$$I(J^{P}) = \frac{1}{2}(\frac{5}{2}^{-})$$
 Status: ***

was *N*(2200)

Before our 2012 *Review*, this state appeared in our Listings as the N(2200).

N(2060) POLE POSITION

REAL PART VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
2020 to 2130 (≈ 2070) OUR ESTI				
$\begin{array}{l} 2030\pm15\\ 2119\pm11\pm1\\ 2100\pm60\\ \bullet \ \bullet \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	SOKHOYAN	15A	DPWA	Multichannel
	¹ SVARC	14	L+P	$\pi N \rightarrow \pi N$
	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
	data for averages	, fits,	limits, e	tc. • • •
2010	HUNT	19	DPWA	Multichannel
2040 \pm 15	ANISOVICH	12A	DPWA	Multichannel
2144 \pm 31	BATINIC	10	DPWA	$\pi N \rightarrow N \pi, N \eta$

 $^{1}\,\textsc{Fit}$ to the amplitudes of HOEHLER 79.

-2×IMAGINARY PART

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT			
350 to 430 (\approx 400) OUR ESTIMATE							
400±35	SOKHOYAN	15A	DPWA	Multichannel			
$370 \pm 20 \pm 5$	¹ SVARC	14	L+P	$\pi N \rightarrow \pi N$			
360±80	CUTKOSKY 80		IPWA	$\pi N \rightarrow \pi N$			
$\bullet~\bullet~\bullet$ We do not use the following	data for averages	, fits,	limits, e	tc. ● ● ●			
395	HUNT	19	DPWA	Multichannel			
390 ± 25	ANISOVICH	12A	DPWA	Multichannel			
438±13	BATINIC	10	DPWA	$\pi N \rightarrow N \pi$, $N \eta$			
1 Fit to the amplitudes of HOEHLER 79.							

N(2060) ELASTIC POLE RESIDUE

MODULUS r				
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
15 to 30 (\approx 20) OUR ESTIMATE				
25± 8	SOKHOYAN	15A	DPWA	Multichannel
$19\pm$ 1 ± 1	¹ SVARC	14	L+P	$\pi N \rightarrow \pi N$
20±10	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
$\bullet~\bullet~\bullet$ We do not use the following	data for averages	, fits,	limits, e	tc. ● ● ●
19± 5	ANISOVICH	12A	DPWA	Multichannel
26	BATINIC	10	DPWA	$\pi N \rightarrow N \pi, N \eta$
1 Fit to the amplitudes of HOEH	LER 79.			

https://pdg.lbl.gov

PHASE θ							
VALUE (°)	DOCUMENT ID		TECN	COMMENT			
-130 to -90 (≈ - 110) OUR ESTIMATE							
-130 ± 20	SOKHOYAN	15A	DPWA	Multichannel			
$-$ 94 \pm 5 \pm 1	¹ SVARC	14	L+P	$\pi N \rightarrow \pi N$			
-90 ± 50	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$			
\bullet \bullet \bullet We do not use the following	data for averages	, fits,	limits, e	tc. ● ● ●			
-125 ± 20	ANISOVICH	12A	DPWA	Multichannel			
- 71	BATINIC	10	DPWA	$\pi N ightarrow N \pi$, $N \eta$			
1 Fit to the amplitudes of HOEHLER 79.							

N(2060) INELASTIC POLE RESIDUE

The "normalized residue" is the residue divided by $\Gamma_{pole}/2.$

Normalized	residue in $N\pi \rightarrow$	$N(2060) \rightarrow N\eta$	1		
MODULUS	PHASE (°)	DOCUMENT ID		TECN	COMMENT
0.05 ± 0.03	40 ± 25	ANISOVICH	12A	DPWA	Multichannel
Normalized	residue in $N\pi ightarrow$	$N(2060) \rightarrow \Lambda K$			
MODULUS		DOCUMENT ID		TECN	COMMENT
0.01 ± 0.005		ANISOVICH	12A	DPWA	Multichannel
Normalized	residue in $N\pi ightarrow$	$N(2060) \rightarrow \Sigma P$	<		
MODULUS	PHASE (°)	DOCUMENT ID		TECN	COMMENT
0.04 ± 0.02	-70 ± 30	ANISOVICH	12A	DPWA	Multichannel
Normalized	residue in $N\pi ightarrow$	$N(2060) \rightarrow \Delta(2)$	1232))π, <i>D</i> -v	vave
MODULUS	PHASE (°)	DOCUMENT ID		TECN	COMMENT
0.06 ± 0.03	-90 ± 40	SOKHOYAN	15A	DPWA	Multichannel
Normalized	residue in $N\pi ightarrow$	$N(2060) \rightarrow N\sigma$	r		
MODULUS	PHASE (°)	DOCUMENT ID		TECN	COMMENT
0.12 ± 0.06	80 ± 40	SOKHOYAN	15A	DPWA	Multichannel
Normalized	residue in $N\pi ightarrow$	$N(2060) \rightarrow N(2)$	1440)	π	
MODULUS	PHASE (°)	DOCUMENT ID	-	TECN	COMMENT
0.17 ± 0.09	-60 ± 35	SOKHOYAN	15A	DPWA	Multichannel
Normalized	residue in $N\pi ightarrow$	$N(2060) \rightarrow N(2)$	1520))π, <i>P</i> -w	ave
MODULUS	PHASE (°)	DOCUMENT ID		TECN	COMMENT
0.14 ± 0.06	-45 ± 15	SOKHOYAN	15A	DPWA	Multichannel

N(2060) BREIT-WIGNER MASS

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
2030 to 2200 (≈ 2100) OUR EST				
2111 ± 17	¹ HUNT	19	DPWA	Multichannel
2045 ± 15	SOKHOYAN	15A	DPWA	Multichannel
2180 ± 80	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
2228 ± 30	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
https://pdg.lbl.gov	Page 2		Creat	ed: 5/31/2024 10:12

 \bullet \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet

2060 ± 15	ANISOVICH	12A	DPWA	Multichannel
2116 ± 21	¹ SHRESTHA	12A	DPWA	Multichannel
2217±27	BATINIC	10	DPWA	$\pi N \rightarrow N \pi, N \eta$

¹ Statistical error only.

N(2060) BREIT-WIGNER WIDTH

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
300 to 450 (\approx 400) OUR ESTIMA				
499± 70	¹ HUNT	19	DPWA	Multichannel
420± 30	SOKHOYAN	15A	DPWA	Multichannel
$400\!\pm\!100$	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
$310\pm$ 50	HOEHLER 79 I		IPWA	$\pi N \rightarrow \pi N$
$\bullet~\bullet~\bullet$ We do not use the following	data for averages	, fits,	limits, e	tc. • • •
375± 25	ANISOVICH	12A	DPWA	Multichannel
307 ± 112	¹ SHRESTHA	12A	DPWA	Multichannel
481± 17	BATINIC	10	DPWA	$\pi {\it N} ightarrow {\it N} \pi$, ${\it N} \eta$
1 Statistical error only.				

_	Mode	Fraction (Γ_i/Γ)
Γ_1	$N\pi$	7–12 %
Γ2	$N\eta$	2–38 %
Γ3	$N\omega$	1–7 %
Γ4	ΛΚ	10–20 %
Γ ₅	ΣΚ	1–5 %
Г ₆	$N\pi\pi$	12-52 %
Γ ₇	$arDelta(1232)\pi$, D -wave	4–10 %
Г ₈	N ho	5–33 %
Г9	N $ ho$, S=1/2, P-wave	<10 %
Γ ₁₀	N $ ho$, S=3/2 , D-wave	5–23 %
Γ_{11}	$N\sigma$	3–9 %
Γ_{12}	$N(1440)\pi$	4–14 %
Γ ₁₃	$N(1520)\pi$, P -wave	9–21 %
Γ_{14}	$N(1680)\pi$, S -wave	8–22 %
Γ ₁₅	ΛK*(892)	0.3–1.3 %
Γ ₁₆	$p\gamma$	0.03–0.19 %
Γ ₁₇	$p\gamma$, helicity ${=}1/2$	0.02–0.08 %
Γ ₁₈	$p\gamma$, helicity $\!=\!\!3/2$	0.01–0.10 %
Γ ₁₉	$n\gamma$	0.003–0.07 %
Γ ₂₀	$n\gamma$, helicity ${=}1/2$	0.001–0.02 %
Γ ₂₁	$n\gamma$, helicity=3/2	0.002–0.05 %

N(2060) DECAY MODES

https://pdg.lbl.gov

N(2060) BRANCHING RATIOS

$\Gamma(N\pi)/\Gamma_{\rm total}$					Γ_1/Γ
VALUE (%)	DOCUMENT ID		TECN	COMMENT	-
7 to 12 (≈ 10) OUR ESTIMATE					
5.3 ± 1.4	¹ HUNT	19	DPWA	Multichannel	
11 ± 2	SOKHOYAN	15A	DPWA	Multichannel	
10 ±3	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$	
7 ±2	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$	
• • • We do not use the following	data for averages	s, fits,	limits, e	etc. • • •	
8 ±2	ANISOVICH	12A	DPWA	Multichannel	
9 ±2	¹ SHRESTHA	12A	DPWA	Multichannel	
13 ±4	BATINIC	10	DPWA	$\pi N \rightarrow N \pi, N \eta$	
¹ Statistical error only.					
$\Gamma(N\eta)/\Gamma_{total}$					Γ_2/Γ
VALUE (%)	DOCUMENT ID		TECN	COMMENT	
2–38 % OUR ESTIMATE					
6 ±2	MUELLER	20	DPWA	Multichannel	
30 ±8	¹ HUNT	19	DPWA	Multichannel	
4 ±2	ANISOVICH	12A	DPWA	Multichannel	
• • • We do not use the following	data for averages	s, fits,	limits, e	etc. • • •	
< 1	¹ SHRESTHA	12A	DPWA	Multichannel	
0.2 ± 1.0	BATINIC	10	DPWA	$\pi N \rightarrow N \pi$, $N \eta$	
¹ Statistical error only.					
$\Gamma(N_{\ell})/\Gamma_{\ell}$					Γ_/Γ
			TECN	COMMENT	13/1
VALUE (%)	DOCUMENT ID	1.0	TECN		
4 ± 3	DENISENKO	16	DPWA	Multichannel	
$\Gamma(\Lambda K)/\Gamma$					Γ./Γ
			TECN	COMMENT	• 4/ •
	DOCUMENT ID		TECN	COMMENT	
	1 цимт	10		Multichannel	
	HONT	19	DIVA	Wultichanner	
- Statistical error only.					
$\Gamma(\Sigma K)/\Gamma_{\text{total}}$					Γ5/Γ
VALUE (%)	DOCUMENT ID		TECN	COMMENT	57
3+2		124		Multichannel	
3-2	ANISOVICI	124	DIVIA	Wuttenamer	
$\Gamma(\Delta(1232)\pi, D\text{-wave})/\Gamma_{\text{total}}$					Γ ₇ /Γ
VALUE (%)	DOCUMENT ID		TECN	COMMENT	• /
4–10 % OUR ESTIMATE					
15 ± 6	¹ HUNT	19	DPWA	Multichannel	
7± 3	SOKHOYAN	15A	DPWA	Multichannel	
$\bullet \bullet \bullet$ We do not use the following \bullet	data for averages	s, fits,	limits, e	etc. • • •	
40+13	¹ SHRESTHA	124	DPW/Δ	Multichannel	
	STILLSTIN	147			
- Statistical error only.					
			C		10.10
https://pdg.lbl.gov	Page 4		Creat	ed: 5/31/2024	10:12

$\Gamma(N\rho, S=1/2, P-wave)/\Gamma_{total}$	l				٦/و٦	
VALUE (%)	DOCUMENT ID		TECN	COMMENT		
<10 % OUR ESTIMATE	¹ HUNT 19		DPWA	Multichannel		
• • We do not use the following	data for average	s, fits,	limits, e	etc. • • •		
21 ± 15	¹ SHRESTHA	12A	DPWA	Multichannel		
1 Statistical error only.						
$\Gamma(N\rho, S=3/2, D-wave)/\Gamma_{total}$						
VALUE (%)	DOCUMENT ID		TECN	COMMENT		
5–23 % OUR ESTIMATE 14±9	1 HUNT	19	DPWA	Multichannel		
¹ Statistical error only.						
$\Gamma(N\sigma)/\Gamma_{\text{total}}$					Γ_{11}/Γ	
VALUE (%)	DOCUMENT ID		TECN	COMMENT		
6 ± 3	SOKHOYAN	15A	DPWA	Multichannel		
$\Gamma(N(1440)\pi)/\Gamma_{total}$					Γ ₁₂ /Γ	
VALUE (%)	DOCUMENT ID		TECN	COMMENT		
9 ± 5	SOKHOYAN	15A	DPWA	Multichannel		
$\Gamma(N(1520)\pi, P\text{-wave})/\Gamma_{total}$					Г ₁₃ /Г	
VALUE (%)	DOCUMENT ID		TECN	COMMENT		
15 ± 6	SOKHOYAN	15A	DPWA	Multichannel		
$\Gamma(N(1680)\pi, S$ -wave)/ Γ_{total}					Г ₁₄ /Г	
VALUE (%)	DOCUMENT ID		TECN	COMMENT		
15 ± 7	SOKHOYAN	15A	DPWA	Multichannel		
$\Gamma(\Lambda K^*(892))/\Gamma_{\text{total}}$	DOCUMENT ID		TECN	COMMENT	Г ₁₅ /Г	
0 3_1 3 % OUR ESTIMATE	DUCUMENT ID		IECN			
0.8 ± 0.5	ANISOVICH	17 B	DPWA	Multichannel		

N(2060) PHOTON DECAY AMPLITUDES AT THE POLE

$N(2060) \rightarrow p\gamma$,	helicity-1/2 a	mpli	tude A _{1/2}				
MODULUS (GeV $^{-1/2}$)	PHASE (°)		DOCUMENT ID		TECN	COMMENT	
0.064 ± 0.010	12 ± 8		SOKHOYAN	15a	DPWA	Multichannel	
$N(2060) ightarrow p\gamma$,	helicity-3/2 a	mpli	itude A _{3/2}				
MODULUS (GeV ^{-1/2})	PHASE (°)		DOCUMENT ID		TECN	COMMENT	
0.060 ± 0.020	13 ± 10		SOKHOYAN	15A	DPWA	Multichannel	
$N(2060) ightarrow n\gamma$,	helicity-1/2 a	mpli	tude A _{1/2}				
MODULUS (GeV $^{-1/2}$)	<i>PHASE (</i> [◦])		DOCUMENT ID		TECN	COMMENT	
0.052 ± 0.025	-5 ± 20		ANISOVICH	17E	DPWA	Multichannel	
https://pdg.lbl.gc	v	Pag	ge 5	Cre	eated: !	5/31/2024 10:12	

$N(2060) \rightarrow n\gamma$, helicity-3/2 amplitude A_{3/2}

MODULUS (GeV $^{-1/2}$)	PHASE (°)	DOCUMENT ID		TECN	COMMENT
0.012 ± 0.007	-40 ± 35	ANISOVICH	17E	DPWA	Multichannel

N(2060) BREIT-WIGNER PHOTON DECAY AMPLITUDES

$N(2060) \rightarrow p\gamma$, helicity-1/2 amplitude A_{1/2}

VALUE (GeV $^{-1/2}$)	DOCUMENT ID		TECN	COMMENT
-0.019 ± 0.005	¹ HUNT	19	DPWA	Multichannel
0.062 ± 0.010	SOKHOYAN	15A	DPWA	Multichannel
$\bullet~\bullet~$ We do not use the followi	ng data for average	s, fits,	limits, e	tc. ● ● ●
0.018 ± 0.004	¹ SHRESTHA	12A	DPWA	Multichannel
1 Statistical annual and				

¹ Statistical error only.

$N(2060) \rightarrow p\gamma$, helicity-3/2 amplitude A_{3/2}

VALUE (GeV $^{-1/2}$)	DOCUMENT ID		TECN	COMMENT
0.039±0.005	¹ HUNT	19	DPWA	Multichannel
0.062 ± 0.020	SOKHOYAN	15A	DPWA	Multichannel
$\bullet \bullet \bullet$ We do not use the following	ng data for average	s, fits,	limits, e	tc. ● ● ●
0.010 ± 0.004	¹ SHRESTHA	12A	DPWA	Multichannel
¹ Statistical error only.				

$N(2060) \rightarrow n\gamma$, helicity-1/2 amplitude A_{1/2}

$VALUE$ (GeV $^{-1/2}$)	DOCUMENT ID		TECN	COMMENT	
0.069 ± 0.017	¹ HUNT	19	DPWA	Multichannel	
0.052 ± 0.024	ANISOVICH	17E	DPWA	Multichannel	
\bullet \bullet \bullet We do not use the follow	ving data for average	s, fits,	limits, e	tc. • • •	
0.025 ± 0.011	ANISOVICH	13 B	DPWA	Multichannel	
-0.012 ± 0.017	¹ SHRESTHA	12A	DPWA	Multichannel	

¹ Statistical error only.

$N(2060) \rightarrow n\gamma$, helicity-3/2 amplitude A_{3/2}

<u>VALUE (GeV$^{-1/2}$)</u>	DOCUMENT ID		TECN	COMMENT	
-0.023 ± 0.020	¹ HUNT	19	DPWA	Multichannel	
0.012 ± 0.007	ANISOVICH	17E	DPWA	Multichannel	
\bullet \bullet \bullet We do not use the follow	ing data for average	s, fits,	limits, e	tc. • • •	
-0.037 ± 0.017	ANISOVICH	13 B	DPWA	Multichannel	
-0.023 ± 0.023	¹ SHRESTHA	12A	DPWA	Multichannel	
-					

¹ Statistical error only.

N(2060) REFERENCES

J. Mueller *et al.* B.C. Hunt, D.M. Manley A.V. Anisovich *et al.* A.V. Anisovich *et al.*

I. Denisenko et al.

V. Sokhoyan et al.

MUELLER	20	PL B803 135323
HUNT	19	PR C99 055205
ANISOVICH	17B	PL B771 142
ANISOVICH	17E	PR C96 055202
DENISENKO	16	PL B755 97
SOKHOYAN	15A	EPJ A51 95

https://pdg.lbl.gov

Page 6

Created: 5/31/2024 10:12

(CBELSA/TAPS Collab.)

(BONN, PNPI, JLAB+)

(CBELSA/TAPS Collab.)

SVARC ANISOVICH	14 13B	PR C89 045205 EPJ A49 67	A. Svarc <i>et al.</i> A.V. Anisovich <i>et al.</i>	(RBI Zagreb, UNI Tuzla)
ANISOVICH	12A	EPJ A48 15	A.V. Anisovich <i>et al.</i>	(BONN, PNPI)
SHRESTHA	12A	PR C86 055203	M. Shrestha, D.M. Manley	(KSU)
BATINIC	10	PR C82 038203	M. Batinic <i>et al.</i>	(ŻAGR)
CUTKOSKY	80	Toronto Conf. 19	R.E. Cutkosky <i>et al.</i>	(CMÙ, LBL) IJP
Also		PR D20 2839	R.E. Cutkosky et al.	(CMU, LBL)
HOEHLER	79	PDAT 12-1	G. Hohler <i>et al.</i>	(KARLT) IJP
Also		Toronto Conf. 3	R. Koch	(KARLT) IJP

Citation: S. Navas et al. (Particle Data Group), Phys. Rev. D ${\bf 110},\,030001$ (2024)