

 $I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$ Status: *** I, J, P need confirmation.

In the quark model, Ξ_b^0 and Ξ_b^- are an isodoublet (*usb*, *dsb*) state; the lowest Ξ_b^0 and Ξ_b^- ought to have $J^P = 1/2^+$. None of *I*, *J*, or *P* have actually been measured.

Ξ_{h}^{-} MASS

² Uses $\Xi_{\overline{b}}^{-} \rightarrow J/\psi \Xi^{-}$ and $\Xi_{\overline{c}}^{0} \pi^{-}$ decays. ³ Observed in $\Xi_{\overline{b}}^{-} \rightarrow J/\psi \Xi^{-}$ decays with 15.2 $\pm 4.4^{+1.9}_{-0.4}$ candidates, a significance of 5.5 sigma. ⁴ Measured in $\Xi_{\overline{b}}^{-} \rightarrow J/\psi \Xi^{-}$ decays. ⁵ Measured in $\Xi_{\overline{b}}^{-} \rightarrow \Xi_{\overline{c}}^{0} \pi^{-}$ with 25.8 $^{+5.5}_{-5.2}$ candidates. ⁶ Measured in $\Xi_{\overline{b}}^{-} \rightarrow J/\psi \Xi^{-}$ decays with 66 $^{+14}_{-9}$ candidates. ⁷ Observed in $\Xi_{\overline{b}}^{-} \rightarrow J/\psi \Xi^{-}$ decays with 17.5 ± 4.3 candidates, a significance of 7.7 sigma.

²Reconstructed in $\Xi_{b}^{-} \rightarrow J/\psi \Lambda K^{-}$ decays. Reference decays $\Lambda_{b}^{0} \rightarrow J/\psi \Lambda$ were used. ³Reconstructed in $\Xi_{b}^{-} \rightarrow J/\psi \Xi^{-}$ decays.

⁴ Combination of the original statistically independent measurements of AAIJ 17BE and AAIJ 14BJ taking into account correlation between systematic uncertainties.

⁵ Combined with AAIJ 17BE.

$$m_{\Xi_b^-} - m_{\Xi_b^0}$$

VALUE (MeV)	DOCUMENT ID	TE	CN C	OMMENT
5.9 \pm 0.6 OUR AVERAGE				
$5.92 \pm 0.60 \pm 0.23$	¹ AAIJ	14bj L⊢	ICB p	<i>p</i> at 7, 8 TeV
$3.1 \pm 5.6 \pm 1.3$	² AALTONEN	11x CE	DF p	p at 1.96 TeV
1 Reconstructed in $\Xi_{b}^{-} \rightarrow \Xi_{c}^{0}$ = 172.44 \pm 0.39 \pm 0.17 MeV 2 Derived from measurements in NEN 09AP taking correlated s	$\pi^{-}, \Xi_{c}^{0} \rightarrow pK^{-}$ from AAIJ 14Z. n $\Xi_{b}^{0} \rightarrow \Xi_{c}^{+}\pi^{-}$ ystematic uncertai	$K^{-}\pi^{+}$ of and Ξ_{b}^{-} and Ξ_{b}^{-}	decays. $\overline{} \rightarrow \overline{}$	Uses $m(\Xi_b^0) - m(\Lambda_b^0)$ $1/\psi \Xi^-$ from AALTO-t.

Ξ_b^- MEAN LIFE

"OUR EVALUATION" is an average using rescaled values of the data listed below. The average and rescaling were performed by the Heavy Flavor Averaging Group (HFLAV) and are described at https://hflav.web.cern.ch/. The averaging/rescaling procedure takes into account correlations between the measurements and asymmetric lifetime errors.

Ξ_b^- MEAN LIFE

VALUE (10^{-12} s) DOCUMENT ID TECN COMMENT 1.572 ± 0.040 OUR EVALUATION (Produced by HFLAV) **1.57** ±0.05 OUR AVERAGE Error includes scale factor of 1.3. See the ideogram below. ¹ AAIJ $1.599 \!\pm\! 0.041 \!\pm\! 0.022$ 14BJ LHCB pp at 7, 8 TeV $1.55 \begin{array}{c} +0.10 \\ -0.09 \end{array} \pm 0.03$ ² AAIJ 14⊤ LHCB pp at 7, 8 TeV $1.32 \ \pm 0.14 \ \pm 0.02$ AALTONEN 14B CDF $p\overline{p}$ at 1.96 TeV • • We do not use the following data for averages, fits, limits, etc. • • • $1.56 \begin{array}{c} +0.27 \\ -0.25 \end{array} \pm 0.02$ ³ AALTONEN 09AP CDF Repl. by AALTONEN 14B ¹Reconstructed in $\Xi_b^- \rightarrow \Xi_c^0 \pi^-$, $\Xi_c^0 \rightarrow p K^- K^- \pi^+$ decays. Reference Λ_b^0 lifetime 1.479 \pm 0.009 \pm 0.010 ps from AAIJ 14U. ² Measured in $\Xi_b^- \rightarrow J/\psi \Xi^-$ decays. ³Measured in $\Xi_{h}^{-} \rightarrow J/\psi \Xi^{-}$ decays with 66⁺¹⁴₋₉ candidates.

MEAN LIFE RATIOS

Ξ_{b}^{-} DECAY MODES

	Mode		Fraction (Γ_i/Γ)	Confidence level
Γ ₁	$J/\psi \Xi^- imes B(b o \Xi_b^-)$		$(1.02^{+0.26}_{-0.21}) imes 10^{-1}$	-5
Γ ₂	$J/\psi \Lambda K^- \times B(b \rightarrow \Xi_b^-)$)	(2.5 ± 0.4) $ imes$ 10 $^-$	-6
Г ₃	$pK^{-}K^{-} \times B(b \rightarrow \Xi_{b}^{-})$)	$(3.7~\pm0.8~) imes10^-$	-8
Г4	pK ⁻ K ⁻		seen	
Γ ₅	$p\pi^-\pi^-$			
I ₆	$pK^{-}\pi^{-}$		seen	
https	://pdg.lbl.gov	Page 4	Created: 5/	/31/2024 10:16

$ \begin{array}{lll} \Gamma_8 & \Xi_c^0 \pi^- & \text{seen} \\ \Gamma_9 & \Sigma(1385) K^- & (2.6 \pm 2.3) \times 10^{-7} \\ \Gamma_{10} & \Lambda(1405) K^- & (1.9 \pm 1.2) \times 10^{-7} \\ \Gamma_{11} & \Lambda(1520) K^- & (7.6 \pm 3.2) \times 10^{-7} \\ \Gamma_{12} & \Lambda(1670) K^- & (4.5 \pm 2.3) \times 10^{-7} \\ \end{array} $	
Γ_9 $\Sigma(1385) K^ (2.6 \pm 2.3) \times 10^{-7}$ Γ_{10} $\Lambda(1405) K^ (1.9 \pm 1.2) \times 10^{-7}$ Γ_{11} $\Lambda(1520) K^ (7.6 \pm 3.2) \times 10^{-7}$ Γ_{12} $\Lambda(1670) K^ (4.5 \pm 2.3) \times 10^{-7}$	
$ \begin{array}{ll} \Gamma_{10} & \Lambda(1405) K^{-} & (1.9 \ \pm 1.2 \) \times 10^{-7} \\ \Gamma_{11} & \Lambda(1520) K^{-} & (7.6 \ \pm 3.2 \) \times 10^{-7} \\ \Gamma_{12} & \Lambda(1670) K^{-} & (4.5 \ \pm 2.3 \) \times 10^{-7} \end{array} $	
$ \Gamma_{11} \Lambda(1520) K^{-} \qquad (7.6 \pm 3.2) \times 10^{-7} \\ \Gamma_{12} \Lambda(1670) K^{-} \qquad (45 \pm 2.3) \times 10^{-7} $	
$\Gamma_{12} = \Lambda(1670) K^{-1}$ (45 + 23.) × 10 ⁻⁷	
$\Gamma_{13} \Sigma(1775) K^{-}$ (2.2 ±1.5) × 10 ⁻⁷	
$\Gamma_{14} \Sigma(1915) K^{-}$ (2.6 ±2.5) × 10 ⁻⁷	
$\Gamma_{15} \overline{\Xi}^- \gamma \qquad \qquad < 1.3 \qquad \times 10^{-4} \qquad 95$	5%

Ξ_b^- BRANCHING RATIOS

$\Gamma(J/\psi\Xi^-\timesB(b\to\Xi_b^-))$	/Γ _{total}			Γ_1/Γ
VALUE (units 10 ⁻⁴)	DOCUMENT ID	TECN	COMMENT	
$0.102^{+0.026}_{-0.021}$ OUR AVERAGE				
$0.098 \substack{+0.023 \\ -0.016} \pm 0.014$	¹ AALTONEN	09AP CDF	p p at 1.96 Te	/
$0.16 \pm 0.07 \pm 0.02$	² ABAZOV	07K D0	<i>р<mark>р</mark> аt 1.96 Те</i>	/
¹ AALTONEN 09AP reports $J/\psi(1S)\Lambda \times B(b \rightarrow \Lambda_b^0)$ value $B(\Lambda_b^0 \rightarrow J/\psi(1S)\Lambda$ their experiment's error and value. ² ABAZOV 07K reports [$\Gamma(2)$	$[\Gamma(\Xi_b \rightarrow J/\psi \equiv^-)] = 0.167 \stackrel{+0.037}{-} \stackrel{-0.025}{-} \stackrel{-0.025}{-} \times B(b \rightarrow \Lambda_b^0)) = 0$ our second error is form $\Xi_b \rightarrow J/\psi \equiv^- \times 1/\psi \equiv^- \times 1/\psi$	× B($b \rightarrow \Xi$ ± 0.012 which (5.8 ± 0.8) > the systematic B($b \rightarrow \Xi_{b}^{-}$	$\left(\frac{1}{b}\right) / \Gamma_{total}] / $	$[B(\Lambda_b^0 \to r \text{ our best})]$ st error is g our best $[B(\Lambda_b^0 \to r)]$
$egin{array}{lll} J/\psi(1S)\Lambda imes { m B}(b ightarrow\Lambda^0_b))\ { m B}(\Lambda^0_b ightarrowJ/\psi(1S)\Lambda imes{ m B}(b)\ { m experiment's\ error\ and\ our\ s}) \end{array}$	$] = 0.28 \pm 0.09 {+0.}_{-0.}$ $p \rightarrow \Lambda_b^0) = (5.8 \pm 0.00)$	$^{09}_{08}$ which we \pm 0.8) $ imes$ 10^{-1}	multiply by our l ⁵ . Our first erro from using our b	pest value or is their pest value.
$\Gamma(1/w)\Lambda K^{-} \times B(h \rightarrow =^{-})$)/Г			

$\Gamma(J/\psi \Lambda K^{-} \times B(b \rightarrow =_{b}))/I_{\text{total}}$ VALUE (units 10⁻⁶) DOCUMENT ID

12/1

 Γ_3/Γ

VALUE (units 10^{-6})	DOCUMENT	ID	TECN	COMMENT	
2.45±0.19±0.35	1,2 AAIJ	17 BE	LHCB	pp at 7 and 8	3 TeV
1 AAIJ 17BE reports [Г $(arepsilon_b$	$\rightarrow J/\psi \Lambda K^- \times$	$ (b \rightarrow$	Ξ_b^-))/Γ _{total}] /	$[B(\Lambda_b^0 \rightarrow$
$J/\psi(1S)\Lambda imes \ { m B}(b ightarrow \ \Lambda_b^0)$)] = (4.19 \pm 0.2	9 ± 0.15	$) \times 10^{-1}$	$^{-2}$ which we r	multiply by
our best value $B(\Lambda^0_h \to J$	$/\psi(1S)$ / $ imes$ B(b $-$	$\rightarrow \Lambda_b^0$) =	= (5.8 :	\pm 0.8) $ imes$ 10 $^{-5}$. Our first
error is their experiment's	error and our seco	nd error is	the sy	stematic error	from using
our best value.			. 05	с. <u>и</u>	

² Integrated over the *b*-baryon transverse momentum p_T < 25 GeV and rapidity 2.0 < y < 4.5.

$\Gamma(pK^-K^- \times B(b \rightarrow \Xi_b^-))/\Gamma_{total}$

VALUE (units 10 ⁻⁸)	DOCUMENT	ID	TECN	COMMENT
3.7±0.8±0.2	¹ AAIJ	17F	LHCB	<i>pp</i> at 7, 8 TeV
¹ AAIJ 17F reports $[\Gamma(\Xi_b \ \kappa^+ \kappa^- \kappa^+)] / [B(\overline{b} \rightarrow by \text{ our best values } B(B^+ - \delta)]$	$ \rightarrow pK^{-}K^{-} \times B^{+})] = (2.65 \pm K^{+}K^{-}K^{+}) = $	$B(\overline{b} \rightarrow 0.35 \pm 0)$ = (3.40 \pm	<i>Ξ_b</i>) 0.47) × = 0.14))/ Γ_{total}] / [B($B^+ \rightarrow 10^{-3}$ which we multiply $\times 10^{-5}$, B($\overline{b} \rightarrow B^+$) =

 $(40.8\pm0.7)\times10^{-2}.$ Our first error is their experiment's error and our second error is the systematic error from using our best values.

$\Gamma(\rho K^- K^-) / \Gamma_{\text{total}}$			Г ₄ /Г
VALUE (units 10 ⁻⁶)	DOCUMENT ID	TECN	COMMENT
2.3±0.9	¹ AAIJ	21AH LHC	B <i>pp</i> at 7, 8, 13 TeV
¹ Obtained using the ratio of fra $\kappa^+ \kappa^- \kappa^-$ decay.	agmentation and br	anching fra	ctions relative to the $B^- o$
$\Gamma(p\pi^{-}\pi^{-})/\Gamma(pK^{-}K^{-})$	DOCUMENT ID	TECN	Г₅/Г 4
<0.56 90	¹ AAIJ	17F LHC	B pp at 7, 8 TeV
1 Measures the ratio as 0.28 \pm	$0.16 \pm 0.13.$		
$\Gamma(pK^-\pi^-)/\Gamma(pK^-K^-)$		TECN	
$\frac{VALUE}{0.98\pm0.27\pm0.09}$			$\frac{COMMENT}{R}$
0.90 ± 0.21 ± 0.09	AAIJ	IT LIC	D ppatr, o lev
$\Gamma(\Lambda_b^0\pi^- \times B(b \to \Xi_b^-)/B(b$	$\rightarrow \Lambda_b^0))/\Gamma_{\text{total}}$		Г7/Г
VALUE (units 10^{-4})	DOCUMENT ID	TECN	COMMENT
7.0±0.9 OUR AVERAGE	-		
$7.3 \pm 0.8 \pm 0.6$	¹ AAIJ	23AV LHC	B pp at 13 TeV
$5.7 \pm 1.8 \substack{+0.8 \\ -0.9}$	² AAIJ	15BA LHC	B <i>pp</i> at 7, 8 TeV
¹ Measured in the decay chain of with $\Lambda_c^+ \rightarrow p K^- \pi^+$. ² A signal is reported with a sig $\Xi_b^- \rightarrow \Lambda_b^0 \pi^-$, $\Lambda_b^0 \rightarrow \Lambda_c^+ \pi^-$	$f \equiv b \to \Lambda_b^0 \pi^-, \Lambda_b^0$ gnificance of 3.2 states $-$, and $\Lambda_c^+ \to p h$	$b \rightarrow \Lambda_c^+ \pi^-$ andard devi $\chi^- \pi^+$.	and $arLambda_b^0 o arLambda_c^+ \pi^- \pi^+ \pi^-$, ations in the decay chain of
$\Gamma(\Xi_{c}^{0}\pi^{-})/\Gamma_{total}$			Г ₈ /Г
VALUE	DOCUMENT ID	TECN	<u>COMMENT</u>
seen	AAIJ	160 LHC	B <i>pp</i> at 7, 8 TeV
$\Gamma(\Sigma(1385)K^-)/\Gamma_{total}$			٦/و٦
VALUE (units 10^{-6})	DOCUMENT ID	TECN	COMMENT
$0.26 \pm 0.11 \pm 0.20$	¹ AAIJ	21AH LHC	B <i>pp</i> at 7, 8 and 13 TeV
1 Obtained from an amplitude RK^- decay, with $R o \ pK^-$	analysis of quasi- 	two-body c	ontributions to the $arepsilon_b^- o$
$\Gamma(\Lambda(1405)K^-)/\Gamma_{total}$			Г ₁₀ /Г
VALUE (units 10^{-6})	DOCUMENT ID	TECN	COMMENT
0.19±0.06±0.10	¹ AAIJ	21AH LHC	B pp at 7, 8 and 13 TeV

¹Obtained from an amplitude analysis of quasi-two-body contributions to the $\Xi_b^- \to RK^-$ decay, with $R \to pK^-$.

Citation: S. Navas <i>et al.</i> (P	article Data Group), P	hys. Rev. D 110	, 030001 (2024)
$\Gamma(\Lambda(1520)K^-)/\Gamma_{total}$			Г ₁₁ /Г
VALUE (units 10 ⁻⁶)	DOCUMENT ID	TECN	COMMENT
$0.76 {\pm} 0.09 {\pm} 0.31$	¹ AAIJ	21AH LHCB	<i>pp</i> at 7, 8 and 13 TeV
$^1{ m Obtained}$ from an amplitude	analysis of quasi-	two-body con	tributions to the Ξ_{h}^{-} \rightarrow
RK^- decay, with $R o \ pK^-$	•		D
$\Gamma(\Lambda(1670)K^-)/\Gamma_{total}$			Γ ₁₂ /Γ
VALUE (units 10 ⁻⁶)	DOCUMENT ID	TECN	COMMENT
0.45±0.07±0.22	¹ AAIJ	21AH LHCB	<i>pp</i> at 7, 8 and 13 TeV
$^1\mathrm{Obtained}$ from an amplitude	analysis of quasi-	two-body con	tributions to the Ξ_{h}^{-} \rightarrow
RK^- decay, with $R o \ pK^-$	•		D
$\Gamma(\Sigma(1775)K^-)/\Gamma_{total}$			Г ₁₃ /Г
VALUE (units 10^{-6})	DOCUMENT ID	TECN	COMMENT
0.22±0.08±0.13	¹ AAIJ	21AH LHCB	<i>pp</i> at 7, 8 and 13 TeV
1 Obtained from an amplitude	analysis of quasi-	two-body con	tributions to the Ξ_{h}^{-} \rightarrow
RK^- decay, with $R o \ pK^-$		-	D
$\Gamma(\Sigma(1915)K^-)/\Gamma_{total}$			Г ₁₄ /Г
VALUE (units 10 ⁻⁶)	DOCUMENT ID	TECN	COMMENT
$0.26 \pm 0.09 \pm 0.23$	¹ AAIJ	21AH LHCB	<i>pp</i> at 7, 8 and 13 TeV
$^1{ m Obtained}$ from an amplitude	analysis of quasi-	two-body con	tributions to the Ξ_{h}^{-} $ ightarrow$
RK^- decay, with $R o \ pK^-$			

$\Gamma(\Xi^-\gamma)/\Gamma_{ ext{total}}$						Γ ₁₅ /Γ
VALUE	CL%	DOCUMENT ID		TECN	COMMENT	
<1.3 × 10 ⁻⁴	95	¹ AAIJ	22F	LHCB	<i>pp</i> at 13 TeV	
¹ Used $\Xi_b^- \rightarrow \Xi^- J_b$	$/\psi$ as norr	malization and an i	integr	ated lum	ninosity of 5.4 fb⁻	-1.

P VIOLATION ASYMMETRY

$A_P(\Xi_b), \Xi_b^ \Xi_b^+$ production asymmetry						
$A_P(\Xi_b) = [\sigma(\Xi_b^-) - \sigma(\Xi_b^+)] / [\sigma(\Xi_b^-) + \sigma(\Xi_b^+)]$						
VALUE (units 10^{-2})	DOCUMENT ID	TECN	COMMENT			
-2 ± 4 OUR AVERAGE						
$1.1\!\pm\!5.6\!\pm\!1.9$	1,2 AAIJ	19AB LHCB	<i>pp</i> at 7 and 8 TeV			
$-3.9 \pm 4.9 \pm 2.5$	^{1,2} AAIJ	19AB LHCB	<i>pp</i> at 13 TeV			
1 Baryon kinematic range $ ho_{\mathcal{T}}~<$ 20 GeV/c and 2 $<~\eta~<$ 6.						
² Measured using previous measurements of $A_P(\Lambda_h)$ in AAIJ 17BF.						

CP VIOLATION in \varXi_b deays

$$A_{CP}(\Xi_b) = [\mathsf{B}(\Xi_b^- \to f) - \mathsf{B}(\Xi_b^+ \to \overline{f})]/\mathsf{Sum}$$

$A_{CP}(\Xi_b^- \rightarrow \Sigma(1385)K^-)$			
VALUE	DOCUMENT ID	TECN	COMMENT
$(-27\pm34\pm73) \times 10^{-2}$	AAIJ	21AH LHCB	<i>pp</i> at 7, 8, 13 TeV
$A_{CP}(\Xi_b^- \rightarrow \Lambda(1405)K^-)$			
VALUE	DOCUMENT ID	TECN	COMMENT
$(-1\pm24\pm32) \times 10^{-2}$	AAIJ	21AH LHCB	<i>pp</i> at 7, 8, 13 TeV
$A_{CP}(\Xi_b^- \rightarrow \Lambda(1520)K^-)$			
VALUE	DOCUMENT ID	TECN	COMMENT
$(-5\pm9\pm8) \times 10^{-2}$	AAIJ	21AH LHCB	<i>pp</i> at 7, 8, 13 TeV
$A_{CP}(\Xi_b^- \rightarrow \Lambda(1670)K^-)$			
VALUE	DOCUMENT ID	TECN	COMMENT
$(3\pm 14\pm 10) \times 10^{-2}$	AAIJ	21AH LHCB	<i>pp</i> at 7, 8, 13 TeV
$\Lambda_{} \left(= \sum_{i=1}^{-} \sum_{i=1}^{i} \sum_{i=1}^{i} \left(1775 \right) K^{-} \right)$			
$ACP(=_{h} \rightarrow Z(1115))$			
$ACP(=_b \rightarrow Z(1115)K)$ VALUE	DOCUMENT ID	TECN	COMMENT
$\frac{A_{CP}(=_{b} \rightarrow 2(1775)K)}{(-47\pm26\pm14)\times10^{-2}}$	<u>DOCUMENT ID</u> AAIJ	<u>тесл</u> 21ан LHCB	<i>COMMENT</i> pp at 7, 8, 13 TeV
$A_{CP}(=_{b} \rightarrow \Sigma(1775)K^{-})$ \xrightarrow{VALUE} $(-47\pm26\pm14)\times10^{-2}$ $A_{CP}(=_{b} \rightarrow \Sigma(1915)K^{-})$	<u>document id</u> AAIJ	<u>TECN</u> 21AH LHCB	<i>COMMENT</i> pp at 7, 8, 13 TeV
$A_{CP}(\Xi_{b} \rightarrow \Sigma(1775)K)$ $VALUE$ $(-47\pm26\pm14) \times 10^{-2}$ $A_{CP}(\Xi_{b} \rightarrow \Sigma(1915)K^{-})$ $VALUE$	<u>DOCUMENT ID</u> AAIJ DOCUMENT ID	<u>TECN</u> 21AH LHCB TECN	<u>COMMENT</u> pp at 7, 8, 13 TeV COMMENT

Ξ_b^- REFERENCES