Number of Neutrino Types

The neutrinos referred to in this section are those of the Standard $SU(2)\times U(1)$ Electroweak Model possibly extended to allow nonzero neutrino masses. Light neutrinos are those with $m < m_Z/2$. The limits are on the number of neutrino mass eigenstates, including ν_1 , ν_2 , and ν_3 .

THE NUMBER OF LIGHT NEUTRINO TYPES FROM COLLIDER EXPERIMENTS

Revised June 2020 by C.-J. Lin (LBNL). Written by D. Karlen (University of Victoria and TRIUMF).

The most precise measurements of the number of light neutrino types, N_{ν} , come from studies of Z production in $e^{+}e^{-}$ collisions. The invisible partial width, $\Gamma_{\rm inv}$, is determined by subtracting the measured visible partial widths, corresponding to Z decays into quarks and charged leptons, from the total Z width. The invisible width is assumed to be due to N_{ν} light neutrino species each contributing the neutrino partial width Γ_{ν} as given by the Standard Model. In order to reduce the model dependence, the Standard Model value for the ratio of the neutrino to charged leptonic partial widths, $(\Gamma_{\nu}/\Gamma_{\ell})_{\rm SM} = 1.991 \pm 0.001$, is used instead of $(\Gamma_{\nu})_{\rm SM}$ to determine the number of light neutrino types:

$$N_{\nu} = \frac{\Gamma_{\rm inv}}{\Gamma_{\ell}} \left(\frac{\Gamma_{\ell}}{\Gamma_{\nu}}\right)_{\rm SM} . \tag{1}$$

Created: 5/31/2024 10:15

The combined result from the four LEP experiments is $N_{\nu} = 2.984 \pm 0.008$ [1]. Recent analyses applied corrections to the LEP result [1] by including the effect of correlated luminosity systematics and also using an improved Bhabha cross section calculation [2,3] to obtain $N_{\nu} = 2.9963 \pm 0.0074$.

In the past, when only small samples of Z decays had been recorded by the LEP experiments and by the Mark II at SLC,

the uncertainty in N_{ν} was reduced by using Standard Model fits to the measured hadronic cross sections at several center-of-mass energies near the Z resonance. Since this method is much more dependent on the Standard Model, the approach described above is favored.

Before SLC and LEP, limits on the number of neutrino generations were placed by experiments at lower-energy e^+e^- colliders by measuring the cross section of the process $e^+e^- \to \nu \overline{\nu} \gamma$. The ASP, CELLO, MAC, MARK J, and VENUS experiments observed a total of 3.9 events above background [4], leading to a 95% CL limit of $N_{\nu} < 4.8$. This process has a much larger cross section at center-of-mass energies near the Z mass and has been measured at LEP by the ALEPH, DELPHI, L3, and OPAL experiments [5]. These experiments have observed several thousand such events, and the combined result is $N_{\nu} = 3.00 \pm 0.08$. The same process has also been measured by the LEP experiments at much higher center-of-mass energies, between 130 and 208 GeV, in searches for new physics [6]. Combined with the lower energy data, the result is $N_{\nu} = 2.92 \pm 0.05$.

Experiments at $p\overline{p}$ colliders also placed limits on N_{ν} by determining the total Z width from the observed ratio of $W^{\pm} \to \ell^{\pm} \nu$ to $Z \to \ell^{+} \ell^{-}$ events [7]. This involved a calculation that assumed Standard Model values for the total W width and the ratio of W and Z leptonic partial widths, and used an estimate of the ratio of Z to W production cross sections. Now that the Z width is very precisely known from the LEP experiments, the approach is now one of those used to determine the W width.

References

1. ALEPH, DELPHI, L3, OPAL, and SLD Collaborations, and LEP Electroweak Working Group, and SLD Electroweak

- Group, and SLD Heavy Flavour Group, Phys. Reports **427**, 257 (2006).
- 2. P. Janot and S. Jadach, Phys. Lett. **B803**, 135319 (2020).
- 3. G. Voutsinas et al., Phys. Lett. **B800**, 135068 (2020).
- VENUS: K. Abe et al., Phys. Lett. B232, 431 (1989);
 ASP: C. Hearty et al., Phys. Rev. D39, 3207 (1989);
 CELLO: H.J. Behrend et al., Phys. Lett. B215, 186 (1988);
 MAC: W.T. Ford et al., Phys. Rev. D33, 3472 (1986);
 MARK J: H. Wu, Ph.D. Thesis, Univ. Hamburg (1986).
- L3: M. Acciarri et al., Phys. Lett. B431, 199 (1998);
 DELPHI: P. Abreu et al., Z. Phys. C74, 577 (1997);
 OPAL: R. Akers et al., Z. Phys. C65, 47 (1995);
 ALEPH: D. Buskulic et al., Phys. Lett. B313, 520 (1993).
- DELPHI: J. Abdallah et al., Eur. Phys. J. C38, 395 (2005);
 L3: P. Achard et al., Phys. Lett. B587, 16 (2004);
 ALEPH: A. Heister et al., Eur. Phys. J. C28, 1 (2003);
 OPAL: G. Abbiendi et al., Eur. Phys. J. C18, 253 (2000).
- UA1: C. Albajar et al., Phys. Lett. B198, 271 (1987);
 UA2: R. Ansari et al., Phys. Lett. B186, 440 (1987).

Number from e⁺e⁻ Colliders

Number of Light ν Types

VALUE	DOCUMENT ID		TECN
2.9963 ± 0.0074	$^{ m 1}$ JANOT	20	
• • • We do not use the following	data for average	s, fits,	limits, etc. • • •
2.9918 ± 0.0081	² VOUTSINAS	20	
2.9840 ± 0.0082	³ LEP-SLC	06	RVUE
3.00 ± 0.05	⁴ LEP	92	RVUE

¹ JANOT 20 applies a correction to LEP-SLC 06 using an updated Bhabha cross section calculation. This result also includes a correction to account for correlated luminosity bias as presented in VOUTSINAS 20.

² VOUTSINAS 20 applies a correction to LEP-SLC 06 to account for correlated luminosity bias.

³Combined fit from ALEPH, DELPHI, L3 and OPAL Experiments.

⁴ Simultaneous fits to all measured cross section data from all four LEP experiments.

Number of Light ν Types from Direct Measurement of Invisible Z Width

In the following, the invisible Z width is obtained from studies of single-photon events from the reaction $e^+e^- \to \nu \overline{\nu} \gamma$. All are obtained from LEP runs in the $E^{ee}_{\rm cm}$ range 88–209 GeV.

VALUE	DOCUMENT ID		TECN	COMMENT
2.92±0.05 OUR AVERAGE	Error includes scale fac	ctor o	f 1.2.	
$2.84 \pm 0.10 \pm 0.14$	ABDALLAH	05 B	DLPH	$\sqrt{s}=$ 180–209 GeV
$2.98 \pm 0.05 \pm 0.04$	ACHARD	04E	L3	1990-2000 LEP runs
2.86 ± 0.09	HEISTER	03 C	ALEP	$\sqrt{s}=$ 189–209 GeV
$2.69 \pm 0.13 \pm 0.11$	ABBIENDI,G	00 D	OPAL	1998 LEP run
$2.89 \pm 0.32 \pm 0.19$	ABREU	97J	DLPH	1993-1994 LEP runs
$3.23 \pm 0.16 \pm 0.10$	AKERS	95 C	OPAL	1990-1992 LEP runs
$2.68 \pm 0.20 \pm 0.20$	BUSKULIC	93L	ALEP	1990-1991 LEP runs
• • • We do not use the following	owing data for averages	, fits,	limits, e	etc. • • •
$2.84 \pm 0.15 \pm 0.14$	ABREU	00Z	DLPH	1997-1998 LEP runs
3.01 ± 0.08	ACCIARRI	99R	L3	1991-1998 LEP runs
$3.1 \pm 0.6 \pm 0.1$	ADAM	96 C	DLPH	$\sqrt{s}=$ 130, 136 GeV

Limits from Astrophysics and Cosmology

Effective Number of Light ν Types

"Light" means here with a mass < about 1 MeV. The quoted values correspond to N $_{\rm eff}$, where N $_{\rm eff}=3.045$ in the Standard Model with N $_{\nu}=3.$ See also reviews on "Big-Bang Nucleosynthesis" and "Neutrinos in Cosmology."

VALUE	<u>CL%</u>	DOCUMENT ID		<u>TECN</u>	COMMENT
ullet $ullet$ $ullet$ We do not use the	following	g data for averages	, fits,	limits, e	tc. • • •
3.12 ± 0.38	95	¹ BRIEDEN	22	COSM	BOSS, eBOSS, CMB
2.90 ± 0.15	68	² KUMAR	22	COSM	BOSS + CMB
2.89 ± 0.14	68	³ YEH	22	COSM	BBN + CMB
2.99 ± 0.17	68	⁴ AGHANIM	20	COSM	
2.84 ± 0.15	68	⁵ FIELDS	20	COSM	BBN
2.88 ± 0.17	68	⁶ IVANOV	20	COSM	Planck and BOSS
2.3-3.2	95	⁷ VERDE	17	COSM	
2.88 ± 0.16	68	⁸ CYBURT	16	COSM	BBN
2.88 ± 0.20	95	⁹ ROSSI	15	COSM	
3.3 ± 0.5	95	¹⁰ ADE	14	COSM	Planck
$3.78^{+0.31}_{-0.30}$		¹¹ COSTANZI	14	COSM	
3.29 ± 0.31		¹² HOU	14	COSM	
< 3.80	95	¹³ LEISTEDT	14	COSM	
< 4.10	95	¹⁴ MORESCO	12	COSM	
< 5.79	95	¹⁵ XIA	12	COSM	
< 4.08	95	MANGANO	11	COSM	BBN
0.9–8.2		¹⁶ ICHIKAWA	07	COSM	
3–7	95	¹⁷ CIRELLI	06	COSM	
2.7-4.6	95	¹⁸ HANNESTAD	06	COSM	
3.6-7.4	95	¹⁷ SELJAK	06	COSM	
< 4.4		¹⁹ CYBURT	05	COSM	
< 3.3		²⁰ BARGER	03 C	COSM	
1.4-6.8		²¹ CROTTY	03	COSM	

	0.1			
1.9–6.6	²¹ PIERPAOLI	03	COSM	
2–4	LISI	99	COSM	BBN
< 4.3	OLIVE	99	COSM	BBN
< 4.9	COPI	97		Cosmology
< 3.6	HATA	97 B		High D/H quasar abs.
< 4.0	OLIVE	97		BBN; high 4 He and 7 Li
< 4.7	CARDALL	96 B	COSM	High D/H quasar abs.
< 3.9	FIELDS	96	COSM	BBN; high 4 He and 7 Li
< 4.5	KERNAN	96	COSM	High D/H quasar abs.
< 3.6	OLIVE	95		BBN; \geq 3 massless $ u$
< 3.3	WALKER	91		Cosmology
< 3.4	OLIVE	90		Cosmology
< 4	YANG	84		Cosmology
< 4	YANG	79		Cosmology
< 7	STEIGMAN	77		Cosmology
	PEEBLES	71		Cosmology
<16	²² SHVARTSMA	N69		Cosmology
	HOYLE	64		Cosmology

 $^{^{}m 1}$ BRIEDEN 22 combines large scale structure data from BOSS and eBOSS including the shape of the matter power spectrum with Planck CMB data.

 $^{^2}$ KUMAR 22 combine the reconstructed galaxy power spectrum from BOSS data with Planck CMB data.

³YEH 22 combines Planck 2018 CMB data with BBN and observations of deuterium and Helium-4. Supersedes FIELDS 20.

 $^{^4}$ AGHANIM 20 best fit on number of neutrino types is based on Planck data combined with lensing and baryon acoustic oscillations (BAO). Without BAO, they find $2.89 {+0.18 \atop -0.19}$. Several other values are quoted using different combinations of data.

⁵ FIELDS 20 combines Planck 2018 CMB data with BBN and observations of deuterium and Helium-4.

⁶ IVANOV 20 combines 2018 Planck CMB data with baryon acoustic oscillation data from BOSS. This study is based on a full-shape likelhood for the redshift-space galaxy power spectrum of the BOSS data.

⁷ Uses Planck Data combined with an independent standard measure of distance to the sound horizon to set a limit on the total number of neutrinos. Only CMB and early-time information are used.

⁸ CYBURT 16 combines Planck 2015 CMB data with BBN and observations of deuterium and Helium-4.

⁹ ROSSI 15 sets limits on the number of neutrino types using BOSS Lyman alpha forest data combined with Planck CMB data and baryon acoustic oscillations.

 $^{^{10}}$ Fit to the number of neutrino degrees of freedom from Planck CMB data along with WMAP polarization, high L, and BAO data.

 $^{^{11}\}mathrm{Fit}$ to the number of neutrinos degrees of freedom from Planck CMB data along with BAO, shear and cluster data.

 $^{^{12}}$ Fit based on the SPT-SZ survey combined with CMB, BAO, and H_0 data.

¹³ Constrains the number of neutrino degrees of freedom (marginalizing over the total mass) from CMB, CMB lensing, BAO, and galaxy clustering data.

¹⁴ Limit on the number of light neutrino types from observational Hubble parameter data with seven-year WMAP data, SPT, and the most recent estimate of H_0 . Best fit is 3.45 \pm 0.65.

¹⁵ Limit on the number of light neutrino types from the CFHTLS combined with seven-year WMAP data and a prior on the Hubble parameter. Best fit is $4.17^{+1.62}_{-1.26}$. Limit is relaxed to $3.98^{+2.02}_{-1.20}$ when small scales affected by non-linearities are removed.

- 16 Constrains the number of neutrino types from recent CMB and large scale structure data. No priors on other cosmological parameters are used.
- 17 Constrains the number of neutrino types from recent CMB, large scale structure, Lyman-alpha forest, and SN1a data. The slight preference for $N_{\nu}~>3$ comes mostly from the Lyman-alpha forest data.
- 18 Constrains the number of neutrino types from recent CMB and large scale structure data. See also HAMANN 07.
- 19 Limit on the number of neutrino types based on ⁴He and D/H abundance assuming a baryon density fixed to the WMAP data. Limit relaxes to 4.6 if D/H is not used or to 5.8 if only D/H and the CMB are used. See also CYBURT 01 and CYBURT 03.
- ²⁰ Limit on the number of neutrino types based on combination of WMAP data and bigbang nucleosynthesis. The limit from WMAP data alone is 8.3. See also KNELLER 01. $N_{\nu} \geq 3$ is assumed to compute the limit.
- $^{21}\,95\%$ confidence level range on the number of neutrino flavors from WMAP data combined with other CMB measurements, the 2dfGRS data, and HST data.
- ²²SHVARTSMAN 69 limit inferred from his equations.

Number Coupling with Less Than Full Weak Strength

VALUE	DOCUMENT ID		TECN
ullet $ullet$ We do not use the following	ng data for average	s, fits,	limits, etc. \bullet \bullet
<20	¹ OLIVE	81 C	COSM
<20	$^{ m 1}$ STEIGMAN	79	COSM
1 Limit varies with strength of	coupling. See also	WALK	(ER 91.

REFERENCES FOR Limits on Number of Neutrino Types

BRIEDEN KUMAR YEH AGHANIM FIELDS Also IVANOV JANOT VOUTSINAS VERDE	22 22 22 20 20 20 20 20 20 17	JCAP 2208 024 JCAP 2209 060 JCAP 2210 046 AA 641 A6 JCAP 2013 010 JCAP 2011 E02 (errat.) PR D101 083504 PL B803 135319 PL B800 135068 JCAP 1704 023	S. Brieden, Hector Gil-Marin, Licia Verd S. Kumar, R. Nunes, P.Yadav TH. Yeh et al. N. Aghanim et al. B. Fields et al. B. Fields et al. M.M. Ivanov, M. SImonovic, M. Zaldari P. Janot, S. Jadach G. Voutsinas et al. L. Verde et al.	(ILL, MINN) (Planck Collab.) (ILL, MINN) (ILL, MINN)
CYBURT	16	RMP 88 015004		MSU, ILL, MINN)
ROSSI ADE COSTANZI HOU	15 14 14 14	PR D92 063505 AA 571 A16 JCAP 1410 081 APJ 782 74	G. Rossi <i>et al.</i> P.A.R. Ade <i>et al.</i> M. Costanzi <i>et al.</i> Z. Hou <i>et al.</i>	(Planck Collab.) (TRST, TRSTI)
LEISTEDT MORESCO	14 12 12	PRL 113 041301 JCAP 1207 053	B. Leistedt, H.V. Peiris, L. Verde M. Moresco <i>et al.</i>	
XIA MANGANO HAMANN	11 07	JCAP 1206 010 PL B701 296 JCAP 0708 021	JQ. Xia <i>et al.</i> G. Mangano, P. Serpico J. Hamann <i>et al.</i>	
ICHIKAWA CIRELLI HANNESTAD	07 06 06	JCAP 0705 007 JCAP 0612 013 JCAP 0611 016	 K. Ichikawa, M. Kawasaki, F. Takahashi M. Cirelli <i>et al.</i> S. Hannestad, G. Raffelt 	
LEP-SLC SELJAK	06 06	PRPL 427 257 JCAP 0610 014	ALEPH, DELPHI, L3, OPAL, SLD and U. Seljak, A. Slosar, P. McDonald	working groups
ABDALLAH CYBURT	05B 05	EPJ C38 395 ASP 23 313		(DELPHI Collab.)
ACHARD BARGER	04E 03C	PL B587 16 PL B566 8	P. Achard <i>et al.</i> V. Barger <i>et al.</i>	(L3 Collab.)
CROTTY CYBURT HEISTER PIERPAOLI CYBURT KNELLER	03 03 03C 03 01 01	PR D67 123005 PL B567 227 EPJ C28 1 MNRAS 342 L63 ASP 17 87 PR D64 123506	P. Crotty, J. Lesgourgues, S. Pastor R.H. Cyburt, B.D. Fields, K.A. Olive A. Heister <i>et al.</i> E. Pierpaoli R.H. Cyburt, B.D. Fields, K.A. Olive J.P. Kneller <i>et al.</i>	(ALEPH Collab.)

ABBIENDI,G ABREU	00D 00Z	EPJ C18 253 EPJ C17 53	G. Abbiendi <i>et al.</i> P. Abreu <i>et al.</i>	(OPAL Collab.) (DELPHI Collab.)
ACCIARRI	99R	PL B470 268	M. Acciarri <i>et al.</i>	(L3 Collab.)
LISI	99	PR D59 123520	E. Lisi, S. Sarkar, F.L. Villante	
OLIVE	99	ASP 11 403	K.A. Olive, D. Thomas	
ABREU	97J	ZPHY C74 577	P. Abreu <i>et al.</i>	(DELPHI Collab.)
COPI	97	PR D55 3389	C.J. Copi, D.N. Schramm, M.S. Turn	
HATA	97B	PR D55 540	N. Hata et al.	(OSU, PENN)
OLIVE	97	ASP 7 27	K.A. Olive, D. Thomas	(MINN, FLOR)
ADAM	96C	PL B380 471	W. Adam et al.	(DELPHI Collab.)
CARDALL	96B	APJ 472 435	C.Y. Cardall, G.M. Fuller	(UCSD)
FIELDS	96	New Ast 1 77	`	M, CERN, MINN+)
KERNAN	96	PR D54 3681	P.S. Kernan, S. Sarkar	(CASE, OXFTP)
AKERS	95C	ZPHY C65 47	R. Akers <i>et al.</i>	(OPAL Collab.)
OLIVE	95	PL B354 357	K.A. Olive, G. Steigman	(MINN, OSU)
BUSKULIC	93L	PL B313 520	D. Buskulic <i>et al.</i>	(ALEPH Collab.)
LEP	92	PL B276 247	LEP Collabs. (LEP, ALEPH, I	
WALKER	91	APJ 376 51		SCA, OSU, CHIC+)
OLIVE	90	PL B236 454		IINN, CHIC, OSU+)
YANG OLIVE	84 81C	APJ 281 493 NP B180 497	J. Yang et al.	(CHIC, BART)
STEIGMAN	79	PRL 43 239	K.A. Olive, D.N. Schramm, G. Steigr	
YANG	79 79	APJ 227 697	G. Steigman, K.A. Olive, D.N. Schra J. Yang <i>et al.</i>	
STEIGMAN	79 77	PL 66B 202	G. Steigman, D.N. Schramm, J.E. G.	
PEEBLES	71	Physical Cosmology	P.Z. Peebles	(PRIN)
-		Press (1971)	T.Z. Teebles	(111111)
SHVARTSMAN		JETPL 9 184	V.E. Shyartsman	(MOSU)
JIIVAKIJIVIAI	v 03	Translated from ZETFP		(10000)
HOYLE	64	NAT 203 1108	F. Hoyle, R.J. Tayler	(CAMB)
				` '