P. Lees et al.	(BÀBAR Collab.)
AAD	14A	PL B728 562	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD		PRL 112 091804	G. Aad et al.	
AAD	14AL			(ATLAS Collab.)
AAD	14C	JHEP 1408 103	G. Aad et al.	(ATLAS Collab.)
AAD AALTONEN AAD AAD	14J	PR D89 092001	T. Aaltonen et al.	(CDF Collab.)
AAD	13A	PL B718 860	G. Aad et al.	(ATLAS Collab.)
AAD	13AH	PL B722 305	G. Aad et al.	(ATLAS Collab.)
AAD	13C	PRL 110 011802	G. Aad et al.	(ATLAS Collab.)
AAD	13D	JHEP 1301 029	G. Aad et al.	(ATLAS Collab.)
AALTONEN	13I	PR D88 031103	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN	13R	PRL 111 031802	T. Aaltonen <i>et al.</i>	(CDF Collab.)
CHATRCHYAN		PL B718 815	S. Chatrchyan <i>et al.</i>	(CMS Collab.)
CHATRCHYAN	13A	JHEP 1301 013	S. Chatrchyan et al.	(CMS Collab.)
CHATRCHYAN	13AB	JHEP 1307 122	S. Chatrchyan et al.	(CMS Collab.)
Also		JHEP 2211 149 (errat.)	S. Chatrchyan et al.	(CMS Collab.)
	13AD	JHEP 1307 178	S. Chatrchyan et al.	(CMS Collab.)
		PR D87 092008	S. Chatrchyan <i>et al.</i>	(CMS Collab.)
	IJAIN			1
Also	10 4 17	PR D106 099903 (errat.)		(CMS Collab.)
AAD		PL B716 122	G. Aad et al.	(ATLAS Collab.)
AAD	12C	PRL 108 041805	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	12S	PL B708 37	G. Aad <i>et al.</i>	(ATLAS Collab.)
AALTONEN	12M	PRL 108 211804	T. Aaltonen et al.	(CDF Collab.)
CHATRCHYAN	12AP	JHEP 1209 094	S. Chatrchyan et al.	(CMS Collab.)
		JHEP 1212 015	S. Chatrchyan et al.	(CMS Collab.)
CHATRCHYAN			S. Chatrchyan <i>et al.</i>	(CMS Collab.)
	-			
CHATRCHYAN		PRL 108 261803	S. Chatrchyan et al.	(CMS Collab.)
CHATRCHYAN			S. Chatrchyan et al.	(CMS Collab.)
AAD		NJP 13 053044	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	111	PL B698 353	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	11S	PL B705 294	G. Aad et al.	(ATLAS Collab.)
AALTONEN	11AF	PRL 107 181801	T. Aaltonen et al.	` (CDF Collab.)
AALTONEN	11M	PRL 106 171801	T. Aaltonen et al.	(CDF Collab.)
ABAZOV	111	PRL 107 011804	V.M. Abazov <i>et al.</i>	(D0 Collab.)
CHATRCHYAN				. `
		JHEP 1106 026	S. Chatychyan et al.	(CMS Collab.)
		PRL 107 201804	S. Chatychyan et al.	(CMS Collab.)
AAD	10	PRL 105 161801	G. Aad <i>et al.</i>	(ATLAS Collab.)
AALTONEN	10AF	PR D82 052005	T. Aaltonen <i>et al.</i>	(CDF Collab.)
KHACHATRY	10	PRL 105 211801	V. Khachatryan et al.	(CMS Collab.)
Also		PRL 106 029902	V. Khachatryan et al.	(CMS Collab.)
AALTONEN	09AF	PR D80 011102	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN	09G	PR D79 052004	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN	09Z	PRL 103 021802	T. Aaltonen <i>et al.</i>	(CDF Collab.)
ABAZOV	09M	PRL 102 161802	V.M. Abazov et al.	(D0 Collab.)
AKTAS	04C	EPJ C36 413	A. Atkas <i>et al.</i>	(H1 Collab.)
JAVORSEK	02	PR D65 072003	D. Javorsek II <i>et al.</i>	
JAVORSEK	01	PR D64 012005	D. Javorsek II et al.	
JAVORSEK	01B	PRL 87 231804	D. Javorsek II et al.	
ABBIENDI	00D	EPJ C13 197	G. Abbiendi et al.	(OPAL Collab.)
AMBROSIO	00B	EPJ C13 453	M. Ambrosio <i>et al.</i>	(MACRO Collab.)
				(CDE Callab.)
ABE	99F	PRL 82 2038	F. Abe <i>et al.</i>	(CDF Collab.)
ACKERSTAFF	98P	PL B433 195	K. Ackerstaff <i>et al.</i>	(OPAL Collab.)
ABE	97G	PR D55 5263	F. Abe et al.	(CDF Collab.)
ABREU	97D	PL B396 315	P. Abreu <i>et al.</i>	(DELPHI Collab.)
ACKERSTAFF	97B	PL B391 210	K. Ackerstaff et al.	(OPAL Collab.)
ADAMS	97B	PRL 79 4083	J. Adams <i>et al.</i>	(FNAL KTeV Collab.)
BARATE	97K	PL B405 379	R. Barate et al.	` (ALEPH Collab.)
				(

AKERS	95R	ZPHY C67 203	R. Akers <i>et al.</i>	(OPAL Collab.)
GALLAS	95	PR D52 6	E. Gallas et al.	(MSU, FNAL, MIT, FLOR)
				, , , , , , , , , , , , , , , , , , , ,
RAM	94	PR D49 3120	S. Ram <i>et al.</i>	(TELA, TRIU)
ABE	93G	PRL 71 2542	F. Abe <i>et al.</i>	(CDF Collab.)
ASTONE	93	PR D47 4770	P. Astone et al.	(ROMA, ROMAI, CATA, FRAS)
BUSKULIC	93C	PL B303 198	D. Buskulic <i>et al.</i>	
				(ALEPH Collab.)
YAMAGATA	93	PR D47 1231	T. Yamagata, Y. Takamo	ori, H. Utsunomiya (KONAN)
ABE	92J	PR D46 1889	F. Abe <i>et al.</i>	(CDF Collab.)
AHLEN	92	PRL 69 1860	S.P. Ahlen et al.	(MACRO Collab.)
VERKERK	92	PRL 68 1116	P. Verkerk <i>et al.</i>	(ENSP, SACL, PAST)
AKESSON	91	ZPHY C52 219	T. Akesson <i>et al.</i>	(HELIOS Collab.)
NAKAMURA	91	PL B263 529	S. Nakamura et al.	,
ORITO				(ICEDD WASCD NILLO ICDD)
	91	PRL 66 1951	S. Orito et al.	(ICEPP, WASCR, NIHO, ICRR)
ADACHI	90C	PL B244 352	I. Adachi <i>et al.</i>	(TOPAZ Collab.)
ADACHI	90E	PL B249 336	I. Adachi <i>et al.</i>	(TOPAZ Collab.)
AKRAWY	900	PL B252 290	M.Z. Akrawy et al.	`(OPAL Collab.)
			-	
HEMMICK	90	PR D41 2074	T.K. Hemmick et al.	(ROCH, MICH, OHIO+)
SAITO	90	PRL 65 2094	T. Saito <i>et al.</i>	(ICRR, KOBE)
NAKAMURA	89	PR D39 1261	T.T. Nakamura et al.	(KYOT, TMTC)
NORMAN	89	PR D39 2499	E.B. Norman <i>et al.</i>	(LBL)
BERNSTEIN	88	PR D37 3103	R.M. Bernstein <i>et al.</i>	(STAN, WISC)
LIU	88	PRL 61 271	G. Liu, B. Barish	
BARISH	87	PR D36 2641	B.C. Barish, G. Liu, C. I	_ane (CIT)
				3 1
NORMAN	87	PRL 58 1403	E.B. Norman, S.B. Gazes	
BADIER	86	ZPHY C31 21	J. Badier <i>et al.</i>	(NA3 Collab.)
MINCER	85	PR D32 541	A. Mincer et al.	(UMD, GMAS, NSF)
NAKAMURA	85	PL 161B 417	K. Nakamura <i>et al.</i>	(KEK, INUS)
THRON	85	PR D31 451	J.L. Thron <i>et al.</i>	(YALE, FNAL, IOWA)
SAKUYAMA	83B	LNC 37 17	H. Sakuyama, N. Suzuki	(MEIS)
Also		LNC 36 389	H. Sakuyama, K. Watana	abe (MEIS)
Also			H. Sakuyama, K. Watana	
		NC 78A 147		`
Also		NC 6C 371	H. Sakuyama, K. Watana	· · · · · · · · · · · · · · · · · · ·
BHAT	82	PR D25 2820	P.N. Bhat <i>et al.</i>	(TATA)
KINOSHITA	82	PRL 48 77	K. Kinoshita, P.B. Price,	D. Fryberger (ÚCB+)
MARINI	82	PR D26 1777	A. Marini et al.	(FRAS, LBL, NWES, STAN+)
SMITH	82B		P.F. Smith et al.	`
		NP B206 333		(RAL)
KINOSHITA	81B	PR D24 1707	K. Kinoshita, P.B. Price	(UCB)
LOSECCO	81	PL 102B 209	J.M. LoSecco <i>et al.</i>	(MICH, PENN, BNL)
ULLMAN	81	PRL 47 289	J.D. Ullman	` (LEHM, BNL)
YOCK	81	PR D23 1207	P.C.M. Yock	(AUCK)
BARTEL	80	ZPHY C6 295	W. Bartel <i>et al.</i>	(JADE Collab.)
BUSSIERE	80	NP B174 1	A. Bussiere <i>et al.</i>	(BGNA, SACL, LAPP)
YOCK	80	PR D22 61	P.C.M. Yock	(AUCK)
ARMITAGE	79	NP B150 87	J.C.M. Armitage et al.	(CERN, DARE, FOM+)
			_	
BOZZOLI	79	NP B159 363	W. Bozzoli <i>et al.</i>	(BGNA, LAPP, SACL+)
GOODMAN	79	PR D19 2572	J.A. Goodman <i>et al.</i>	(UMD)
SMITH	79	NP B149 525	P.F. Smith, J.R.J. Benne	tt (RHEL)
BHAT	78	PRAM 10 115	P.N. Bhat, P.V. Ramana	
CARROLL	78	PRL 41 777	A.S. Carroll <i>et al.</i>	(BNL, PRIN)
CUTTS	78	PRL 41 363	D. Cutts <i>et al.</i>	(BROW, FNAL, ILL, BARI+)
VIDAL	78	PL 77B 344	R.A. Vidal <i>et al.</i>	(COLU, FNAL, STON+)
ALEKSEEV	76	SJNP 22 531	G.D. Alekseev et al.	(JINR)
		Translated from YAF 22		(-)
ALEKSEEV	76B	SJNP 23 633	G.D. Alekseev et al.	(JINR)
ALLINGLEV	100	Translated from YAF 23		(311111)
DALDIN	76			(IIND)
BALDIN	76	SJNP 22 264	B.Y. Baldin <i>et al.</i>	(JINR)
DDIATORE		Translated from YAF 22		(LCCT_EDAG_EDEID)
BRIATORE		NC 31A 553		// (- FRAS FREIR)
GUSTAFSON	76	110 01/1 000	L. Briatore <i>et al.</i>	(LCGT, FRAS, FREIB)
	76 76	PRL 37 474	H.R. Gustafson <i>et al.</i>	(MICH)
AI BROW	76	PRL 37 474	H.R. Gustafson et al.	(MICH)
ALBROW	76 75	PRL 37 474 NP B97 189	H.R. Gustafson <i>et al.</i> M.G. Albrow <i>et al.</i>	(MICH) (CERN, DARE, FOM+)
FRANKEL	76 75 75	PRL 37 474 NP B97 189 PR D12 2561	H.R. Gustafson <i>et al.</i> M.G. Albrow <i>et al.</i> S. Frankel <i>et al.</i>	(MICH) (CERN, DARE, FOM+) (PENN, FNAL)
	76 75	PRL 37 474 NP B97 189 PR D12 2561 PL 56B 105	H.R. Gustafson <i>et al.</i> M.G. Albrow <i>et al.</i>	(MICH) (CERN, DARE, FOM+)
FRANKEL	76 75 75	PRL 37 474 NP B97 189 PR D12 2561	H.R. Gustafson <i>et al.</i> M.G. Albrow <i>et al.</i> S. Frankel <i>et al.</i>	(MICH) (CERN, DARE, FOM+) (PENN, FNAL)
FRANKEL JOVANOV YOCK	76 75 75 75 75	PRL 37 474 NP B97 189 PR D12 2561 PL 56B 105 NP B86 216	H.R. Gustafson et al. M.G. Albrow et al. S. Frankel et al. J.V. Jovanovich et al. P.C.M. Yock	(MICH) (CERN, DARE, FOM+) (PENN, FNAL) (MANI, AACH, CERN+) (AUCK, SLAC)
FRANKEL JOVANOV YOCK APPEL	76 75 75 75 75 75 74	PRL 37 474 NP B97 189 PR D12 2561 PL 56B 105 NP B86 216 PRL 32 428	H.R. Gustafson et al. M.G. Albrow et al. S. Frankel et al. J.V. Jovanovich et al. P.C.M. Yock J.A. Appel et al.	(MICH) (CERN, DARE, FOM+) (PENN, FNAL) (MANI, AACH, CERN+) (AUCK, SLAC) (COLU, FNAL)
FRANKEL JOVANOV YOCK APPEL FRANKEL	76 75 75 75 75 75 74 74	PRL 37 474 NP B97 189 PR D12 2561 PL 56B 105 NP B86 216 PRL 32 428 PR D9 1932	H.R. Gustafson et al. M.G. Albrow et al. S. Frankel et al. J.V. Jovanovich et al. P.C.M. Yock J.A. Appel et al. S. Frankel et al.	(MICH) (CERN, DARE, FOM+) (PENN, FNAL) (MANI, AACH, CERN+) (AUCK, SLAC) (COLU, FNAL) (PENN, FNAL)
FRANKEL JOVANOV YOCK APPEL FRANKEL YOCK	76 75 75 75 75 74 74 74	PRL 37 474 NP B97 189 PR D12 2561 PL 56B 105 NP B86 216 PRL 32 428 PR D9 1932 NP B76 175	H.R. Gustafson et al. M.G. Albrow et al. S. Frankel et al. J.V. Jovanovich et al. P.C.M. Yock J.A. Appel et al. S. Frankel et al. P.C.M. Yock	(MICH) (CERN, DARE, FOM+) (PENN, FNAL) (MANI, AACH, CERN+) (AUCK, SLAC) (COLU, FNAL) (PENN, FNAL) (AUCK)
FRANKEL JOVANOV YOCK APPEL FRANKEL	76 75 75 75 75 75 74 74	PRL 37 474 NP B97 189 PR D12 2561 PL 56B 105 NP B86 216 PRL 32 428 PR D9 1932	H.R. Gustafson et al. M.G. Albrow et al. S. Frankel et al. J.V. Jovanovich et al. P.C.M. Yock J.A. Appel et al. S. Frankel et al.	(MICH) (CERN, DARE, FOM+) (PENN, FNAL) (MANI, AACH, CERN+) (AUCK, SLAC) (COLU, FNAL) (PENN, FNAL)
FRANKEL JOVANOV YOCK APPEL FRANKEL YOCK	76 75 75 75 75 74 74 74	PRL 37 474 NP B97 189 PR D12 2561 PL 56B 105 NP B86 216 PRL 32 428 PR D9 1932 NP B76 175	H.R. Gustafson et al. M.G. Albrow et al. S. Frankel et al. J.V. Jovanovich et al. P.C.M. Yock J.A. Appel et al. S. Frankel et al. P.C.M. Yock B. Alper et al.	(MICH) (CERN, DARE, FOM+) (PENN, FNAL) (MANI, AACH, CERN+) (AUCK, SLAC) (COLU, FNAL) (PENN, FNAL) (AUCK) (CERN, LIVP, LUND, BOHR+)
FRANKEL JOVANOV YOCK APPEL FRANKEL YOCK ALPER LEIPUNER	76 75 75 75 75 74 74 74 73 73	PRL 37 474 NP B97 189 PR D12 2561 PL 56B 105 NP B86 216 PRL 32 428 PR D9 1932 NP B76 175 PL 46B 265 PRL 31 1226	H.R. Gustafson et al. M.G. Albrow et al. S. Frankel et al. J.V. Jovanovich et al. P.C.M. Yock J.A. Appel et al. S. Frankel et al. P.C.M. Yock B. Alper et al. L.B. Leipuner et al.	(MICH) (CERN, DARE, FOM+) (PENN, FNAL) (MANI, AACH, CERN+) (AUCK, SLAC) (COLU, FNAL) (PENN, FNAL) (AUCK) (CERN, LIVP, LUND, BOHR+) (BNL, YALE)
FRANKEL JOVANOV YOCK APPEL FRANKEL YOCK ALPER LEIPUNER DARDO	76 75 75 75 75 74 74 74 73 73 72	PRL 37 474 NP B97 189 PR D12 2561 PL 56B 105 NP B86 216 PRL 32 428 PR D9 1932 NP B76 175 PL 46B 265 PRL 31 1226 NC 9A 319	H.R. Gustafson et al. M.G. Albrow et al. S. Frankel et al. J.V. Jovanovich et al. P.C.M. Yock J.A. Appel et al. S. Frankel et al. P.C.M. Yock B. Alper et al. L.B. Leipuner et al. M. Dardo et al.	(MICH) (CERN, DARE, FOM+) (PENN, FNAL) (MANI, AACH, CERN+) (AUCK, SLAC) (COLU, FNAL) (PENN, FNAL) (AUCK) (COLU, FNAL) (PENN, FNAL) (AUCK) (COLU, FNAL) (BUCK) (TORI)
FRANKEL JOVANOV YOCK APPEL FRANKEL YOCK ALPER LEIPUNER DARDO TONWAR	76 75 75 75 75 74 74 74 73 73 72 72	PRL 37 474 NP B97 189 PR D12 2561 PL 56B 105 NP B86 216 PRL 32 428 PR D9 1932 NP B76 175 PL 46B 265 PRL 31 1226 NC 9A 319 JP A5 569	H.R. Gustafson et al. M.G. Albrow et al. S. Frankel et al. J.V. Jovanovich et al. P.C.M. Yock J.A. Appel et al. S. Frankel et al. P.C.M. Yock B. Alper et al. L.B. Leipuner et al. M. Dardo et al. S.C. Tonwar, S. Naranan	(MICH) (CERN, DARE, FOM+) (PENN, FNAL) (MANI, AACH, CERN+) (AUCK, SLAC) (COLU, FNAL) (PENN, FNAL) (AUCK) (CERN, LIVP, LUND, BOHR+) (BNL, YALE) (TORI) , B.V. Sreekantan (TATA)
FRANKEL JOVANOV YOCK APPEL FRANKEL YOCK ALPER LEIPUNER DARDO TONWAR ANTIPOV	76 75 75 75 75 74 74 74 73 73 72 72 71B	PRL 37 474 NP B97 189 PR D12 2561 PL 56B 105 NP B86 216 PRL 32 428 PR D9 1932 NP B76 175 PL 46B 265 PRL 31 1226 NC 9A 319 JP A5 569 NP B31 235	H.R. Gustafson et al. M.G. Albrow et al. S. Frankel et al. J.V. Jovanovich et al. P.C.M. Yock J.A. Appel et al. S. Frankel et al. P.C.M. Yock B. Alper et al. L.B. Leipuner et al. M. Dardo et al. S.C. Tonwar, S. Naranan Y.M. Antipov et al.	(MICH) (CERN, DARE, FOM+) (PENN, FNAL) (MANI, AACH, CERN+) (AUCK, SLAC) (COLU, FNAL) (PENN, FNAL) (AUCK) (CERN, LIVP, LUND, BOHR+) (BNL, YALE) (TORI) , B.V. Sreekantan (SERP)
FRANKEL JOVANOV YOCK APPEL FRANKEL YOCK ALPER LEIPUNER DARDO TONWAR	76 75 75 75 75 74 74 74 73 73 72 72	PRL 37 474 NP B97 189 PR D12 2561 PL 56B 105 NP B86 216 PRL 32 428 PR D9 1932 NP B76 175 PL 46B 265 PRL 31 1226 NC 9A 319 JP A5 569	H.R. Gustafson et al. M.G. Albrow et al. S. Frankel et al. J.V. Jovanovich et al. P.C.M. Yock J.A. Appel et al. S. Frankel et al. P.C.M. Yock B. Alper et al. L.B. Leipuner et al. M. Dardo et al. S.C. Tonwar, S. Naranan	(MICH) (CERN, DARE, FOM+) (PENN, FNAL) (MANI, AACH, CERN+) (AUCK, SLAC) (COLU, FNAL) (PENN, FNAL) (AUCK) (CERN, LIVP, LUND, BOHR+) (BNL, YALE) (TORI) , B.V. Sreekantan (TATA)

BINON	69	PL 30B 510	F.G. Binon et al.	(SERP)
BJORNBOE	68	NC B53 241	J. Bjornboe et al.	(BOHR, TATA, BÈRN+)
JONES	67	PR 164 1584	L.W. Jones	(MICH, WISC, LBL, UCLA, MINN+)
DORFAN	65	PRL 14 999	D.E. Dorfan et al.	(COLU)