b-baryon ADMIXTURE $(\Lambda_b, \Xi_b, \Omega_b)$

b-baryon ADMIXTURE MEAN LIFE

Each measurement of the *b*-baryon mean life is an average over an admixture of various *b* baryons which decay weakly. Different techniques emphasize different admixtures of produced particles, which could result in a different *b*-baryon mean life. More *b*-baryon flavor specific channels are not included in the measurement.

<i>VALUE</i> (10^{-12} s)	EVTS	DOCUMENT ID		TECN	COMMENT
• • • We do not use t	the following	data for averages	, fits,	limits, e	etc. • • •
$1.218 ^{+ 0.130}_{- 0.115} \pm 0.042$		¹ ABAZOV	07 S	D0	Repl. by ABAZOV 120
$1.22 \ ^{+0.22}_{-0.18} \ \pm 0.04$		$^{ m 1}$ ABAZOV	05 C	D0	Repl. by ABAZOV 07S
$1.16 \pm 0.20 \pm 0.08$		² ABREU	99W	DLPH	$e^+e^- ightarrow Z$
$1.19 \pm 0.14 \pm 0.07$		³ ABREU	99W	DLPH	$e^+e^- o~Z$
$1.14 \pm 0.08 \pm 0.04$		⁴ ABREU	99W	DLPH	$e^+e^- ightarrow Z$
$1.11 \ ^{+0.19}_{-0.18} \ \pm 0.05$		⁵ ABREU	99W	DLPH	$e^+e^- ightarrow Z$
$1.29 \ ^{+0.24}_{-0.22} \ \pm 0.06$		⁵ ACKERSTAFF	98G	OPAL	$e^+e^- ightarrow Z$
$1.20\ \pm0.08\ \pm0.06$		⁶ BARATE	98 D	ALEP	$e^+e^- ightarrow~Z$
1.21 ± 0.11		⁵ BARATE	98D	ALEP	$e^+e^- ightarrow Z$
$1.32 \pm 0.15 \pm 0.07$		⁷ ABE	96M	CDF	$p\overline{p}$ at 1.8 TeV
$1.46 \begin{array}{c} +0.22 & +0.07 \\ -0.21 & -0.09 \end{array}$		ABREU	96 D	DLPH	Repl. by ABREU 99W
$1.10 \ ^{+ 0.19}_{- 0.17} \ \pm 0.09$		⁵ ABREU	96 D	DLPH	$e^+e^- ightarrow Z$
$1.16 \ \pm 0.11 \ \pm 0.06$		⁵ AKERS	96	OPAL	$e^+e^- ightarrow Z$
$1.27 \ ^{+ 0.35}_{- 0.29} \ \pm 0.09$		ABREU	95 S	DLPH	Repl. by ABREU 99W
$1.05 \ {+0.12\atop -0.11} \ \pm 0.09$	290	BUSKULIC	95L	ALEP	Repl. by BARATE 98D
$1.04 \ ^{+0.48}_{-0.38} \ \pm 0.10$	11	⁸ ABREU	93F	DLPH	Excess $\Lambda\mu^-$, decay lengths
$1.05 \ ^{+0.23}_{-0.20} \ \pm 0.08$	157	⁹ AKERS	93	OPAL	Excess $\Lambda \ell^-$, decay lengths
$1.12 \ ^{+0.32}_{-0.29} \ \pm 0.16$	101	¹⁰ BUSKULIC	921	ALEP	Excess $\Lambda \ell^-$, impact parameters
		_			

 $^{^1\,\}mathrm{Measured}$ mean life using fully reconstructed $\varLambda_b^0\,\to\,\,J/\psi\,\varLambda$ decays.

Created: 5/31/2024 10:16

 $^{^2}$ Measured using $\Lambda\ell^-$ decay length.

³ Measured using $p\ell^-$ decay length.

⁴ This ABREU 99W result is the combined result of the $\Lambda\ell^-$, $p\ell^-$, and excess $\Lambda\mu^-$ impact parameter measurements.

 $^{^5\,\}mathrm{Measured}$ using $\varLambda_{\mathcal{C}}\,\ell^-$ and $\varLambda\ell^+\,\ell^-.$

 $^{^6\,\}text{Measured}$ using the excess of $\Lambda\ell^-$, lepton impact parameter.

⁷ Measured using $\Lambda_c \ell^-$.

⁸ ABREU 93F superseded by ABREU 96D.

b-baryon ADMIXTURE DECAY MODES $(\Lambda_b, \Xi_b, \Omega_b)$

These branching fractions are actually an average over weakly decaying b-baryons weighted by their production rates at the LHC, LEP, and Tevatron, branching ratios, and detection efficiencies. They scale with the b-baryon production fraction B($b \rightarrow b$ -baryon).

The branching fractions B(b-baryon $\to \Lambda \ell^- \overline{\nu}_\ell$ anything) and B($\Lambda_b^0 \to \Lambda_c^+ \ell^- \overline{\nu}_\ell$ anything) are not pure measurements because the underlying measured products of these with B($b \to b$ -baryon) were used to determine B($b \to b$ -baryon), as described in the note "Production and Decay of b-Flavored Hadrons."

For inclusive branching fractions, e.g., $B \to D^{\pm}$ anything, the values usually are multiplicities, not branching fractions. They can be greater than one.

	Mode	Fraction (Γ_i/Γ)	Scale factor
Γ_1	$p\mu^-\overline{ u}$ anything	$(5.8^{+}_{-}) \%$	
Γ_2	$oldsymbol{ ho} \ell \overline{ u}_\ell$ anything	($5.6\pm~1.2)~\%$	
Γ_3	<i>p</i> anything	(70 ±22) %	
Γ_4	$arLambda \ell^- \overline{ u}_\ell$ anything	$(3.8\pm\ 0.6)\%$	
Γ_5	$arLambda\ell^+ u_\ell$ anything	$(3.2\pm\ 0.8)\ \%$	
Γ_6	arLambdaanything	$(39 \pm 7)\%$	
Γ_7	$oldsymbol{arXi}^-\ell^-\overline{ u}_\ell$ anything	$(4.6\pm 1.4) \times 10^{-3}$	1.2

b-baryon ADMIXTURE (Λ_b , Ξ_b , Ω_b) BRANCHING RATIOS

$\Gamma(p\mu^-\overline{ u}$ anything $)/$	$\Gamma_{ ext{total}}$					Γ_1/Γ
VALUE (%)	EVTS	DOCUMENT ID		TECN	COMMENT	
$5.8^{+2.2}_{-1.9}\pm0.8$	125	¹ ABREU	95 S	DLPH	$e^+e^- ightarrow Z$	

 $^{^1}$ ABREU 95S reports [\Gamma(b-baryon $\to p\mu^-\overline{\nu}$ anything)/ $\Gamma_{total}]\times [B(\overline{b}\to b\text{-baryon})]$ = 0.0049 \pm 0.0011 $^{+0.0015}_{-0.0011}$ which we divide by our best value B($\overline{b}\to b\text{-baryon})$ = (8.4 \pm 1.1) \times 10 $^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

Created: 5/31/2024 10:16

⁹ AKERS 93 superseded by AKERS 96.

¹⁰ BUSKULIC 921 superseded by BUSKULIC 95L.

 $^{^1}$ BARATE 98V reports $[\Gamma(b\text{-baryon}\to p\ell\overline{\nu}_\ell\text{ anything})/\Gamma_{\text{total}}]\times[B(\overline{b}\to b\text{-baryon})]=(4.72\pm0.66\pm0.44)\times10^{-3}$ which we divide by our best value $B(\overline{b}\to b\text{-baryon})=(8.4\pm1.1)\times10^{-2}.$ Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(p\ell\overline{\nu}_{\ell}\text{ anything})/\Gamma(p\text{anything})$

 Γ_2/Γ_3

(1 & 3 0)/ (1 3	Ο,	2, 3
VALUE (%)	DOCUMENT ID TE	COMMENT COMMENT
8.0±1.2±1.4	BARATE 98V AL	$e^+e^- ightarrow Z$

 $\Gamma(\Lambda \ell^{-} \overline{\nu}_{\ell} \text{ anything}) / \Gamma_{\text{total}}$

 Γ_4/Γ

The values and averages in this section serve only to show what values result if one assumes our $B(b \to b\text{-baryon})$. They cannot be thought of as measurements since the underlying product branching fractions were also used to determine $B(b \to b\text{-baryon})$ as described in the note on "Production and Decay of b-Flavored Hadrons."

VALUE (%)	EVTS	DOCUMENT ID TEG		TECN	COMMENT
3.8±0.6 OUR AVERA	GE				
$3.9\!\pm\!0.5\!\pm\!0.5$		$^{ m 1}$ BARATE	98 D	ALEP	$e^+e^- ightarrow Z$
$3.5 \pm 0.4 \pm 0.5$		² AKERS	96	OPAL	Excess of $\Lambda\ell^-$ over $\Lambda\ell^+$
$3.6\!\pm\!0.9\!\pm\!0.5$	262	³ ABREU	95 S	DLPH	Excess of $\Lambda\ell^-$ over $\Lambda\ell^+$
$7.3\!\pm\!1.4\!\pm\!1.0$	290	⁴ BUSKULIC	95L	ALEP	Excess of $\Lambda \ell^-$ over $\Lambda \ell^+$
• • • We do not use t	he followi	ng data for averag	ges, fit	s, limits,	, etc. • • •
seen	157	⁵ AKERS	93	OPAL	Excess of $\Lambda\ell^-$ over $\Lambda\ell^+$
$8.3\!\pm\!2.5\!\pm\!1.1$	101	⁶ BUSKULIC	921	ALEP	Excess of $\Lambda\ell^-$ over $\Lambda\ell^+$

 $^{^1}$ BARATE 98D reports $[\Gamma(b\text{-baryon}\to \Lambda\ell^-\overline{\nu}_\ell\,\text{anything})/\Gamma_{\text{total}}]\times[B(\overline{b}\to b\text{-baryon})]=0.00326\pm0.00016\pm0.00039$ which we divide by our best value $B(\overline{b}\to b\text{-baryon})=(8.4\pm1.1)\times10^{-2}.$ Our first error is their experiment's error and our second error is the systematic error from using our best value. Measured using the excess of $\Lambda\ell^-$, lepton impact parameter.

$\Gamma(\Lambda \ell^+ \nu_\ell \text{ anything})/\Gamma(\Lambda \text{ anything})$

 Γ_5/Γ_6

Created: 5/31/2024 10:16

$VALUE$ (units 10^{-2})	DOCUMENT ID	TECN	COMMENT
8.0±1.2±0.8	ABBIENDI 99L	OPAL	$e^+e^- o Z$

• • We do not use the following data for averages, fits, limits, etc.

 $7.0\pm1.2\pm0.7$ ACKERSTAFF 97N OPAL Repl. by ABBIENDI 99L

² AKERS 96 reports $[\Gamma(b\text{-baryon} \to \Lambda \ell^- \overline{\nu}_\ell \text{ anything})/\Gamma_{\text{total}}] \times [B(\overline{b} \to b\text{-baryon})] = 0.00291 \pm 0.00023 \pm 0.00025$ which we divide by our best value $B(\overline{b} \to b\text{-baryon}) = (8.4 \pm 1.1) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

³ ABREU 95s reports [$\Gamma(b\text{-baryon} \to \Lambda \ell^- \overline{\nu}_\ell \text{ anything})/\Gamma_{\text{total}}$] \times [B($\overline{b} \to b\text{-baryon}$)] = 0.0030 \pm 0.0006 \pm 0.0004 which we divide by our best value B($\overline{b} \to b\text{-baryon}$) = (8.4 \pm 1.1) \times 10⁻². Our first error is their experiment's error and our second error is the systematic error from using our best value.

⁴ BUSKULIC 95L reports [$\Gamma(b\text{-baryon} \to \Lambda \ell^- \overline{\nu}_\ell \text{ anything})/\Gamma_{\text{total}}$] \times [B($\overline{b} \to b\text{-baryon}$)] = 0.0061 \pm 0.0006 \pm 0.0010 which we divide by our best value B($\overline{b} \to b\text{-baryon}$) = (8.4 \pm 1.1) \times 10⁻². Our first error is their experiment's error and our second error is the systematic error from using our best value.

⁵ AKERS 93 superseded by AKERS 96.

⁶ BUSKULIC 92I reports $[\Gamma(b\text{-baryon} \to \Lambda \ell^- \overline{\nu}_\ell \text{ anything})/\Gamma_{\text{total}}] \times [B(\overline{b} \to b\text{-baryon})]$ = 0.0070 \pm 0.0010 \pm 0.0018 which we divide by our best value $B(\overline{b} \to b\text{-baryon}) = (8.4 \pm 1.1) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Superseded by BUSKULIC 95L.

$\Gamma(\Lambda_{anything})/\Gamma_{total}$						Γ_6/Γ
VALUE (%)	DOCUMENT ID		TECN	COMMENT		
39± 7 OUR AVERAGE						
42± 6±5	¹ ABBIENDI	99L	OPAL	$e^+e^- \rightarrow$	Z	
$27^{+15}_{-9}\pm3$	² ABREU	95 C	DLPH	$e^+e^- ightarrow$	Ζ	

• • • We do not use the following data for averages, fits, limits, etc. • • •

 $47\pm~7\pm6$ 3 ACKERSTAFF 97N OPAL Repl. by ABBIENDI 99L

- ¹ ABBIENDI 99L reports $[\Gamma(b\text{-baryon} \to \Lambda \text{anything})/\Gamma_{\text{total}}] \times [B(\overline{b} \to b\text{-baryon})]$ = 0.035 ± 0.0032 ± 0.0035 which we divide by our best value $B(\overline{b} \to b\text{-baryon}) = (8.4 \pm 1.1) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
- the systematic error from using our best value.
 ²ABREU 95C reports $0.28^{+0.17}_{-0.12}$ from a measurement of $[\Gamma(b\text{-baryon} \to \Lambda \text{anything})/\Gamma_{\text{total}}] \times [B(\overline{b} \to b\text{-baryon})]$ assuming $B(\overline{b} \to b\text{-baryon}) = 0.08 \pm 0.02$, which we rescale to our best value $B(\overline{b} \to b\text{-baryon}) = (8.4 \pm 1.1) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
- ³ ACKERSTAFF 97N reports $[\Gamma(b\text{-baryon} \to \Lambda \text{anything})/\Gamma_{\text{total}}] \times [B(\overline{b} \to b\text{-baryon})]$ = 0.0393 \pm 0.0046 \pm 0.0037 which we divide by our best value $B(\overline{b} \to b\text{-baryon}) = (8.4 \pm 1.1) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(\Xi^-\ell^-\overline{\nu}_\ell \text{ anything})/\Gamma_{\text{total}}$

 Γ_7/Γ

Created: 5/31/2024 10:16

VALUE (units 10^{-3})	DOCUMENT ID	TECN	COMMENT
4.6±1.4 OUR AVERAGE	Error includes scale fa	ctor of 1.2.	
$3.6 \pm 1.2 \pm 0.5$	$^{ m 1}$ ABDALLAH	05c DLPH	$e^+e^- ightarrow~Z^0$
$6.4 \pm 1.6 \pm 0.8$	² BUSKULIC	96T ALEP	Excess $\Xi^-\ell^-$ over $\Xi^-\ell^+$
\\/- d+ +b- £	allandia a daka ƙan arrawa.	:: :::.	s sts • • •

• • We do not use the following data for averages, fits, limits, etc.

 $7.0\pm2.8\pm0.9$ 3 ABREU 95V DLPH Repl. by ABDALLAH 05C

- 1 ABDALLAH 05C reports $[\Gamma(b\text{-baryon}\to \Xi^-\ell^-\overline{\nu}_\ell\,\text{anything})/\Gamma_{\text{total}}]\times [B(\overline{b}\to b\text{-baryon})] = (3.0\pm1.0\pm0.3)\times10^{-4}$ which we divide by our best value $B(\overline{b}\to b\text{-baryon}) = (8.4\pm1.1)\times10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
- ² BUSKULIC 96T reports $[\Gamma(b\text{-baryon} \to \Xi^-\ell^-\overline{\nu}_\ell \text{ anything})/\Gamma_{\text{total}}] \times [B(\overline{b} \to b\text{-baryon})] = (5.4 \pm 1.1 \pm 0.8) \times 10^{-4}$ which we divide by our best value $B(\overline{b} \to b\text{-baryon}) = (8.4 \pm 1.1) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
- ³ ABREU 95V reports $[\Gamma(b\text{-baryon} \to \Xi^-\ell^-\overline{\nu}_\ell \text{ anything})/\Gamma_{\text{total}}] \times [B(\overline{b} \to b\text{-baryon})] = (5.9 \pm 2.1 \pm 1.0) \times 10^{-4}$ which we divide by our best value $B(\overline{b} \to b\text{-baryon}) = (8.4 \pm 1.1) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

b-baryon ADMIXTURE (\varLambda_b , \varXi_b , \varOmega_b) REFERENCES

ABAZOV ABAZOV ABAZOV ABDALLAH ABBIENDI ABREU ACKERSTAFF BARATE BARATE ACKERSTAFF ABE ABREU AKERS BUSKULIC ABREU AKERS BUSKULIC	12U 07S 05C 05C 99L 98G 98D 98V 97N 96M 96D 96 95C 95S 95V 95L 93F 93 92I	PR D85 112003 PRL 99 142001 PRL 94 102001 EPJ C44 299 EPJ C9 1 EPJ C10 185 PL B426 161 EPJ C2 197 EPJ C5 205 ZPHY C74 423 PRL 77 1439 ZPHY C71 199 ZPHY C69 195 PL B384 449 PL B387 447 ZPHY C68 375 ZPHY C68 541 PL B311 379 PL B316 435 PL B297 449	V.M. Abazov et al. V.M. Abazov et al. V.M. Abazov et al. J. Abdallah et al. G. Abbiendi et al. P. Abreu et al. K. Ackerstaff et al. R. Barate et al. K. Ackerstaff et al. F. Abe et al. P. Abreu et al. P. Abreu et al. P. Abreu et al. D. Buskulic et al. P. Abreu et al.	(D0 Collab.) (D0 Collab.) (D0 Collab.) (D0 Collab.) (DELPHI Collab.) (OPAL Collab.) (OPAL Collab.) (ALEPH Collab.) (ALEPH Collab.) (OPAL Collab.) (OPAL Collab.) (OPAL Collab.) (CDF Collab.) (DELPHI Collab.) (OPAL Collab.) (DELPHI Collab.) (DELPHI Collab.) (DELPHI Collab.) (DELPHI Collab.) (DELPHI Collab.) (DELPHI Collab.) (ALEPH Collab.) (ALEPH Collab.) (ALEPH Collab.) (ALEPH Collab.) (OPAL Collab.) (OPAL Collab.)
--	---	---	--	---

Created: 5/31/2024 10:16