b' (4th Generation) Quark, Searches for

b'(-1/3)-quark/hadron mass limits in $p\overline{p}$ and pp collisions

D(-1/3)-quark/na		• •	anu	•••	
VALUE (GeV)	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
>1420	95	¹ AAD	23AV	ATLS	B(b' ightarrow Z b) = 1
>1560	95	² TUMASYAN	23V	CMS	B(b' ightarrow W t) = 1
>1570	95	³ SIRUNYAN	20BI	CMS	B(b' ightarrow Hb) = 1
>1000	95	⁴ AABOUD	18CE	ATLS	$\geq 2\ell + ot\!$
> 950	95	⁵ AABOUD	18CL	ATLS	Wt, Zb, hb modes
>1010	95	^{6,7} AABOUD	18CP	ATLS	2,3 ℓ , singlet model
>1140	95	^{5,8} AABOUD	18CP	ATLS	2,3 ℓ , doublet model
>1220	95	^{9,10} AABOUD	18CR	ATLS	singlet b' . ATLAS Combination
>1370	95	^{9,11} AABOUD	18CR	ATLS	b' in a weak isospin doublet (t',b') . ATLAS combination.
> 845	95	¹² SIRUNYAN	18Q	CMS	$B(b' \rightarrow W u) = 1$
> 730	95	¹³ SIRUNYAN		CMS	
> 810	95	¹⁴ AAD	15z	ATLS	
> 190	95	¹⁵ ABAZOV	08X	D0	$c\tau = 200 mm$
> 190	95	¹⁶ ACOSTA	03	CDF	quasi-stable <i>b</i> ′
• • • We do not use t	the follo		ges, fi	ts, limits	s, etc. ● ● ●
>1460	95	¹⁷ AAD	23 AG	ATLS	B(b' ightarrow W t) = 1
>1390	95	³ SIRUNYAN	20BI	CMS	B(b' ightarrow Z b) = 1
>1130	95	¹⁸ SIRUNYAN	19aq	CMS	B(b' ightarrow Z b) = 1
>1230	95	¹⁹ SIRUNYAN	19 _{BW}	/CMS	B(b' ightarrow W t) = 1
>1350	95	²⁰ AABOUD	18AW	ATLS	$B(b' \rightarrow Wt) = 1$
> 910	95	²¹ SIRUNYAN	18BM	1CMS	W t, $Z b$, $h b$ modes
> 880	95	²² KHACHATRY	.16AN	CMS	B(b' ightarrow W t) = 1
<350, 580–635, >700	95	²³ AAD	15ar	ATLS	$B(b' \rightarrow Hb) = 1$
> 620	95	²⁴ AAD	15by	ATLS	W t, Z b, h b modes
> 730	95	²⁵ AAD	15by	ATLS	B(b' ightarrow W t) = 1
> 690	95	²⁶ AAD	15CN	ATLS	$B(b' \rightarrow Wq) = 1 (q=u)$
> 755	95	²⁷ AAD	14AZ	ATLS	$B(b' \to W t) = 1$
> 675	95	²⁸ CHATRCHYAN			$B(b' \rightarrow Wt) = 1$
> 480	95	²⁹ AAD		ATLS	$B(b' \rightarrow Wt) = 1$
> 400	95	³⁰ AAD		ATLS	$B(b' \rightarrow Zb) = 1$
> 350	95	³¹ AAD		ATLS	$B(b' \rightarrow Wq) = 1$
					(q=u,c)
> 450	95	³² AAD		ATLS	B(b' o W t) = 1
> 685	95	³³ CHATRCHYAN	12BH	CMS	$m_{t'} = m_{b'}$
> 611	95	³⁴ CHATRCHYAN	12X	CMS	$B(b' \to W t) = 1$
> 372	95	³⁵ AALTONEN	11J	CDF	$b' \rightarrow W t$
> 361	95	³⁶ CHATRCHYAN	11L	CMS	Repl. by CHA- TRCHYAN 12X
> 338	95	³⁷ AALTONEN	10H	CDF	$b' \rightarrow Wt$

> 380–430	95	³⁸ FLACCO	10	RVUE	$m_{b'} > m_{t'}$
> 268	95 ³	^{39,40} AALTONEN	07 C	CDF	$B(b' \rightarrow Zb) = 1$
> 199	95	⁴¹ AFFOLDER	00	CDF	NC: $b' \rightarrow Z b$
> 148	95	⁴² ABE	98N	CDF	NC: $b' \rightarrow Zb + vertex$
> 96	95	⁴³ ABACHI	97 D	D0	NC: $b' \rightarrow b\gamma$
> 128	95	⁴⁴ ABACHI	95F		$\ell\ell$ + jets, ℓ + jets
> 75	95	⁴⁵ MUKHOPAD	. 93	RVUE	NC: $b' \rightarrow b\ell\ell$
> 85	95	⁴⁶ ABE	92	CDF	CC: <i>ℓℓ</i>
> 72	95	⁴⁷ ABE	90 B	CDF	CC: $e + \mu$
> 54	95	⁴⁸ AKESSON	90	UA2	CC: $e + jets + ot\!$
> 43	95	⁴⁹ ALBAJAR	90 B	UA1	CC: μ + jets
> 34	95	⁵⁰ ALBAJAR	88	UA1	CC: e or μ + jets

¹ AAD 23AV based on 139 fb⁻¹ of pp data at $\sqrt{s} = 13$ TeV. Pair production of vector-like b' is searched for in the mode $\ell^{\pm}\ell^{\mp} + \geq 2j$ ($\geq 1b$ -tagged) + $\not\!\!\!E_T$ or with 3ℓ . The data are consistent with the SM background predictions and limits are obtained for different branching ratios.

²TUMASYAN 23V based on 138 fb⁻¹ of pp data at $\sqrt{s} = 13$ TeV. Pair production of vector-like b' is seached for in the single-lepton, same-sign charge dilepton and multilepton channels. The data are consistent with the SM background predictions and limits are obtained for different branching ratios.

- ³SIRUNYAN 20BI based on 137 fb⁻¹ of pp data at $\sqrt{s} = 13$ TeV. Pair production of vector-like b' is seached for with each b' decaying into Zb or hb. Analysis focuses on final states consisting of jets from six quarks. Mass limits are obtained for a variety of branching ratios of b' decays.
- ⁴ AABOUD 18CE based on 36.1 fb⁻¹ of proton-proton data taken at $\sqrt{s} = 13$ TeV. Events including a same-sign lepton pair are used. The limit is for a singlet model, assuming the branching ratios of b' into Zb, Wt and Hb as predicted by the model.
- ⁵ AABOUD 18CL, AABOUD 18CP based on 36.1 fb⁻¹ of pp data at $\sqrt{s} = 13$ TeV. The limit is for the pair-produced vector-like b' using all-hadronic final state. The analysis is particularly powerful for the $b' \rightarrow hb$ mode. Assuming the pure decay only in this mode sets a limit $m_{b'} > 1010$ GeV.
- ⁶AABOUD 18CP based on 36.1 fb⁻¹ of pp data at $\sqrt{s} = 13$ TeV. Pair and single production of vector-like b' are seached for with at least one b' decaying into Zb. In the case of $B(b' \rightarrow Zb) = 1$, the limit is $m_{b'} > 1220$ GeV.
- ⁷ The limit is for the singlet model, assuming that the branching ratios into Wt, Zb, hb add up to one.
- ⁸ The limit is for the doublet model, assuming that the branching ratios into Wt, Zb, hb add up to one.
- ⁹AABOUD 18CR based on 36.1 fb⁻¹ of pp data at $\sqrt{s} = 13$ TeV. A combination of searches for the pair-produced vector-like b' in various decay channels ($b' \rightarrow Wt$, Zb, hb). Also a model-independent limit is obtained as $m_{b'} > 1.03$ TeV, assuming that the branching ratios into Zb, Wt, and hb add up to one.
- ¹⁰ The limit is for the singlet b'.
- ¹¹ The limit is for b' in a weak isospin doublet (t',b') and $|V_{t'b}| \ll |V_{tb'}|$. For a b' in a doublet with a charge -4/3 vector-like quark, the limit $m_{b'} > 1.14$ TeV is obtained.
- ¹² SIRUNYAN 18Q based on 19.7 fb⁻¹ of pp data at $\sqrt{s} = 8$ TeV. The limit is for the pair-produced vector-like b' that couple only to light quarks. Upper cross section limits on the single production of a b' and constraints for other decay channels (Zq and Hq) are also given in the paper.

- ¹³ SIRUNYAN 17AU based on 2.3–2.6 fb⁻¹ of pp data at $\sqrt{s} = 13$ TeV. Limit on pairproduced singlet vector-like b' using one lepton and several jets. The mass bound is given for a b' transforming as a singlet under the electroweak symmetry group, assumed to decay through W, Z or Higgs boson (which decays to jets) and to a third generation quark.
- ¹⁴ AAD 15Z based on 20.3 fb⁻¹ of pp data at $\sqrt{s} = 8$ TeV. Used events with $\ell + \not{E}_T + 26j$ ($\geq 1 b$) and at least one pair of jets from weak boson decay, primarily designed to select the signature $b'\overline{b'} \rightarrow WWt\overline{t} \rightarrow WWWWb\overline{b}$. This is a limit on pair-produced vector-like b'. The lower mass limit is 640 GeV for a vector-like singlet b'.
- ¹⁵ Result is based on 1.1 fb⁻¹ of data. No signal is found for the search of long-lived particles which decay into final states with two electrons or photons, and upper bound on the cross section times branching fraction is obtained for 2 < cτ < 7000 mm; see Fig. 3. 95% CL excluded region of b' lifetime and mass is shown in Fig. 4.
- ¹⁶ ACOSTA 03 looked for long-lived fourth generation quarks in the data sample of 90 pb^{-1} of $\sqrt{s}=1.8$ TeV $p\overline{p}$ collisions by using the muon-like penetration and anomalously high ionization energy loss signature. The corresponding lower mass bound for the charge (2/3)e quark (t') is 220 GeV. The t' bound is higher than the b' bound because t' is more likely to produce charged hadrons than b'. The 95% CL upper bounds for the production cross sections are given in their Fig. 3.
- ¹⁷ AAD 23AG based on 139 fb⁻¹ of pp data at $\sqrt{s} = 13$ TeV. Pair production of vectorlike top or bs is searched for in the mode $1\ell + \ge 4j(\ge 1b$ -tagged) + $\not\!\!E_T$. The data are consistent with the SM background predictions and limits are obtained for different branching ratios. Masses below 1.59 TeV are excluded assuming a mass-degenerate vector-like doublet (t',b') model.
- ¹⁸ SIRUNYAN 19AQ based on 35.9 fb⁻¹ of pp data at $\sqrt{s} = 13$ TeV. Pair production of vector-like b' is seached for with one b' decaying into Zb and the other b' decaying into Wt, Zb, hb. Events with an opposite-sign lepton pair consistent with coming from Z and jets are used. Mass limits are obtained for a variety of branching ratios of b'.
- ¹⁹ SIRUNYAN 19BW based on 35.9 fb⁻¹ of pp data at $\sqrt{s} = 13$ TeV. The limit is for the pair-produced vector-like b' using all-hadronic final state. The analysis is made for the Zb, Wt, hb modes and mass limits are obtained for a variety of branching ratios.
- ²⁰ AABOUD 18AW based on 36.1 fb⁻¹ of pp data at $\sqrt{s} = 13$ TeV. The limit is for the pair-produced vector-like b' using lepton-plus-jets final state. The search is also sensitive to the decays into Zb and Hb final states.
- ²¹ SIRUNYAN 18BM based on 35.9 fb⁻¹ of pp data at $\sqrt{s} = 13$ TeV. The limit is for the pair-produced vector-like b'. Three channels (single lepton, same-charge 2 leptons, or at least 3 leptons) are considered for various branching fraction combinations. Assuming B(tW) = 1, the limit is 1240 GeV and for B(bZ) = 1 it is 960 GeV.
- ²² KHACHATRYAN 16AN based on 19.7 fb⁻¹ of pp data at $\sqrt{s} = 8$ TeV. Limit on pairproduced vector-like b' using 1, 2, and >2 leptons as well as fully hadronic final states. Other limits depending on the branching fractions to tW, bZ, and bH are given in Table IX.
- ²³ AAD 15AR based on 20.3 fb⁻¹ of pp data at $\sqrt{s} = 8$ TeV. Used lepton-plus-jets final state. See Fig. 24 for mass limits in the plane of B($b' \rightarrow Wt$) vs. B($b' \rightarrow Hb$) from $b'\overline{b'} \rightarrow Hb + X$ searches.
- ²⁵ AAD 15BY based on 20.3 fb⁻¹ of pp data at $\sqrt{s} = 8$ TeV. Limit on pair-produced chiral b'-quark. Used events containing $\geq 2\ell + \not \!\!E_T + \geq 2j$ ($\geq 1 b$) and including a same-sign lepton pair.

- ²⁷ Based on 20.3 fb⁻¹ of pp data at $\sqrt{s} = 8$ TeV. No significant excess over SM expectation is found in the search for pair production or single production of b' in the events with dilepton from a high $p_T Z$ and additional jets ($\geq 1 b$ -tag). If instead of B($b' \rightarrow Wt$) = 1 an electroweak singlet with B($b' \rightarrow Wt$) ~ 0.45 is assumed, the limit reduces to 685 GeV.
- ²⁸ Based on 5.0 fb⁻¹ of pp data at $\sqrt{s} = 7$ TeV. CHATRCHYAN 13I looked for events with one isolated electron or muon, large E_T , and at least four jets with large transverse momenta, where one jet is likely to originate from the decay of a bottom quark.
- ²⁹ Based on 1.04 fb⁻¹ of pp data at $\sqrt{s} = 7$ TeV. No signal is found for the search of heavy quark pair production that decay into W and a t quark in the events with a high p_T isolated lepton, large E_T , and at least 6 jets in which one, two or more dijets are from W.
- ³⁰ Based on 2.0 fb⁻¹ of pp data at $\sqrt{s} = 7$ TeV. No $b' \rightarrow Zb$ invariant mass peak is found in the search of heavy quark pair production that decay into Z and a b quark in events with $Z \rightarrow e^+e^-$ and at least one b-jet. The lower mass limit is 358 GeV for a vector-like singlet b' mixing solely with the third SM generation.
- ³¹Based on 1.04 fb⁻¹ of pp data at $\sqrt{s} = 7$ TeV. No signal is found for the search of heavy quark pair production that decay into W and a quark in the events with dileptons, large $\not{\!\!E}_T$, and ≥ 2 jets.
- 32 Based on 1.04 fb⁻¹ of pp data at \sqrt{s} = 7 TeV. AAD 12BE looked for events with two isolated like-sign leptons and at least 2 jets, large $\not\!\!\!E_T$ and H $_T\,>$ 350 GeV.
- ³³Based on 5 fb⁻¹ of pp data at $\sqrt{s} = 7$ TeV. CHATRCHYAN 12BH searched for QCD and EW production of single and pair of degenerate 4'th generation quarks that decay to *bW* or *tW*. Absence of signal in events with one lepton, same-sign dileptons or trileptons gives the bound. With a mass difference of 25 GeV/c² between $m_{t'}$ and $m_{b'}$,

the corresponding limit shifts by about $\pm 20 \text{ GeV}/\text{c}^2$.

- ³⁴ Based on 4.9 fb⁻¹ of pp data at $\sqrt{s} = 7$ TeV. CHATRCHYAN 12X looked for events with trileptons or same-sign dileptons and at least one b jet.
- ³⁶ Based on 34 pb⁻¹ of data in *pp* collisions at 7 TeV. CHATRCHYAN 11L looked for multijet events with trileptons or same-sign dileptons. No excess above the SM background excludes $m_{b'}$ between 255 and 361 GeV at 95% CL for B($b' \rightarrow Wt$) = 1.
- ³⁷ Based on 2.7 fb⁻¹ of data in $p\overline{p}$ collisions at $\sqrt{s} = 1.96$ TeV. AALTONEN 10H looked for pair production of heavy quarks which decay into tW^- or tW^+ , in events with same sign dileptons (e or μ), several jets and large missing E_T . The result is obtained for b' which decays into tW^- . For the charge 5/3 quark ($T_{5/3}$) which decays into tW^+ , $m_{T_{5/3}} > 365$ GeV (95% CL) is found when it has the charge -1/3 partner B of the same mass.
- ³⁸ FLACCO 10 result is obtained from AALTONEN 10H result of $m_{b'} > 338$ GeV, by relaxing the condition B($b' \rightarrow Wt$) = 100% when $m_{b'} > m_{t'}$.
- ³⁹ Result is based on 1.06 fb⁻¹ of data. No excess from the SM Z+jet events is found when Z decays into ee or $\mu\mu$. The $m_{b'}$ bound is found by comparing the resulting upper bound on $\sigma(b'\overline{b'})$ [1-(1-B($b' \rightarrow Z b$))²] and the LO estimate of the b' pair production cross section shown in Fig. 38 of the article.

⁴⁰ HUANG 08 reexamined the b' mass lower bound of 268 GeV obtained in AALTONEN 07C that assumes $B(b' \rightarrow Zb) = 1$, which does not hold for $m_{b'} > 255$ GeV. The lower mass bound is given in the plane of $\sin^2(\theta_{tb'})$ and $m_{b'}$.

- ⁴¹ AFFOLDER 00 looked for b' that decays in to b+Z. The signal searched for is bbZZ events where one Z decays into e^+e^- or $\mu^+\mu^-$ and the other Z decays hadronically. The bound assumes $B(b' \rightarrow Zb) = 100\%$. Between 100 GeV and 199 GeV, the 95%CL upper bound on $\sigma(b' \rightarrow \overline{b'}) \times B^2(b' \rightarrow Zb)$ is also given (see their Fig. 2).
- ⁴² ABE 98N looked for $Z \rightarrow e^+e^-$ decays with displaced vertices. Quoted limit assumes $B(b' \rightarrow Zb)=1$ and $c\tau_{b'}=1 \text{ cm}$. The limit is lower than m_Z+m_b (~ 96 GeV) if $c\tau > 22 \text{ cm}$ or $c\tau < 0.009 \text{ cm}$. See their Fig. 4.
- ⁴³ ABACHI 97D searched for b' that decays mainly via FCNC. They obtained 95%CL upper bounds on B($b'\overline{b}' \rightarrow \gamma + 3$ jets) and B($b'\overline{b}' \rightarrow 2\gamma + 2$ jets), which can be interpreted as the lower mass bound $m_{b'} > m_Z + m_b$.
- ⁴⁴ ABACHI 95F bound on the top-quark also applies to b' and t' quarks that decay predominantly into W. See FROGGATT 97.
- ⁴⁵ MUKHOPADHYAYA 93 analyze CDF dilepton data of ABE 92G in terms of a new quark decaying via flavor-changing neutral current. The above limit assumes $B(b' \rightarrow b\ell^+\ell^-)=1\%$. For an exotic quark decaying only via virtual Z [$B(b\ell^+\ell^-)=3\%$], the limit is 85 GeV.
- ⁴⁶ABE 92 dilepton analysis limit of >85 GeV at CL=95% also applies to b' quarks, as discussed in ABE 90B.
- 47 ABE 90B exclude the region 28–72 GeV.
- ⁴⁸ AKESSON 90 searched for events having an electron with p_T > 12 GeV, missing momentum > 15 GeV, and a jet with E_T > 10 GeV, $|\eta| < 2.2$, and excluded $m_{b'}$ a between 30 and 69 GeV.
- ⁴⁹ For the reduction of the limit due to non-charged-current decay modes, see Fig. 19 of ALBAJAR 90B.
- ⁵⁰ ALBAJAR 88 study events at $E_{\rm cm} = 546$ and 630 GeV with a muon or isolated electron, accompanied by one or more jets and find agreement with Monte Carlo predictions for the production of charm and bottom, without the need for a new quark. The lower mass limit is obtained by using a conservative estimate for the $b'\overline{b'}$ production cross section and by assuming that it cannot be produced in W decays. The value quoted here is revised using the full $O(\alpha_2^3)$ cross section of ALTARELLI 88.

		• •				
VALUE (GeV)	CL%	DOCUMENT ID		TECN	COMMENT	
>3000	95	¹ TUMASYAN	220	CMS	$egin{array}{ccc} g \: b ightarrow b' ightarrow \: t \: W, \: {\sf B}(b' ightarrow t \: W) {=} 1 \end{split}$	
> 693	95	² ABAZOV	11F	D0	$q u \rightarrow q' b' \rightarrow q' (W u)$ $\widetilde{\kappa}_{u,b'} = 1, \ B(b' \rightarrow W u) = 1$	
> 430	95	² ABAZOV	11F	D0	$qd \rightarrow qb' \rightarrow q(Zd)$ $\widetilde{\kappa}_{db'} = \sqrt{2}, \ B(b' \rightarrow Zd) = 1$	
• • • We do not	use the f	following data for	averag	ges, fits,	u D	
>2600	95	³ aad ⁴ sirunyan			$egin{array}{rcl} b' & ightarrow bh \ (h ightarrow b\overline{b}) \ g \ b ightarrow b' ightarrow t \ W, \ { m B}(b' ightarrow t \ W) = 1 \end{array}$	
>1500	95	⁵ SIRUNYAN ⁶ AAD			$bZ/tW \rightarrow b' \rightarrow tW$ $gb \rightarrow b' \rightarrow tW, B(b' \rightarrow tW)=1$	

b'(-1/3) mass limits from single production in $p\overline{p}$ and pp collisions

>1390 95 ⁷ KHACHATRY...161 CMS
$$g b \rightarrow b'_L \rightarrow t W$$
, $B(b'_L \rightarrow tW)=1$
>1430 95 ⁸ KHACHATRY...161 CMS $g b \rightarrow b'_R \rightarrow t W$, $B(b'_R \rightarrow tW) = 1$

>1530 95 ⁹ KHACHATRY...16I CMS
$$\begin{array}{c}tW = 1\\g b \rightarrow b' \rightarrow tW, B(b' \rightarrow tW) = 1\end{array}$$

- ¹ TUMASYAN 220 based on 138 fb⁻¹ of data in pp collisions at 13 TeV. No significant excess over SM expectation is found in the search for a left-handed b' assuming 100% decay to tW using a t-tagged jet and a lepton from W. The model assumes that the b' has the excited quark couplings. The bound is from a statistical combination with an earlier analysis by SIRUNYAN 21AG. The 95% CL bounds are also set as 3.0, 3.0, and 3.2 TeV, respectively, for left-handed, right-handed, and vector-like couplings.
- ² ABAZOV 11F based on 5.4 fb⁻¹ of data in ppbar collisions at 1.96 TeV. ABAZOV 11F looked for single production of b' via the W or Z coupling to the first generation up or down quarks, respectively. Model independent cross section limits for the single production processes $p\overline{p} \rightarrow b'q \rightarrow Wuq$, and $p\overline{p} \rightarrow b'q \rightarrow Zdq$ are given in Figs. 3 and 4, respectively, and the mass limits are obtained for the model of ATRE 09 with degenerate bi-doublets of vector-like quarks.
- ³ AAD 23CQ based on 139 fb⁻¹ of data in pp collisions at 13 TeV. No significant excess over SM expectation is found. Limits on mass and production cross section of a vector-like b' are obtained in several theoretical scenarios determined by the couplings betwen b' and W, Z, h.
- ⁴ SIRUNYAN 21AG based on 137 fb⁻¹ of data in pp collisions at 13 TeV. No significant excess over SM expectation is found in the search for a left-handed b' assuming 100% decay to tW using all hadronic final states, where t and W are tagged as single jets, respectively. The model assumes that the b' has the excited quark couplings. The 95% CL bounds are also set as 2.8 and 3.1 TeV, respectively, for the right-handed and vector-like couplings.
- ⁵ SIRUNYAN 19AI based on 35.9 fb⁻¹ of pp data at $\sqrt{s} = 13$ TeV. Exclusion limits are set on the product of the production cross section and branching fraction for the b'(-1/3) + b and b'(-1/3) + t modes as a function of the vector-like quark mass in Figs. 7 and 8 and in Tab. 2 for relative vector-like quark widths between 1 and 30% for left- and right-handed vector-like quark couplings. No significant deviation from the SM prediction is observed.
- ⁶AAD 16AH based on 20.3 fb⁻¹ of data in pp collisions at 8 TeV. No significant excess over SM expectation is found in the search for a vector-like b' in the single-lepton and dilepton channels (ℓ or $\ell\ell$) + 1,2,3 j ($\geq 1b$). The model assumes that the b' has the excited quark couplings.
- ⁷ Based on 19.7 fb⁻¹ of data in pp collisions at 8 TeV. Limit on left-handed b' assuming 100% decay to tW and using all-hadronic, lepton + jets, and dilepton final states.
- ⁸ Based on 19.7 fb⁻¹ of data in pp collisions at 8 TeV. Limit on right-handed b' assuming 100% decay to tW and using all-hadronic, lepton + jets, and dilepton final states.
- ⁹ Based on 19.7 fb⁻¹ of data in pp collisions at 8 TeV. Limit on vector-like b' assuming 100% decay to tW and using all-hadronic, lepton+jets, and dilepton final states.

MASS LIMITS for b' (4th Generation) Quark or Hadron in e^+e^- Collisions

Search for hadrons containing a fourth-generation -1/3 quark denoted b'.

The last column specifies the assumption for the decay mode (CC denotes the conventional charged-current decay) and the event signature which is looked for.

VALUE (GeV)	CL%	DOCUMENT ID	0	TECN	COMMENT
>46.0	95	¹ DECAMP	90F	ALEP	any decay
https://pdg.lbl.gov		Page 6		Creat	ed: 5/31/2024 10:15

• • • We do not use the following data for averages, fits, limits, etc. • • •

		wing data for averages	, mus,	mmus, c	
none 96–103	95	² ABDALLAH	07	DLPH	$b' \rightarrow bZ, cW$
		³ ADRIANI	93 G	L3	Quarkonium
>44.7	95	ADRIANI	9 3M	L3	$\Gamma(Z)$
>45	95	ABREU	91F	DLPH	$\Gamma(Z)$
none 19.4-28.2	95	ABE	90 D	VNS	Any decay; event shape
>45.0	95	ABREU	90 D	DLPH	B(CC) = 1; event shape
>44.5	95	⁴ ABREU	90 D	DLPH	$b' \rightarrow c H^-, H^- \rightarrow \overline{c}s, \tau^- \nu$
>40.5	95	⁵ ABREU	90 D	DLPH	$\Gamma(Z \rightarrow hadrons)$
>28.3	95	ADACHI	90	τορΖ	B(FCNC)=100%; isol. γ or 4 jets
>41.4	95	⁶ AKRAWY	90 B	OPAL	Any decay; acoplanarity
>45.2	95	⁶ AKRAWY	90 B	OPAL	B(CC) = 1; acopla- narity
>46	95	⁷ AKRAWY	90J	OPAL	$b' ightarrow \gamma + $ any
>27.5	95	⁸ ABE	89E	VNS	$B(CC) = 1; \mu, e$
none 11.4-27.3	95	⁹ ABE	89 G	VNS	$B(b' ightarrow b\gamma) > 10\%;$ isolated γ
>44.7	95	¹⁰ ABRAMS	89C	MRK2	B(CC) = 100%; isol.
>42.7	95	¹⁰ ABRAMS	89C	MRK2	B(bg) = 100%; event shape
>42.0	95	¹⁰ ABRAMS	89C	MRK2	Any decay; event shape
>28.4	95	^{11,12} ADACHI	89C	TOPZ	$B(CC) = 1; \mu$
>28.8	95	¹³ ENO	89	AMY	B(CC) \gtrsim 90%; μ , e
>27.2	95	^{13,14} ENO	89	AMY	any decay; event shape
>29.0	95	¹³ ENO	89	AMY	${ m B}(b' ightarrow bg)\gtrsim 85\%;$ event shape
>24.4	95	¹⁵ IGARASHI	88	AMY	μ,e
>23.8	95	¹⁶ SAGAWA	88	AMY	event shape
>22.7	95	¹⁷ ADEVA	86	MRKJ	μ
>21		¹⁸ ALTHOFF	84C	TASS	R, event shape
>19		¹⁹ ALTHOFF	841	TASS	Aplanarity
1					

¹ DECAMP 90F looked for isolated charged particles, for isolated photons, and for four-jet final states. The modes $b' \rightarrow bg$ for $B(b' \rightarrow bg) > 65\% b' \rightarrow b\gamma$ for $B(b' \rightarrow b\gamma) > 5\%$ are excluded. Charged Higgs decay were not discussed. ² ABDALLAH 07 searched for b' pair production at E_{cm} =196-209 GeV, with 420 pb⁻¹.

- ² ABDALLAH 07 searched for b' pair production at $E_{\rm cm}$ =196–209 GeV, with 420 pb⁻¹. No signal leads to the 95% CL upper limits on B(b' \rightarrow bZ) and B(b' \rightarrow cW) for $m_{b'}$ = 96 to 103 GeV.
- ³ ADRIANI 93G search for vector quarkonium states near Z and give limit on quarkonium-Z mixing parameter $\delta m^2 < (10-30) \text{ GeV}^2$ (95%CL) for the mass 88–94.5 GeV. Using Richardson potential, a 1S ($b'\overline{b}'$) state is excluded for the mass range 87.7–94.7 GeV. This range depends on the potential choice.

⁴ ABREU 90D assumed $m_{H^-} < m_{b'} - 3$ GeV.

⁵ Superseded by ABREU 91F.

⁶ AKRAWY 90B search was restricted to data near the Z peak at $E_{\rm cm} = 91.26$ GeV at LEP. The excluded region is between 23.6 and 41.4 GeV if no H^+ decays exist. For charged Higgs decays the excluded regions are between $(m_{H^+} + 1.5 \text{ GeV})$ and 45.5 GeV.

⁷AKRAWY 90J search for isolated photons in hadronic Z decay and derive

 $B(Z \rightarrow b' \overline{b'}) \cdot B(b' \rightarrow \gamma X) / B(Z \rightarrow hadrons) < 2.2 \times 10^{-3}$. Mass limit assumes $B(b' \rightarrow \gamma X) > 10\%$.

- ⁸ABE 89E search at $E_{\rm cm} = 56-57$ GeV at TRISTAN for multihadron events with a spherical shape (using thrust and acoplanarity) or containing isolated leptons.
- $^9\,{\rm ABE}$ 89G search was at $E_{\rm cm}$ = 55–60.8 GeV at TRISTAN.
- ¹⁰ If the photonic decay mode is large (B($b' \rightarrow b\gamma$) > 25%), the ABRAMS 89C limit is 45.4 GeV. The limit for for Higgs decay ($b' \rightarrow cH^-$, $H^- \rightarrow \overline{c}s$) is 45.2 GeV.
- 11 ADACHI 89C search was at $E_{\rm cm}=56.5{-}60.8~{\rm GeV}$ at TRISTAN using multi-hadron events accompanying muons.
- 12 ADACHI 89C also gives limits for any mixture of C C and bg decays.
- 13 ENO 89 search at $E_{\rm cm} = 50-60.8$ at TRISTAN.
- 14 ENO 89 considers arbitrary mixture of the charged current, bg, and $b\gamma$ decays.
- ¹⁵ IGARASHI 88 searches for leptons in low-thrust events and gives $\Delta R(b') < 0.26$ (95% CL) assuming charged current decay, which translates to $m_{b'} > 24.4$ GeV.
- 16 SAGAWA 88 set limit $\sigma(top) < 6.1$ pb at CL=95% for top-flavored hadron production from event shape analyses at $E_{\rm CM} = 52$ GeV. By using the quark parton model cross-section formula near threshold, the above limit leads to lower mass bounds of 23.8 GeV for charge -1/3 quarks.
- ¹⁷ ADEVA 86 give 95%CL upper bound on an excess of the normalized cross section, ΔR , as a function of the minimum c.m. energy (see their figure 3). Production of a pair of 1/3 charge quarks is excluded up to $E_{\rm cm} = 45.4$ GeV.
- ¹⁸ ALTHOFF 84C narrow state search sets limit $\Gamma(e^+e^-)$ B(hadrons) <2.4 keV CL = 95% and heavy charge 1/3 quark pair production m > 21 GeV, CL = 95%.
- ¹⁹ ALTHOFF 841 exclude heavy quark pair production for 7 < m <19 GeV (1/3 charge) using aplanarity distributions (CL = 95%).

REFERENCES FOR Searches for (Fourth Generation) b' Quark

AAD	23AG EPJ C83 719	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	23AV PL B843 138019	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	23CQ JHEP 2311 168	G. Aad <i>et al.</i>	(ATLAS Collab.)
TUMASYAN	23V JHEP 2307 020	A. Tumasyan <i>et al.</i>	(CMS Collab.)
TUMASYAN	220 JHEP 2204 048	A. Tumasyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN	21AG JHEP 2112 106	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN	20BI PR D102 112004	A.M. Sirunyan <i>et al.</i>	(CMS_Collab.)
SIRUNYAN	19AI EPJ C79 90	A.M. Sirunyan <i>et al.</i>	(CMS_Collab.)
SIRUNYAN	19AQ EPJ C79 364	A.M. Sirunyan <i>et al.</i>	(CMS_Collab.)
SIRUNYAN	19BW PR D100 072001	A.M. Sirunyan <i>et al.</i>	(CMS_Collab.)
AABOUD	18AW JHEP 1808 048	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD	18CE JHEP 1812 039	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD	18CL PR D98 092005	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD	18CP PR D98 112010	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD	18CR PRL 121 211801	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
SIRUNYAN	18BM JHEP 1808 177	A.M. Sirunyan <i>et al.</i>	(CMS_Collab.)
SIRUNYAN	18Q PR D97 072008	A.M. Sirunyan <i>et al.</i>	(CMS_Collab.)
SIRUNYAN	17AU JHEP 1711 085	A.M. Sirunyan <i>et al.</i>	(CMS_Collab.)
AAD	16AH JHEP 1602 110	G. Aad <i>et al.</i>	(ATLAS Collab.)
KHACHATRY	. 16AN PR D93 112009	V. Khachatryan <i>et al.</i>	`(CMS Collab.)́
KHACHATRY	. 16I JHEP 1601 166	V. Khachatryan <i>et al.</i>	(CMS_Collab.)
AAD	15AR JHEP 1508 105	G. Aad et al.	(ATLAS Collab.)
AAD	15BY JHEP 1510 150	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	15CN PR D92 112007	G. Aad et al.	(ATLAS Collab.)
AAD	15Z PR D91 112011	G. Aad et al.	(ATLAS Collab.)
AAD	14AZ JHEP 1411 104	G. Aad <i>et al.</i>	(ATLAS Collab.)
CHATRCHYAN	13I JHEP 1301 154	S. Chatrchyan <i>et al.</i>	(CMS Collab.)
AAD	12AT PRL 109 032001	G. Aad et al.	(ATLAS Collab.)
AAD	12AU PRL 109 071801	G. Aad et al.	(ATLAS Collab.)
AAD	12BC PR D86 012007	G. Aad et al.	(ATLAS Collab.)
AAD	12BE JHEP 1204 069	G. Aad <i>et al.</i>	(ATLAS Collab.)
			```

https://pdg.lbl.gov

Created: 5/31/2024 10:15

CHATRCHYAN 12BI CHATRCHYAN 12X AALTONEN 11J ABAZOV 11F CHATRCHYAN 11L AALTONEN 10H FLACCO 10 ATRE 09	H PR D86 112003 JHEP 1205 123 PRL 106 141803 PRL 106 081801 PL B701 204 PRL 104 091801 PRL 105 111801 PR D79 054018	<ul> <li>S. Chatrchyan <i>et al.</i></li> <li>S. Chatrchyan <i>et al.</i></li> <li>T. Aaltonen <i>et al.</i></li> <li>V.M. Abazov <i>et al.</i></li> <li>S. Chatrchyan <i>et al.</i></li> <li>T. Aaltonen <i>et al.</i></li> <li>C.J. Flacco <i>et al.</i></li> <li>A. Atre <i>et al.</i></li> </ul>	(CMS Collab.) (CMS Collab.) (CDF Collab.) (D0 Collab.) (CMS Collab.) (CDF Collab.) (UCI, HAIF)
ABAZOV 08X	PRL 101 111802	V.M. Abazov <i>et al.</i>	(D0 Collab.)
HUANG 08	PR D77 037302	P.Q. Hung, M. Sher	(UVA, WILL)
AALTONEN 07C	PR D76 072006	T. Aaltonen <i>et al.</i>	(CDF Collab.)
ABDALLAH 07	EPJ C50 507	J. Abdallah <i>et al.</i>	(DELPHI Collab.)
ACOSTA 03	PRL 90 131801	D. Acosta <i>et al.</i>	(CDF Collab.)
AFFOLDER 00	PRL 84 835	A. Affolder <i>et al.</i>	(CDF Collab.)
ABE 98N	PR D58 051102	F. Abe <i>et al.</i>	(CDF Collab.)
ABACHI 97D	PRL 78 3818	<ul> <li>S. Abachi et al.</li> <li>C.D. Froggatt, D.J. Smith, H.B.</li> <li>S. Abachi et al.</li> <li>O. Adriani et al.</li> <li>O. Adriani et al.</li> <li>B. Mukhopadhyaya, D.P. Roy</li> <li>F. Abe et al.</li> <li>F. Abe et al.</li> </ul>	(D0 Collab.)
FROGGATT 97	ZPHY C73 333		Nielsen (GLAS+)
ABACHI 95F	PR D52 4877		(D0 Collab.)
ADRIANI 93G	PL B313 326		(L3 Collab.)
ADRIANI 93M	PRPL 236 1		(L3 Collab.)
MUKHOPAD 93	PR D48 2105		(TATA)
ABE 92	PRL 68 447		(CDF Collab.)
Also	PR D45 3921		(CDF Collab.)
ABE92GABREU91FABE90BABE90DABREU90DADACHI90	PR D45 3921 NP B367 511 PRL 64 147 PL B234 382 PL B242 536 PL B234 197	F. Abe et al. F. Abe et al. F. Abreu et al. F. Abe et al. K. Abe et al. P. Abreu et al. I. Adachi et al. T. Akesson et al.	(CDF Collab.) (DELPHI Collab.) (CDF Collab.) (VENUS Collab.) (DELPHI Collab.) (TOPAZ Collab.)
AKESSON90AKRAWY90BAKRAWY90JALBAJAR90BDECAMP90FABE89EABE89EABEABE89GADACHI89C	ZPHY C46 179 PL B236 364 PL B246 285 ZPHY C48 1 PL B236 511 PR D39 3524 PRL 63 1776 PRL 63 2447 PL B229 427	<ul> <li>I. Akesson et al.</li> <li>M.Z. Akrawy et al.</li> <li>M.Z. Akrawy et al.</li> <li>C. Albajar et al.</li> <li>D. Decamp et al.</li> <li>K. Abe et al.</li> <li>G.S. Abrams et al.</li> <li>I. Adachi et al.</li> </ul>	(UA2 Collab.) (OPAL Collab.) (UA1 Collab.) (ALEPH Collab.) (VENUS Collab.) (VENUS Collab.) (Mark II Collab.) (TOPAZ Collab.)
ENO 89	PRL 63 1910	S. Eno <i>et al.</i>	(AMY Collab.)
ALBAJAR 88	ZPHY C37 505	C. Albajar <i>et al.</i>	(UA1 Collab.)
ALTARELLI 88	NP B308 724	G. Altarelli <i>et al.</i>	(CERN, ROMA, ETH)
IGARASHI 88	PRL 60 2359	S. Igarashi <i>et al.</i>	(AMY Collab.)
SAGAWA 88	PRL 60 93	H. Sagawa <i>et al.</i>	(AMY Collab.)
ADEVA 86	PR D34 681	B. Adeva <i>et al.</i>	(Mark-J Collab.)
ALTHOFF 84C	PL 138B 441	M. Althoff <i>et al.</i>	(TASSO Collab.)
ALTHOFF 841	ZPHY C22 307	M. Althoff <i>et al.</i>	(TASSO Collab.)