$$U^{G}(J^{PC}) = 0^{+}(0^{-+})$$

OMITTED FROM SUMMARY TABLE

Quantum numbers shown are quark-model predictions.

$\eta_b(2S)$ MASS

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
9999.0 \pm 3.5 $^{+2.8}_{-1.9}$	26k	¹ MIZUK	12	BELL	$e^+e^- \rightarrow \gamma \pi^+\pi^- +$
$\bullet \bullet \bullet$ We do not use	the following	data for averages	s, fits,	limits, e	etc. • • •

 $11 + 4 \quad 2,3,4 \text{ DOBBS}$ $9974.6 \pm 2.3 \pm 2.1$ 12 $\Upsilon(2S) \rightarrow \gamma$ hadrons

¹Assuming $\Gamma_{\eta_b(2S)}$ = 4.9 MeV. Not independent of the corresponding mass difference measurement.

 2 SANDILYA 13 (Belle Collab.) search for such a state reconstructed in the same 26 exclusive hadronic final states as DOBBS 12 using a sample of $(157.8 \pm 3.6) \times 10^6 \Upsilon(2S)$ decays or about 17 times larger and find no evidence for a signal. Their 90% C.L. upper limit on the branching fraction $B(\Upsilon(2S) \rightarrow \eta_b(2S)\gamma) \times \sum_i B(\eta_b(2S) \rightarrow X_i)$ < 4.9×10^{-6} , summed over the exclusive hadronic final states X_i , is an order of magnitude smaller than that reported by DOBBS 12.

³Obtained by analyzing CLEO III data but not authored by the CLEO Collaboration.

⁴Assuming $\Gamma_{\eta_b(2S)}$ = 5 MeV. Not independent of the corresponding mass difference measurement

VALUE (MeV)	EVTS	DOCUMENT	ID	TECN	COMMENT
$24.3 \pm 3.5 \substack{+2.8 \\ -1.9}$	26k	⁵ MIZUK	12	BELL	$e^+e^- \rightarrow$ hadror

• • • We do not use the following data for averages, fits, limits, etc. • •

 11 ± 4 ^{6,7,8} DOBBS $48.7 \pm 2.3 \pm 2.1$ 12 $\Upsilon(2S) \rightarrow \gamma$ hadrons

⁵Assuming $\Gamma_{\eta_b(2S)}$ = 4.9 MeV. Not independent of the corresponding mass measurement.

 6 SANDILYA 13 (Belle Collab.) search for such a state reconstructed in the same 26 exclusive hadronic final states as DOBBS 12 using a sample of $(157.8 \pm 3.6) \times 10^6 \Upsilon(2S)$ decays or about 17 times larger and find no evidence for a signal. Their 90% C.L. upper limit on the branching fraction $B(\Upsilon(2S) \rightarrow \eta_b(2S)\gamma) \times \sum_i B(\eta_b(2S) \rightarrow X_i)$ < 4.9×10^{-6} , summed over the exclusive hadronic final states X_i , is an order of magnitude smaller than that reported by DOBBS 12.

⁷ Obtained by analyzing CLEO III data but not authored by the CLEO Collaboration.

⁸Assuming $\Gamma_{n_{L}(2S)} = 5$ MeV. Not independent of the corresponding mass measurement.

VALUE (MeV) CL% DOCUMENT ID TECN COMMENT	η _b (2 <i>S</i>) WIDTH						
	VALUE (MeV)	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT	
24 90 MIZUK 12 BELL $e^+e^- \rightarrow \gamma \pi^+\pi^-$ has	<24	90	MIZUK	12	BELL	$e^+e^- ightarrow \gamma \pi^+\pi^-$ hadrons	

https://pdg.lbl.gov

 $\gamma \pi^+ \pi^- +$

$\eta_b(2S)$ DECAY MODES

	Mode	Fraction (Γ_i/Γ)					
Γ1	hadrons	seen					
$\eta_b(2S)$ BRANCHING RATIOS							
$\Gamma(hadrons)/\Gamma_{total}$ Γ_1/Γ							
VALUE	<u>EVT</u>	<u>DOCUMENT ID</u>		TECN	COMMENT		
seen	26k	MIZUK	12	BELL	$e^+e^- ightarrow \gamma \pi^+\pi^-$ hadrons		
ullet $ullet$ $ullet$ We do not use the following data for averages, fits, limits, etc. $ullet$ $ullet$							
seen	seen $9,10$ DOBBS 12 $\Upsilon(2S) o \gamma$ hadrons						
⁹ SANDILYA 13 (Belle Collab.) search for such a state reconstructed in the same 26 exclusive hadronic final states as DOBBS 12 using a sample of $(157.8\pm3.6)\times10^6 \ \Upsilon(2S)$ decays or about 17 times larger and find no evidence for a signal. Their 90% C.L. upper limit on the branching fraction B($\Upsilon(2S) \rightarrow \eta_b(2S)\gamma) \times \sum_i B(\eta_b(2S) \rightarrow X_i)$ < 4.9 × 10 ⁻⁶ , summed over the exclusive hadronic final states X_i , is an order of magnitude smaller than that reported by DOBBS 12. 10 Obtained by analyzing CLEO III data but not authored by the CLEO Collaboration.							
$\eta_b(2S)$ REFERENCES							

SANDILYA	13	PRL 111 112001	S. Sandilya <i>et al.</i>	(BELLE Collab.)
DOBBS	12	PRL 109 082001	S. Dobbs <i>et al.</i>	
MIZUK	12	PRL 109 232002	R. Mizuk <i>et al.</i>	(BELLE Collab.)