A(1810) 1/2

$$I(J^P) = 0(\frac{1}{2}^+)$$
 Status: ***

A(1810) POLE POSITION

REAL PART				
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1773± 7	SARANTSEV	19	DPWA	K N multichannel
\bullet \bullet \bullet We do not use the following d	ata for averages	, fits,	limits, e	tc. ● ● ●
$2097 {+40 \atop -1}$ 1	KAMANO	15	DPWA	Multichannel
1780	ZHANG	13A	DPWA	Multichannel
1 From the preferred solution A in	KAMANO 15. S	Soluti	on B rep	orts M = 1841^{+3}_{-4} MeV.
-2×IMAGINARY PART				
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
38±14	SARANTSEV	19	DPWA	K N multichannel
\bullet \bullet \bullet We do not use the following d	ata for averages	, fits,	limits, e	tc. • • •
166^{+64}_{-12} 1	KAMANO	15	DPWA	Multichannel
64	ZHANG	13A	DPWA	Multichannel
1 From the preferred solution A in	KAMANO 15.	Soluti	on B Re	ports $\Gamma=62^{+6}_{-4}$ MeV.

A(1810) POLE RESIDUES

The normalized residue is the residue divided by $\Gamma_{pole}/2.$

Normalized residue in $N\overline{K} \rightarrow \Lambda(1810) \rightarrow N\overline{K}$

MODULUS	PHASE (°)	DOCUMENT ID		TECN	COMMENT
0.018±0.008	65 ± 26	SARANTSEV	19	DPWA	$\overline{K}N$ multichannel
• • • We do not	t use the following data	for averages, fits	s, limi	its, etc.	• • •
0.205	-63 1	KAMANO	15	DPWA	Multichannel
1 From the pre	eferred solution A in KA	MANO 15.			

Normalized residue in $N\overline{K} \rightarrow \Lambda(1810) \rightarrow \Sigma \pi$ MODULUS PHASE (°) DOCUMENT ID TECN COMMENT $0.045 \pm 0.020 - 143 \pm 24$ SARANTSEV 19 DPWA $\overline{K}N$ multichannel \bullet \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet ¹ KAMANO 29 0.0325 15 DPWA Multichannel ¹ From the preferred solution A in KAMANO 15. 4/1010)

Normalized res	sidue in $NK \rightarrow N(1)$	$(810) \rightarrow \Lambda \eta$		
MODULUS	PHASE (°)	DOCUMENT ID	TECN	COMMENT
• • • We do not	use the following data	for averages, fits, lim	nits, etc.	• • •
0.155	165 1	KAMANO 15	DPWA	Multichannel
¹ From the pre	ferred solution A in KA	MANO 15.		

https://pdg.lbl.gov	Page 1	Created: 5/31/	/2024 10:12
	- 8 -		

Normalized residue in $N\overline{K} \rightarrow \Lambda(1810) \rightarrow \Lambda\sigma$ MODULUS PHASE (°) DOCUMENT ID TECN COMMENT 0.055 ± 0.020 30 ± 16 SARANTSEV 19 DPWA $\overline{K}N$ multichannel Normalized residue in $N\overline{K} \rightarrow \Lambda(1810) \rightarrow \Xi K$ MODULUS PHASE (°) DOCUMENT ID TECN COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • • ¹ KAMANO 15 DPWA Multichannel 0.0937 -64 ¹From the preferred solution A in KAMANO 15. Normalized residue in $N\overline{K} \rightarrow \Lambda(1810) \rightarrow \Sigma(1385)\pi$ MODULUS DOCUMENT ID PHASE (°) TECN COMMENT 0.08 ± 0.03 -50 ± 30 SARANTSEV 19 DPWA $\overline{K}N$ multichannel • • • We do not use the following data for averages, fits, limits, etc. • • • -10¹ KAMANO 0.244 15 **DPWA** Multichannel ¹From the preferred solution A in KAMANO 15. Normalized residue in $N\overline{K} \rightarrow \Lambda(1810) \rightarrow N\overline{K}^*(892)$, S=1/2, P-wave MODULUS PHASE ($^{\circ}$) DOCUMENT ID TECN COMMENT 0.03 ± 0.03 SARANTSEV 19 DPWA $\overline{K}N$ multichannel • • • We do not use the following data for averages, fits, limits, etc. • • • - 97 ¹ KAMANO 15 DPWA Multichannel 0.159 ¹ From the preferred solution A in KAMANO 15. Normalized residue in $N\overline{K} \rightarrow \Lambda(1810) \rightarrow N\overline{K}^*(892)$, S=3/2, P-wave MODULUS PHASE (°) DOCUMENT ID TECN COMMENT 0.05 ± 0.04 SARANTSEV 19 DPWA $\overline{K}N$ multichannel \bullet \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet ¹ KAMANO 2 0.0497 15 DPWA Multichannel

¹ From the preferred solution A in KAMANO 15.

https://pdg.lbl.gov

Λ(1810) MASS

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1740 to 1840 (≈ 1790) OUR ESTIN	ATE			
1773± 7	SARANTSEV	19	DPWA	KN multichannel
1821 ± 10	ZHANG	13A	DPWA	Multichannel
1841 ± 20	GOPAL	80	DPWA	$\overline{K}N \rightarrow \overline{K}N$
$1735\pm$ 5	CARROLL	76	DPWA	lsospin-0 total σ
1746 ± 10	PREVOST	74	DPWA	$K^- N \rightarrow \Sigma(1385) \pi$
1780 ± 20	LANGBEIN	72	IPWA	K N multichannel
\bullet \bullet \bullet We do not use the following of	data for averages	, fits,	limits, e	tc. ● ● ●
1853 ± 20	GOPAL	77	DPWA	K N multichannel
1861 or 1953	¹ MARTIN	77	DPWA	KN multichannel
1755	KIM	71	DPWA	K-matrix analysis
1800	ARMENTEROS	570	HBC	$\overline{K}N \rightarrow \overline{K}N$
1750	ARMENTEROS	570	HBC	$\overline{K}N \rightarrow \Sigma\pi$
1690 ± 10	BARBARO	70	HBC	$\overline{K}N \rightarrow \Sigma\pi$
1740	BAILEY	69	DPWA	$\overline{K}N \rightarrow \overline{K}N$
1745	ARMENTEROS	5 68 B	HBC	$\overline{K}N \rightarrow \overline{K}N$

Page 2

Created: 5/31/2024 10:12

 1 The two MARTIN 77 values are from a T-matrix pole and from a Breit-Wigner fit.

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
50 to 170 (\approx 110) OUR ESTIMAT	E			
39±15	SARANTSEV	19	DPWA	K N multichannel
174 ± 50	ZHANG	13A	DPWA	Multichannel
164 ± 20	GOPAL	80	DPWA	$\overline{K}N \rightarrow \overline{K}N$
90±20	CAMERON	78 B	DPWA	$K^- p \rightarrow N \overline{K}^*$
46±20	PREVOST	74	DPWA	$K^- N \rightarrow \Sigma(1385) \pi$
120 ± 10	LANGBEIN	72	IPWA	K N multichannel
\bullet \bullet \bullet We do not use the following d	lata for averages	, fits,	limits, e	tc. • • •
166 ± 20	GOPAL	77	DPWA	K N multichannel
535 or 585	MARTIN	77	DPWA	K N multichannel
28	CARROLL	76	DPWA	lsospin-0 total σ
35	KIM	71	DPWA	K-matrix analysis
30	ARMENTEROS	570	HBC	$\overline{K}N \rightarrow \overline{K}N$
70	ARMENTEROS	570	HBC	$\overline{K}N \rightarrow \Sigma\pi$
22	BARBARO	70	HBC	$\overline{K}N \rightarrow \Sigma\pi$
300	BAILEY	69	DPWA	$\overline{K}N \rightarrow \overline{K}N$
147	ARMENTEROS	568 B	HBC	
1 The two MARTIN 77 values are	from a T-matrix	pole	and from	n a Breit-Wigner fit.

Л(1810) WIDTH

*N***(1810) DECAY MODES**

	Mode	Fraction (Γ_i/Γ)
Γ ₁	NK	0.05 to 0.35
Γ2	$\Sigma \pi$	$(16 \pm 5)\%$
Γ ₃	$\Lambda\eta$	
Γ ₄	ΞK	
Γ ₅	$\Sigma(1385)\pi$	(40 ±15) %
Г ₆	$N\overline{K}^*(892)$	30–60 %
Γ ₇	$N\overline{K}^*(892)$, S ${=}1/2$, P-wave	
Г ₈	$N\overline{K}^*(892)$, $S\!\!=\!\!3/2$, P -wave	

A(1810) BRANCHING RATIOS

$\Gamma(N\overline{K})/\Gamma_{\text{total}}$					Γ_1/Γ
VALUE	DOCUMENT ID		TECN	COMMENT	
0.05 to 0.35 OUR ESTIMATE					
0.025 ± 0.013	SARANTSEV	19	DPWA	<i>K</i> <i>N</i> multichannel	
0.19 ± 0.08	ZHANG	13A	DPWA	K N multichannel	
0.24 ± 0.04	GOPAL	80	DPWA	$\overline{K}N \rightarrow \overline{K}N$	
0.36 ± 0.05	LANGBEIN	72	IPWA	K N multichannel	
ullet $ullet$ $ullet$ We do not use the following	data for averages	, fits,	limits, e	tc. ● ● ●	
0.225	¹ KAMANO	15	DPWA	<i>K</i> <i>N</i> multichannel	
0.21 ± 0.04	GOPAL	77	DPWA	See GOPAL 80	
https://pdg.lbl.gov	Page 3		Creat	ed: 5/31/2024	10:12

0.52	or 0.49	² MARTIN	77	DPWA $\overline{K}N$ multichannel
0.30		KIM	71	DPWA K-matrix analysis
0.15		ARMENTEROS	570	DPWA $\overline{K}N \rightarrow \overline{K}N$
0.55		BAILEY	69	DPWA $\overline{K}N \rightarrow \overline{K}N$
0.4		ARMENTEROS	568 B	DPWA $\overline{K}N \rightarrow \overline{K}N$

 1 From the preferred solution A in KAMANO 15.

 2 The two MARTIN 77 values are from a T-matrix pole and from a Breit-Wigner fit.

$\Gamma(\Sigma\pi)/\Gamma_{\rm total}$

Γ2/Γ

 Γ_3/Γ

 Γ_4/Γ

 Γ_5/Γ

 Γ_7/Γ

VALUE	<u>DOCUMENT ID</u>		TECN	COMMENT	
0.16 ±0.05	SARANTSEV	19	DPWA	K N multichannel	
$\bullet~\bullet~\bullet$ We do not use the follow	ing data for average	s, fits,	, limits, e	tc. ● ● ●	
0.009	¹ KAMANO	15	DPWA	Multichannel	
1 From the preferred solution	A in KAMANO 15.				

$\Gamma(\Lambda\eta)/\Gamma_{total}$			
VALUE	DOCUMENT ID	TECN	<u>COMMENT</u>
• • • We do not use the f	ollowing data for averages, fits,	limits, e	etc. • • •
0.111	¹ KAMANO 15	DPWA	Multichannel

 1 From the preferred solution A in KAMANO 15.

$\Gamma(\Xi K)/\Gamma_{total}$

VALUE	DOCUMENT ID		TECN	COMMENT
• • • We do not use the following	g data for averages	s, fits,	limits, e	tc. • • •
0.051	¹ KAMANO	15	DPWA	Multichannel
1 From the preferred solution A	in KAMANO 15.			

$\Gamma(\Sigma(1385)\pi)/\Gamma_{total}$

VALUE	DOCUMENT ID		TECN	COMMENT	
0.40 ±0.15	SARANTSEV	19	DPWA	K N multichannel	
\bullet \bullet \bullet We do not use the following d	ata for averages	, fits,	limits, e	tc. ● ● ●	
0.600 1	KAMANO	15	DPWA	Multichannel	
¹ From the preferred solution A in KAMANO 15.					

$\Gamma(N\overline{K}^*(892), S=1/2, P-wave)/\Gamma_{total}$ DOCUMENT ID TECN COMMENT VALUE

• • • We do not use the following data for averages, fits, limits, etc. • • • ¹ KAMANO 15 DPWA Multichannel 0.003

¹ From the preferred solution A in KAMANO 15.

$(\Gamma_i \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N\overline{K} \to \Lambda(1)$	1810) $\rightarrow \Sigma \pi$			(Γ ₁ Γ ₂) ^½ /Γ
VALUE	DOCUMENT ID		TECN	COMMENT
-0.08 ± 0.05	ZHANG	13A	DPWA	Multichannel
-0.24 ± 0.04	GOPAL	77	DPWA	K N multichannel
$\bullet \bullet \bullet$ We do not use the following	g data for average	es, fits,	limits, e	tc. ● ● ●
+0.25 or +0.23	¹ MARTIN	77	DPWA	K N multichannel
< 0.01	LANGBEIN	72	IPWA	K N multichannel
https://pdg.lbl.gov	Page 4		Creat	ed: 5/31/2024 10:12

0.17	KIM 71	DPWA K-matrix analysis
+0.20	² ARMENTEROS70	DPWA $\overline{K}N \rightarrow \Sigma \pi$
-0.13 ± 0.03	BARBARO 70	DPWA $\overline{K}N \rightarrow \Sigma \pi$

 1 The two MARTIN 77 values are from a T-matrix pole and from a Breit-Wigner fit. 2 The published sign has been changed to be in accord with the baryon-first convention.

$(\Gamma_i \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N \overline{K} \to \Lambda(1)$	(Γ ₁ Γ ₅) ^½ /Γ					
VALUE	DOCUMENT ID		TECN	<u>COMMENT</u>		
$+0.18 \pm 0.10$	PREVOST	74	DPWA	$K^-N \rightarrow$	$\Sigma(1385)\pi$	
$(\Gamma_i \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N\overline{K} \rightarrow \Lambda(1810) \rightarrow N\overline{K}^*(892), S=1/2, P-\text{wave } (\Gamma_1 \Gamma_7)^{\frac{1}{2}} / \Gamma_1$						
VALUE	DOCUMENT ID		TECN	COMMENT		
-0.14 ± 0.03	¹ CAMERON	78 B	DPWA	$K^- p \rightarrow$	N K *	
1 The published sign has been c	hanged to be in a	ccord	with the	baryon-firs	t convention.	

$(\Gamma_i \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N\overline{K} \to N$	$N(1810) \rightarrow N\overline{K}^*(8)$	92),	<i>S</i> =3/2	, <i>P</i> -wave $(\Gamma_1 \Gamma_8)^{\frac{1}{2}}/\Gamma$
VALUE	DOCUMENT ID		TECN	COMMENT
$+0.38 \pm 0.06$	ZHANG	13A	DPWA	Multichannel
$+0.35 \pm 0.06$	CAMERON	78 B	DPWA	$K^- p \rightarrow N \overline{K}^*$
0.00 ± 0.00	C, WERON	100		

A(1810) REFERENCES

SARANTSEV KAMANO ZHANG GOPAL CAMERON GOPAL MARTIN Also	19 15 13A 80 78B 77 77	EPJ A55 180 PR C92 025205 PR C88 035205 Toronto Conf. 159 NP B146 327 NP B119 362 NP B127 349 NP B126 266	 A.V. Sarantsev <i>et al.</i> H. Kamano <i>et al.</i> H. Zhang <i>et al.</i> G.P. Gopal W. Cameron <i>et al.</i> G.P. Gopal <i>et al.</i> B.R. Martin, M.K. Pidcock, R.G. B.R. Martin, M.K. Pidcock 	(BONN, PNPI) (ANL, OSAK) (KSU) (RHEL) IJP (RHEL, LOIC) IJP (LOIC, RHEL) IJP Moorhouse (LOUC+) IJP (LOUC)
Also	76	NP B126 285	B.R. Martin, M.K. Pidcock	(LOUC) IJP
	70 74	NR 860 246	A.S. Carroll <i>et al.</i>	(BNL) I (SACI CERN HEID)
	79	ND D47 477	M Langhoin E Wagner	
	72	NP D4/ 4//	VV. Langbein, F. Wagner	
KIM	/1	PRL 27 356	J.K. Kim	(HARV) IJP
Also		Duke Conf. 161	J.K. Kim	(HARV) IJP
Hyperon Re	sonanc	es, 1970		
ARMENTEROS	70	Duke Conf. 123	R. Armenteros <i>et al.</i>	(CERN, HEID, SACL) IJP
Hyperon Re	sonanc	es, 1970		
BARBARO	70	Duke Conf. 173	A. Barbaro-Galtieri	(LRL) IJP
	sonanc	ES, 1970	IM Dellas	
BAILEY	09	Thesis UCRL 50017	J.IVI. Balley	(LLL) IJP
ARMENTEROS	68B	NP B8 195	R. Armenteros <i>et al.</i>	(CERN, HEID, SACL) IJP