b-baryon ADMIXTURE $\left(\Lambda_{b}, \bar{\Xi}_{b}, \Omega_{b}\right)$

b-baryon ADMIXTURE MEAN LIFE

Each measurement of the b-baryon mean life is an average over an admixture of various b baryons which decay weakly. Different techniques emphasize different admixtures of produced particles, which could result in a different b-baryon mean life. More b-baryon flavor specific channels are not included in the measurement.
$\underline{\operatorname{VALUE}\left(10^{-12} \mathrm{~s}\right)} \underline{\text { EVTS }}$

- - We do not use the following data for averages, fits, limits, etc.

${ }^{9}$ AKERS 93 superseded by AKERS 96 .
${ }^{10}$ BUSKULIC 92 I superseded by BUSKULIC 95L.

b-baryon ADMIXTURE DECAY MODES
 $\left(\Lambda_{b}, \overline{=}_{b}, \Omega_{b}\right)$

These branching fractions are actually an average over weakly decaying b baryons weighted by their production rates at the LHC, LEP, and Tevatron, branching ratios, and detection efficiencies. They scale with the b-baryon production fraction $\mathrm{B}(b \rightarrow b$-baryon $)$.

The branching fractions $\mathrm{B}\left(b\right.$-baryon $\rightarrow \Lambda \ell^{-} \bar{\nu}_{\ell}$ anything $)$ and $\mathrm{B}\left(\Lambda_{b}^{0} \rightarrow\right.$ $\Lambda_{c}^{+} \ell^{-} \bar{\nu}_{\ell}$ anything) are not pure measurements because the underlying measured products of these with $\mathrm{B}(b \rightarrow b$-baryon) were used to determine $\mathrm{B}(b \rightarrow b$-baryon $)$, as described in the note "Production and Decay of b-Flavored Hadrons."

For inclusive branching fractions, e.g., $B \rightarrow D^{ \pm}$anything, the values usually are multiplicities, not branching fractions. They can be greater than one.

	Mode	Fraction $\left(\Gamma_{i} / \Gamma\right)$	Scale factor
Γ_{1}	$p \mu^{-} \bar{\nu}$ anything	$\left(5.8_{-}^{+2.3}\right) \%$	
Γ_{2}	$p \ell \bar{\nu}_{\ell}$ anything	$(5.6 \pm 1.2) \%$	
Γ_{3}	p anything	$(70 \pm 22) \%$	
Γ_{4}	$\Lambda \ell^{-} \bar{\nu}_{\ell}$ anything	$(3.8 \pm 0.6) \%$	$(3.2 \pm 0.8) \%$
Γ_{5}	$\Lambda \ell^{+} \nu_{\ell}$ anything	$(39 \pm 7) \%$	1.2
Γ_{6}	Λ anything	$(4.6 \pm 1.4) \times 10^{-3}$	
Γ_{7}	三- $^{-} \ell^{-} \bar{\nu}_{\ell}$ anything		

b-baryon ADMIXTURE $\left(\boldsymbol{\Lambda}_{b}, \bar{\Xi}_{b}, \Omega_{b}\right)$ BRANCHING RATIOS

$\Gamma\left(p \mu^{-} \bar{\nu}\right.$ anything $) / \Gamma_{\text {total }}$
$\frac{\operatorname{VALUE}(\%)}{\mathbf{5 . 8}_{-\mathbf{1 . 9}}^{\mathbf{+ 2 . 2}} \pm \mathbf{0 . 8}} \frac{\text { EVTS }}{125} \quad 1$ DOCUMENT ID $\quad \frac{\text { TECN }}{\text { ABREU }} \frac{\text { COMMENT }}{}$
${ }^{1}$ ABREU 95S reports [$\Gamma\left(b\right.$-baryon $\rightarrow p \mu^{-} \bar{\nu}$ anything $\left.) / \Gamma_{\text {total }}\right] \times[\mathrm{B}(\bar{b} \rightarrow b$-baryon $)]$ $=0.0049 \pm 0.0011_{-0.0011}^{+0.0015}$ which we divide by our best value $\mathrm{B}(\bar{b} \rightarrow b$-baryon $)=$ $(8.4 \pm 1.1) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma\left(p \ell \bar{\nu}_{\ell}\right.$ anything $) / \Gamma_{\text {total }}$

$\Gamma 2 / \Gamma$
$\operatorname{VALUE}(\%)$
$5.6 \pm 0.9 \pm 0.7$
$\frac{\text { DOCUMENT ID }}{1 \text { BARATE }} \frac{\text { TECN }}{\text { ALEP }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow Z}$
${ }^{1}$ BARATE 98 V reports $\left[\Gamma\left(b\right.\right.$-baryon $\rightarrow p \ell \bar{\nu}_{\ell}$ anything $\left.) / \Gamma_{\text {total }}\right] \times[\mathrm{B}(\bar{b} \rightarrow b$-baryon $)]$ $=(4.72 \pm 0.66 \pm 0.44) \times 10^{-3}$ which we divide by our best value $\mathrm{B}(\bar{b} \rightarrow b$-baryon $)$ $=(8.4 \pm 1.1) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
$\frac{\operatorname{VALUE}(\%)}{8.0 \pm 1.2 \pm 1.4}$
$\Gamma\left(\Lambda \ell^{-} \nabla_{\ell}\right.$ anything $) / \Gamma_{\text {total }}$
$\frac{\text { DOCUMENT ID }}{\text { BARATE }} 98 \mathrm{~V}$ TECN $\frac{\text { COMMENT }}{\text { ALEP }} \frac{}{e^{+} e^{-} \rightarrow Z}$

The values and averages in this section serve only to show what values result if one assumes our $\mathrm{B}(b \rightarrow b$-baryon $)$. They cannot be thought of as measurements since the underlying product branching fractions were also used to determine $\mathrm{B}(b \rightarrow b$-baryon $)$ as described in the note on "Production and Decay of b-Flavored Hadrons."

VALUE (\%)	EVTS	DOCUMENT ID		TECN	COMMENT	
3.8 $\pm \mathbf{0 . 6}$ OUR AVERAGE						
$3.9 \pm 0.5 \pm 0.5$		1 BARATE	98D	ALEP	$e^{+} e^{-} \rightarrow Z$	
$3.5 \pm 0.4 \pm 0.5$		2 AKERS	96	OPAL	Excess of $\Lambda \ell^{-}$	over $\Lambda \ell^{+}$
$3.6 \pm 0.9 \pm 0.5$	262	3 ABREU	95S	DLPH	Excess of $\Lambda \ell^{-}$	over $\Lambda \ell^{+}$
$7.3 \pm 1.4 \pm 1.0$	290	${ }^{4}$ BUSKULIC	95L	ALEP	Excess of $\Lambda \ell^{-}$	over $\Lambda \ell^{+}$

- - We do not use the following data for averages, fits, limits, etc.

seen	157	${ }^{5}$ AKERS	93	OPAL	Excess of $\Lambda \ell^{-}$over $\Lambda \ell^{+}$
$8.3 \pm 2.5 \pm 1.1$	101	${ }^{6}$ BUSKULIC	921	ALEP	Excess of $\Lambda \ell^{-}$over $\Lambda \ell^{+}$

${ }^{1}$ BARATE 98D reports [$\Gamma\left(b\right.$-baryon $\rightarrow \Lambda \ell^{-} \bar{\nu}_{\ell}$ anything $\left.) / \Gamma_{\text {total }}\right] \times[\mathrm{B}(\bar{b} \rightarrow b$-baryon $)]$ $=0.00326 \pm 0.00016 \pm 0.00039$ which we divide by our best value $\mathrm{B}(\bar{b} \rightarrow b$-baryon $)$ $=(8.4 \pm 1.1) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Measured using the excess of $\Lambda \ell^{-}$, lepton impact parameter.
2 AKERS 96 reports $\left[\Gamma\left(b\right.\right.$-baryon $\rightarrow \Lambda \ell^{-} \bar{\nu}_{\ell}$ anything $\left.) / \Gamma_{\text {total }}\right] \times[\mathrm{B}(\bar{b} \rightarrow b$-baryon $)]=$ $0.00291 \pm 0.00023 \pm 0.00025$ which we divide by our best value $\mathrm{B}(\bar{b} \rightarrow b$-baryon $)=$ $(8.4 \pm 1.1) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{3}$ ABREU 95s reports [$\Gamma\left(b\right.$-baryon $\rightarrow \Lambda \ell^{-} \bar{\nu}_{\ell}$ anything $\left.) / \Gamma_{\text {total }}\right] \times[\mathrm{B}(\bar{b} \rightarrow b$-baryon $)]$ $=0.0030 \pm 0.0006 \pm 0.0004$ which we divide by our best value $\mathrm{B}(\bar{b} \rightarrow b$-baryon $)=$ $(8.4 \pm 1.1) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{4}$ BUSKULIC 95L reports $\left[\Gamma\left(b\right.\right.$-baryon $\rightarrow \Lambda \ell^{-} \bar{\nu}_{\ell}$ anything $\left.) / \Gamma_{\text {total }}\right] \times[\mathrm{B}(\bar{b} \rightarrow b$-baryon $)]$ $=0.0061 \pm 0.0006 \pm 0.0010$ which we divide by our best value $\mathrm{B}(\bar{b} \rightarrow b$-baryon $)=$ $(8.4 \pm 1.1) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{5}$ AKERS 93 superseded by AKERS 96.
${ }^{6}$ BUSKULIC 92I reports [$\Gamma\left(b\right.$-baryon $\rightarrow \Lambda \ell^{-} \bar{\nu}_{\ell}$ anything $\left.) / \Gamma_{\text {total }}\right] \times[\mathrm{B}(\bar{b} \rightarrow b$-baryon $)]$ $=0.0070 \pm 0.0010 \pm 0.0018$ which we divide by our best value $\mathrm{B}(\bar{b} \rightarrow b$-baryon $)=$ $(8.4 \pm 1.1) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Superseded by BUSKULIC 95L.

$\Gamma\left(\Lambda \ell^{+} \nu_{\ell}\right.$ anything $) / \Gamma($ (anything $)$

$\frac{V A L U E\left(\text { units } 10^{-2} \text {) }\right.}{\mathbf{8 . 0} \pm \mathbf{1 . 2} \pm \mathbf{0 . 8}} \quad \frac{\text { DOCUMENT ID }}{\text { ABBIENDI 99L }} \frac{\text { TECN }}{\text { OPAL }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow Z}$

- - We do not use the following data for averages, fits, limits, etc. - - -
$7.0 \pm 1.2 \pm 0.7$
ACKERSTAFF 97N OPAL Repl. by ABBIENDI 99L

39士 7 OUR AVERAGE
$42 \pm 6 \pm 5$
$27_{-}^{+15} \pm 3$

DOCUMENT ID Γ_{6} / Γ
DOCUMENT ID TECN COMMENT
${ }^{1}$ ABBIENDI 99L OPAL $e^{+} e^{-} \rightarrow Z$
2 ABREU 95C
DLPH $e^{+} e^{-} \rightarrow Z$

- - We do not use the following data for averages, fits, limits, etc.

$\Gamma\left(\Xi^{-} \ell^{-} \bar{\nu}_{\ell}\right.$ anything $) / \Gamma_{\text {total }}$
$\frac{V A L U E\left(\text { units } 10^{-3}\right)}{\mathbf{4 . 6} \pm \mathbf{1 . 4} \text { OUR AVERAGE }} \frac{\text { DOCUMENT ID }}{\text { includes scale factor of } 1.2 \text {. }}$

$3.6 \pm 1.2 \pm 0.5$	1	ABDALLAH	05 C	DLPH
$e^{+} e^{-} \rightarrow Z^{0}$				
$6.4 \pm 1.6 \pm 0.8$	2 BUSKULIC	$96 T$	ALEP	Excess $\Xi^{-} \ell^{-}$over $\Xi^{-} \ell^{+}$

- - We do not use the following data for averages, fits, limits, etc. - - -
$7.0 \pm 2.8 \pm 0.9 \quad 3$ ABREU 95 V DLPH Repl. by ABDALLAH 05C
${ }^{1}$ ABDALLAH 05C reports $\left[\Gamma\left(b\right.\right.$-baryon $\rightarrow \bar{E}^{-} \ell^{-} \bar{\nu}_{\ell}$ anything $\left.) / \Gamma_{\text {total }}\right] \times[\mathrm{B}(\bar{b} \rightarrow b-$ baryon $)]=(3.0 \pm 1.0 \pm 0.3) \times 10^{-4}$ which we divide by our best value $\mathrm{B}(\bar{b} \rightarrow b$-baryon $)$ $=(8.4 \pm 1.1) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{2}$ BUSKULIC 96T reports $\left[\Gamma\left(b\right.\right.$-baryon $\rightarrow \Xi^{-} \ell^{-} \bar{\nu}_{\ell}$ anything $\left.) / \Gamma_{\text {total }}\right] \times[\mathrm{B}(\bar{b} \rightarrow b-$ baryon $)]=(5.4 \pm 1.1 \pm 0.8) \times 10^{-4}$ which we divide by our best value $\mathrm{B}(\bar{b} \rightarrow b$-baryon $)$ $=(8.4 \pm 1.1) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
${ }^{3}$ ABREU 95V reports $\left[\Gamma\left(b\right.\right.$-baryon $\rightarrow \Xi^{-} \ell^{-} \bar{\nu}_{\ell}$ anything $\left.) / \Gamma_{\text {total }}\right] \times[\mathrm{B}(\bar{b} \rightarrow b$-baryon $)]$ $=(5.9 \pm 2.1 \pm 1.0) \times 10^{-4}$ which we divide by our best value $\mathrm{B}(\bar{b} \rightarrow b$-baryon $)=$ $(8.4 \pm 1.1) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

b-baryon ADMIXTURE ($\Lambda_{b}, \bar{\Xi}_{b}, \Omega_{b}$) REFERENCES

ABAZOV	12U	PR D85 112003
ABAZOV	07 S	PRL 99142001
ABAZOV	05C	PRL 94102001
ABDALLAH	05C	EPJ C44 299
ABBIENDI	99L	EPJ C9 1
ABREU	99W	EPJ C10 185
ACKERSTAFF	98G	PL B426 161
BARATE	98D	EPJ C2 197
BARATE	98V	EPJ C5 205
ACKERSTAFF	97N	ZPHY C74 423
ABE	96M	PRL 771439
ABREU	96D	ZPHY C71 199
AKERS	96	ZPHY C69 195
BUSKULIC	96 T	PL B384 449
ABREU	95C	PL B347 447
ABREU	95S	ZPHY C68 375
ABREU	95V	ZPHY C68 541
BUSKULIC	95L	PL B357 685
ABREU	93F	PL B311 379
AKERS	93	PL B316 435
BUSKULIC	921	PL B297 449

V.M. Abazov et al.
V.M. Abazov et al.
V.M. Abazov et al.
J. Abdallah et al.
G. Abbiendi et al.
P. Abreu et al.
K. Ackerstaff et al.
R. Barate et al.
R. Barate et al.
K. Ackerstaff et al.
F. Abe et al.
P. Abreu et al.
R. Akers et al.
D. Buskulic et al.
P. Abreu et al.
P. Abreu et al.
P. Abreu et al.
D. Buskulic et al.
P. Abreu et al.
R. Akers et al.
D. Buskulic et al.
(D0 Collab.)
(D0 Collab.)
(D0 Collab.)
(DELPHI Collab.)
(OPAL Collab.)
(DELPHI Collab.)
(OPAL Collab.)
(ALEPH Collab.)
(ALEPH Collab.)
(OPAL Collab.)
(CDF Collab.)
(DELPHI Collab.)
(OPAL Collab.)
(ALEPH Collab.) (DELPHI Collab.) (DELPHI Collab.) (DELPHI Collab.) (ALEPH Collab.) (DELPHI Collab.)
(OPAL Collab.)
(ALEPH Collab.)

