$V_{c b}$ and $V_{u b}$ CKM Matrix Elements

OMITTED FROM SUMMARY TABLE

See the related review(s):
 Semileptonic B Hadron Decays, Determination of $\mathrm{V}_{c b}$ and $V_{u b}$

$V_{c b}$ MEASUREMENTS

For the discussion of $V_{c b}$ measurements, which is not repeated here, see the review on "Determination of $\left|V_{c b}\right|$ and $\left|V_{u b}\right|$."

The CKM matrix element $\left|V_{c b}\right|$ can be determined by studying the rate of the semileptonic decay $B \rightarrow D^{(*)} \ell \nu$ as a function of the recoil kinematics of $D^{(*)}$ mesons. Taking advantage of theoretical constraints on the normalization and a linear ω dependence of the form factors $(F(\omega), G(\omega))$ provided by Heavy Quark Effective Theory (HQET), the $\left|V_{c b}\right| \times F(\omega)$ and ρ^{2} can be simultaneously extracted from data, where ω is the scalar product of the two-meson four velocities, $F(1)$ is the form factor at zero recoil $(\omega=1)$ and ρ^{2} is the slope. Using the theoretical input of $F(1)$, a value of $\left|V_{c b}\right|$ can be obtained.
$\left|V_{c b}\right| \times F(1)\left(\right.$ from $\left.B^{0} \rightarrow D^{*-} \ell^{+} \nu\right)$
VALUE (units 10^{-2}) DOCUMENT ID TECN COMMENT
$3.534 \pm \mathbf{0 . 0 3 7}$ OUR EVALUATION (Produced by HFLAV) with $\rho^{2}=1.139 \pm 0.020$ and a correlation 0.268 . The fitted χ^{2} is 63.2 for 27 degrees of freedom.
$3.60 \pm \mathbf{0 . 0 6}$ OUR AVERAGE Error includes scale factor of 1.5. See the ideogram below.

$3.676 \pm 0.028 \pm 0.086$	1 ADACHI	23J	BELL	$e^{+} e^{-}$	$r(4 S)$
3.64 ± 0.09	${ }^{2}$ PRIM	23	BELL	$e^{+} e^{-}$	$\gamma(4 S)$
$3.506 \pm 0.015 \pm 0.056$	3 WAHEED	21	BELL	$e^{+} e^{-}$	$\gamma(4 S)$
$3.59 \pm 0.02 \pm 0.12$	4 AUBERT	09A	BABR	$e^{+} e^{-}$	$r(4 S)$
$3.92 \pm 0.18 \pm 0.23$	${ }^{5}$ ABDALLAH	04D	DLPH	$e^{+} e^{-}$	z^{0}
$4.31 \pm 0.13 \pm 0.18$	6 ADAM	03	CLE2	$e^{+} e^{-}$	$\gamma(4 S)$
$3.55 \pm 0.14{ }_{-0.24}^{+0.23}$	7 ABREU	01H	DLPH	$e^{+} e^{-}$	Z
$3.71 \pm 0.10 \pm 0.20$	${ }^{8}$ ABBIENDI	00Q	OPAL	$e^{+} e^{-}$	Z
$3.19 \pm 0.18 \pm 0.19$	9 BUSKULIC	97	ALEP	$e^{+} e^{-}$	Z

- - We do not use the following data for averages, fits, limits, etc. - •

$3.483 \pm 0.015 \pm 0.056$	3 WAHEED	19	BELL	Repl. by WAHEED 21
$3.46 \pm 0.02 \pm 0.10$	10 DUNGEL	10	BELL	Rep. by WAHEED 19
$3.59 \pm 0.06 \pm 0.14$	11 AUBERT	08AT	BABR	Repl. by AUBERT 09A
$3.44 \pm 0.03 \pm 0.11$	12 AUBERT	08R	BABR	Repl. by AUBERT 09A
$3.55 \pm 0.03 \pm 0.16$	13 AUBERT	05E	BABR	Repl. by AUBERT 08R
$3.77 \pm 0.11 \pm 0.19$	14 ABDALLAH	04D	DLPH	$e^{+} e^{-} \rightarrow Z^{0}$
$3.54 \pm 0.19 \pm 0.18$	15 ABE	02F	BELL	Repl. by DUNGEL 10
$4.31 \pm 0.13 \pm 0.18$	16 BRIERE	02	CLE2	$e^{+} e^{-} \rightarrow \Upsilon(4 S)$
$3.28 \pm 0.19 \pm 0.22$	ACKERSTAFF	97G	OPAL	Repl. by ABBIENDI 00Q

| 3.50 ± 0.19 | ± 0.23 | 17 | ABREU | 96 P | DLPH |
| :--- | :--- | :--- | :--- | :--- | :--- | Repl. by ABREU 01H

1^{1} Measured from differential shapes of exclusive $B \rightarrow D^{*} \ell^{-} \nu_{\ell}(\ell=e$ or $\mu)$ decays. Using CNL form factor parametrization and the zero-recoil lattice QCD point $F(1)=0.906 \pm$ 0.013 ADACHI 23J finds $\left|\mathrm{V}_{c b}\right|_{C N L}=(40.57 \pm 0.31 \pm 0.95 \pm 0.58) \times 10^{-3}$ where the last uncertainty is due to the prediction of $F(1)$. Also reports a measurement of $\left|\mathrm{V}_{c b}\right|_{B G L}$ $=(40.13 \pm 0.27 \pm 0.93 \pm 0.58) \times 10^{-3}$ using BGL form factors parametrization.
2 Measured from differential shapes of exclusive $B \rightarrow D^{*} \ell^{-} \nu_{\ell}$ decays with hadronic tagside reconstruction and extracting the CNL and BGL form factor parameters. PRIM 23 finds $\left|\mathrm{V}_{c b}\right|_{C N L}=(40.2 \pm 0.9) \times 10^{-3}$ with the zero-recoil lattice QCD point $F(1)=$ 0.906 ± 0.013. PRIM 23 provides also a measurement of $\left|\mathrm{V}_{c b}\right| B G L=(40.7 \pm 1.0) \times$ 10^{-3}.
${ }^{3}$ WAHEED 21 uses fully reconstructed $D^{*-} \ell^{+} \nu$ events ($\ell=e$ or μ) and $\eta_{E W}=1.0066$.
${ }^{4}$ Obtained from a global fit to $B \rightarrow D^{*} \ell \nu_{\ell}$ events, with reconstructed $D^{0} \ell$ and $D^{+} \ell$ final states and $\rho^{2}=1.22 \pm 0.02 \pm 0.07$.
${ }^{5}$ Measurement using fully reconstructed D^{*} sample with a $\rho^{2}=1.32 \pm 0.15 \pm 0.33$.
${ }^{6}$ Average of the $B^{0} \rightarrow D^{*}(2010)^{-} \ell^{+} \nu$ and $\left.B^{+} \rightarrow \bar{D}^{*}(2007)\right) \ell^{+} \nu$ modes with $\rho^{2}=$ $1.61 \pm 0.09 \pm 0.21$ and $f_{+-}=0.521 \pm 0.012$.
${ }^{7}$ ABREU 01 H measured using about 5000 partial reconstructed D^{*} sample with a $\rho^{2}=1.34 \pm 0.14_{-0.22}^{+0.24}$.
${ }^{8}$ ABBIENDI 00Q: measured using both inclusively and exclusively reconstructed $D^{*} \pm$ samples with a $\rho^{2}=1.21 \pm 0.12 \pm 0.20$. The statistical and systematic correlations between $\left|V_{c b}\right| \times F(1)$ and ρ^{2} are 0.90 and 0.54 respectively.
${ }^{9}$ BUSKULIC 97: measured using exclusively reconstructed $D^{* \pm}$ with a $a^{2}=0.31 \pm 0.17 \pm$ 0.08. The statistical correlation is 0.92 .

10 Uses fully reconstructed $D^{*-} \ell^{+}{ }_{\nu}$ events ($\ell=e$ or μ).
${ }^{11}$ Measured using the dependence of $B^{-} \rightarrow D^{* 0} e^{-} \bar{\nu}_{e}$ decay differential rate and the form factor description by CAPRINI 98 with $\rho^{2}=1.16 \pm 0.06 \pm 0.08$.
${ }^{12}$ Measured using fully reconstructed D^{*} sample and a simultaneous fit to the Caprini-Lellouch-Neubert form factor parameters: $\rho^{2}=1.191 \pm 0.048 \pm 0.028, R_{1}(1)=1.429 \pm$ 0.061 ± 0.044, and $R_{2}(1)=0.827 \pm 0.038 \pm 0.022$.
${ }^{13}$ Measurement using fully reconstructed D^{*} sample with a $\rho^{2}=1.29 \pm 0.03 \pm 0.27$.
${ }^{14}$ Combines with previous partial reconstructed D^{*} measurement with a $\rho^{2}=1.39 \pm 0.10 \pm$ 0.33 .
${ }^{15}$ Measured using exclusive $B^{0} \rightarrow D^{*}(892)^{-} e^{+} \nu$ decays with $\rho^{2}=1.35 \pm 0.17 \pm 0.19$ and a correlation of 0.91 .
${ }^{16}$ BRIERE 02 result is based on the same analysis and data sample reported in ADAM 03.
17 ABREU 96P: measured using both inclusively and exclusively reconstructed $D^{* \pm}$ samples.
${ }^{18}$ BARISH 95: measured using both exclusive reconstructed $B^{0} \rightarrow D^{*-} \ell^{+} \nu$ and $B^{+} \rightarrow$ $D^{* 0} \ell^{+}{ }_{\nu}$ samples. They report their experiment's uncertainties $\pm 0.0019 \pm 0.0018 \pm$ 0.0008 , where the first error is statistical, the second is systematic, and the third is the uncertainty in the lifetimes. We combine the last two in quadrature.

$\left|V_{c b}\right| \times G(1)\left(\right.$ from $\left.B \rightarrow D^{-} \ell^{+} \nu\right)$

VALUE (units 10^{-2}) DOCUMENT ID TECN COMMENT
$\overline{4.121} \pm \mathbf{0 . 1 0 0}$ OUR EVALUATION (Produced by HFLAV) with $\rho^{2}=1.128 \pm 0.033$ and a correlation 0.747 . The fitted χ^{2} is 4.8 for 8 degrees of freedom.

4.22 ± 0.10 OUR AVERAGE

4.229 ± 0.137
$4.23 \pm 0.19 \pm 0.14$
$4.31 \pm 0.08 \pm 0.23$
$4.16 \pm 0.47 \pm 0.37$
$2.78 \pm 0.68 \pm 0.65$
${ }^{1}$ GLATTAUER 16 BELL $e^{+} e^{-} \rightarrow r(4 S)$
${ }^{2}$ AUBERT $\quad 10$ BABR $e^{+} e^{-} \rightarrow r(4 S)$
${ }^{3}$ AUBERT \quad 09A BABR $e^{+} e^{-} \rightarrow \quad r(4 S)$
${ }^{4}$ BARTELT 99 CLE2 $\quad e^{+} e^{-} \rightarrow \Upsilon(4 S)$
${ }^{5}$ BUSKULIC 97 ALEP $e^{+} e^{-} \rightarrow Z$

- - We do not use the following data for averages, fits, limits, etc. - -

| 4.11 ± 0.44 | ± 0.52 | ${ }^{6}$ ABE | 02E | BELL |
| :--- | :--- | :--- | :--- | :--- | Repl. by GLATTAUER 16

${ }^{1}$ Obtained from a fit to the combined partially reconstructed $B \rightarrow \bar{D} \ell \nu_{\ell}$ sample while tagged by the other fully reconstructed B meson in the event. Also reports fitted $\rho^{2}=$ 1.09 ± 0.05.
${ }^{2}$ Obtained from a fit to the combined $B \rightarrow \bar{D} \ell^{+} \nu_{\ell}$ sample in which a hadronic decay of the second B meson is fully reconstructed and $\rho^{2}=1.20 \pm 0.09 \pm 0.04$.
${ }^{3}$ Obtained from a global fit to $B \rightarrow D^{(*)} \ell \nu_{\ell}$ events, with reconstructed $D^{0} \ell$ and $D^{+} \ell$ final states and $\rho^{2}=1.20 \pm 0.04 \pm 0.07$.
${ }^{4}$ BARTELT 99: measured using both exclusive reconstructed $B^{0} \rightarrow D^{-} \ell^{+} \nu$ and $B^{+} \rightarrow$ $D^{0} \ell^{+}{ }_{\nu}$ samples.
${ }^{5}$ BUSKULIC 97: measured using exclusively reconstructed $D^{ \pm}$with a $a^{2}=-0.05 \pm 0.53 \pm$ 0.38. The statistical correlation is 0.99 .
${ }^{6}$ Using the missing energy and momentum to extract kinematic information about the undetected neutrino in the $B^{0} \rightarrow D^{-} \ell^{+} \nu$ decay.
${ }^{7}$ ATHANAS 97: measured using both exclusive reconstructed $B^{0} \rightarrow D^{-} \ell^{+} \nu$ and $B^{+} \rightarrow$ $D^{0} \ell^{+} \nu$ samples with a $\rho^{2}=0.59 \pm 0.22 \pm 0.12_{-0}^{+0.59}$. They report their experiment's uncertainties $\pm 0.0044 \pm 0.0048_{-0.0012}^{+0.0053}$, where the first error is statistical, the second is systematic, and the third is the uncertainty due to the form factor model variations. We combine the last two in quadrature.
$\left|\mathrm{V}_{c b}\right|\left(\right.$ from $\left.D_{s}^{*-} \mu^{+} \nu_{\mu}\right)$
VALUE (units 10^{-3})
$41.4 \pm 0.6 \pm 0.9 \pm 1.2$
$1 \frac{\text { DOCUMENT ID }}{1 \mathrm{AAIJ}} \frac{\text { TECN }}{\text { LHCB }} \frac{\text { COMMENT }}{\text { pp at } 7,8 \mathrm{TeV}}$
${ }^{1}$ Measured from an inclusive sample of $D_{s}^{-} \mu^{+}$candidates using CNL parameterization of the form factor. AAIJ 20E provides also measurement of $\left|\mathrm{V}_{c b}\right|=(42.3 \pm 0.8 \pm 0.9 \pm$ 1.2) $\times 10^{-3}$ using BGL parameterization of the form factor. The third uncertainty is due to the external inputs used in the measurement.

$V_{u b}$ MEASUREMENTS

For the discussion of $V_{u b}$ measurements, which is not repeated here, see the review on "Determination of $\left|V_{c b}\right|$ and $\left|V_{u b}\right|$."
The CKM matrix element $\left|V_{u b}\right|$ can be determined by studying the rate of the charmless semileptonic decay $b \rightarrow u \ell \nu$. The relevant branching ratio measurements based on exclusive and inclusive decays can be found in the B Listings, and are not repeated here.

$V_{c b}$ and $V_{u b}$ CKM Matrix Elements REFERENCES

ADACHI	23J	PR D108 092013
PRIM	23	PR D108 012002
WAHEED	21	PR D103 079901
AAIJ	20E	PR D101 072004
WAHEED	19	PR D100 052007
GLATTAUER	16	PR D93 032006
AUBERT	10	PRL 104011802
DUNGEL	10	PR D82 112007
AUBERT	09A	PR D79 012002
AUBERT	08AT	PRL 100231803
AUBERT	08R	PR D77 032002
AUBERT	05E	PR D71 051502
ABDALLAH	04D	EPJ C33 213
ADAM	03	PR D67 032001
ABE	02E	PL B526 258
ABE	02F	PL B526 247
BRIERE	02	PRL 89081803
ABREU	01H	PL B510 55
ABBIENDI	00Q	PL B482 15
BARTELT	99	PRL 823746
CAPRINI	98	NP B530 153
ACKERSTAFF	97G	PL B395 128
ATHANAS	97	PRL 792208
BUSKULIC	97	PL B395 373
ABREU	96P	ZPHY C71 539
BARISH	95	PR D51 1014
BUSKULIC	95N	PL B359 236

I. Adachi et al.	(BELLE II Collab.)
M.T. Prim et al.	(BELLE Collab.)
E. Waheed et al.	(BELLE Collab.)
R. Aaij et al.	(LHCb Collab.)
E. Waheed et al.	(BELLE Collab.)
R. Glattauer et al.	(BELLE Collab.)
B. Aubert et al.	(BABAR Collab.)
W. Dungel et al.	(BELLE Collab.)
B. Aubert et al.	(BABAR Collab.)
B. Aubert et al.	(BABAR Collab.)
B. Aubert et al.	(BABAR Collab.)
B. Aubert et al.	(DELPHI Collab.)
J. Abdallah et al.	(CLEO Collab.)
N.E. Adam et al.	(BELLE Collab.)
K. Abe et al.	(BELLE Collab.)
K. Abe et al.	(CLEO Collab.)
R. Briere et al.	(OPAPL Collab.)
P. Abreu et al.	(CLEO Collab.)
G. Abbiendi et al.	(BCIP, CERN)
J. Bartelt et al.	(OPAL Collab.)
I. Caprini, L. Lellouch, M. Neubert	(CLEO Collab.)
K. Ackerstaff et al.	(ALEPH Collab.)
M. Athanas et al.	(DELPHI Collab.)
D. Buskulic et al.	(CLEO Collab.)
P. Abreu et al.	(ALEPH Collab.)
B.C. Barish et al.	
D. Buskulic et al.	

