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21.1 General Relativity
Einstein’s theory of General Relativity (GR), the current “standard” theory of gravitation,

describes gravity as a universal deformation of the Minkowski metric:

gµν(xλ) = ηµν + hµν(xλ) , where ηµν = diag(−1,+1,+1,+1) . (21.1)

GR is classically defined by two postulates, embodied in the total action defining the theory:

Stot[gµν , ψ,Aµ, H] = c−1
∫
d4x(LEin + LSM) . (21.2)

The first postulate that states that the Lagrangian density describing the propagation and self-
interaction of the gravitational field is

LEin[gαβ] = c4

16πG
√
ggµνRµν(gαβ) , (21.3)

where G denotes Newton’s constant, g = −det(gµν), gµν is the matrix inverse of gµν , and where
the Ricci tensor Rµν ≡ Rαµαν is the only independent trace of the curvature tensor

Rαµβν = ∂βΓ
α
µν − ∂νΓαµβ + ΓασβΓ

σ
µν − ΓασνΓ σµβ , (21.4)

Γ λµν = 1
2g

λσ(∂µgνσ + ∂νgµσ − ∂σgµν) . (21.5)

The second postulate states that gµν (and its associated connection) couples universally, and min-
imally, to all the bosonic (respectively fermionic) fields of the Standard Model by replacing ev-
erywhere the Minkowski metric ηµν (respectively the flat Minkowski connection). Schematically
(suppressing matrix indices and labels for the various gauge fields and fermions and for the Higgs
doublet),

LSM[ψ,Aµ, H, gµν ] = −1
4
∑√

ggµαgνβF aµνF
a
αβ −

∑√
g ψ γµ(Dµ + 1

4ωijµγ
ij)ψ

− 1
2
√
ggµνDµHDνH −

√
g V (H)−

∑
λ
√
g ψHψ .

(21.6)

Here F aµν = ∂µA
a
ν − ∂νAaµ + gAf

a
bcA

b
µA

c
ν and the (representation-dependent) gauge-field covariant

derivative Dµ = ∂µ + gAA
a
µT

rep
a are defined as in Special Relativity, while the derivative of spin-

1
2 fermions also includes a coupling to the gravitational “spin-connection” ωijµ = −ωjiµ, via its
contraction with γij = 1

2(γiγj − γjγi), where i, j = 0, 1, 2, 3 and γi = eiµγ
µ are usual (numerical)

Dirac matrices satisfying γiγj + γjγi = 2ηij . The connection components ωijµ are defined in
terms of the local orthonormal frame (vierbein) eiµ (such that gµν = ηije

i
µe
j
ν) used to describe

the components of the various fermions ψ, and of its inverse eiµ (such that eiµejµ = δji ), by
ωijµ = 1

2

(
Ci[jk] + Cj[ki] − Ck[ij]

)
ekµ where Ci[jk] = ηisC

s
[jk], with Ci[jk] ≡

(
∂µe

i
ν − ∂νeiµ

)
ej
µek

ν .
From the total action follow Einstein’s field equations,

Rµν − 1
2Rgµν = 8πG

c4 Tµν . (21.7)

Here R = gµνRµν is the scalar curvature, and Tµν ≡ gµαgνβTαβ where Tµν = (2/√g)δLSM/δgµν is
the (symmetric) energy-momentum tensor of the Standard Model matter. The theory is invariant
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2 21. Experimental Tests of Gravitational Theory

under arbitrary coordinate transformations: x′µ = fµ(xν) (as well as under arbitrary local SO(3,1)
rotations of the vierbein, e′iµ = Λij(x)e′jµ). To solve the field equations Eq. (21.7), one needs to
fix the coordinate gauge freedom, e.g., the “harmonic gauge” (which is the analogue of the Lorenz
gauge, ∂µAµ = 0, in electromagnetism) corresponds to imposing the condition ∂ν(√ggµν) = 0.

In this Review, we only consider the classical limit of gravitation (i.e. classical matter and
classical gravity). Quantum gravitational effects are expected (when considered at low energy) to
correct the classical action Eq. (21.2) by additional terms involving quadratic and higher powers of
the curvature tensor. This suggests that the validity of classical gravity extends (at most) down to
length scales of order the Planck length LP =

√
~G/c3 ' 1.62× 10−33 cm, i.e., up to energy scales

of order the Planck energy EP =
√
~c5/G ' 1.22 × 1019 GeV. Considering quantum matter in a

classical gravitational background also poses interesting challenges, notably the possibility that the
zero-point fluctuations of the matter fields generate a nonvanishing vacuum energy density ρvac,
corresponding to a term −√g ρvac in LSM [1]. This is equivalent to adding a “cosmological constant”
term +Λ gµν on the left-hand side of Einstein’s equations, Eq. (21.7), with Λ = 8πGρvac/c

4. Recent
cosmological observations (see the following Reviews) suggest a positive value of Λ corresponding
to ρvac ≈ (2.3× 10−3eV)4. Such a small value has a negligible effect on the non-cosmological tests
discussed below.

21.2 Key features and predictions of GR
The definition of GR recalled above makes predictions both about the coupling of gravity to

matter, and about the structure of the gravitational field beyond its previously known Newtonian
aspects.

21.2.1 Equivalence Principle
First, the universal nature of the coupling between gµν and the Standard Model matter pos-

tulated in Eq. (21.6) entails many observable consequences that go under the generic name of
“Equivalence Principle”.

A first aspect of the Equivalence Principle is that the outcome of a local non-gravitational
experiment, referred to local standards, should not depend on where, when, and in which locally
inertial frame, the experiment is performed. This means, for instance, that local experiments should
neither feel the cosmological evolution of the Universe (constancy of the “constants”), nor exhibit
preferred directions in spacetime (isotropy of space, local Lorentz invariance).

A second aspect of the Equivalence Principle is that the kinetic terms, gµν∂µφ∂νφ or ψγieiµ∂µψ,
of all the fields of Nature (including the gravitational field itself) are universally coupled to the same
curved spacetime metric gµν(x) = ηije

i
µe
j
ν . This implies in particular that all massless fields should

propagate with the same speed.
A third aspect of the Equivalence Principle is that two (electrically neutral) test bodies dropped

at the same location and with the same velocity in an external gravitational field should fall in
the same way, independently of their masses and compositions (“universality of free fall” or “Weak
Equivalence Principle”). In addition, the study (using the nonlinear structure of GR) of the motion,
in an external gravitational field, of bodies having a non-negligible, or even strong, self-gravity (such
as planets, neutron stars, or black holes) has shown that the latter property of free-fall universality
holds equally well for self-gravitating bodies (“Strong Equivalence Principle”).

A last aspect of the Equivalence Principle concerns various universality features of the gravita-
tional redshift of clock rates. GR predicts that, when intercomparing them by means of electromag-
netic signals, two (non gravity-based) clocks located along two different spacetime worldlines should
exhibit a universal difference in clock rate that depends on their worldlines, but that is independent
of their nature and constitution. For instance, two clocks located at two different positions in a
static external Newtonian potential U(x) =

∑
Gm/r should exhibit, when intercompared by elec-
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3 21. Experimental Tests of Gravitational Theory

tromagnetic signals, the difference in clock rate, τ1/τ2 = ν2/ν1 = 1 + [U(x1)−U(x2)]/c2 +O(1/c4),
(“universal gravitational redshift of clock rates”). Similarly, the comparison of atomic-transition
frequencies when observing on Earth a transition that took place on a far-away galaxy should
involve (at lowest order in cosmological perturbations) the universal cosmological redshift factor
1 + z = a(treception)/a(temission) between the Friedmann scale factors a(t) (see below).
21.2.2 Quasi-stationary, weak-field (post-Newtonian) gravity

When applied to quasi-stationary, weak-field gravitational fields, Einstein equations, Eq. (21.7),
entail a spacetime structure which predicts deviations from Newtonian gravity of the first post-
Newtonian (1PN) order, i.e., fractionally smaller than Newtonian effects by a factor O(v2/c2) ∼
O(GM/(c2r)). The 1PN-accurate solution of Eq. (21.7) reads (in harmonic gauge)

g00 = −1 + 2
c2V −

2
c4V

2 +O

( 1
c6

)
,

g0i = − 4
c3Vi +O

( 1
c5

)
,

gij = δij

[
1 + 2

c2V

]
+O

( 1
c4

)
, (21.8)

where x0 = ct, i, j = 1, 2, 3, and where the scalar, V , and vector, Vi, (retarded) potentials are
defined in terms of the sources σ = T 00+T ii

c2 , σi = T 0i

c by

V = �−1
ret [−4πGσ] ; Vi = �−1

ret [−4πGσi] . (21.9)

In GR the gravitational interaction ofN moving point masses (labeled by A = 1, . . . , N) is described
by a reduced (classical) action that admits a diagrammatic expansion:

Sreduced = Sfree + Stree−level + Sone−loop + · · · (21.10)

where the free (special-relativistic) action reads

Sfree = −
∑
A

∫
mAc

√
−ηµνdxµAdxνA

= −
∑
A

∫
dtmAc

2
√

1− v2
A/c

2 , (21.11)

while the tree-level (one-graviton-exchange) interaction term reads

Stree−level = −8πG
c4

∫
d4xTµν�−1(Tµν − 1

2Tηµν) =
∫
dtL(2) . (21.12)

Corresponding to the 1PN-accurate metric of Eq. (21.8), the 1PN-accurate expansion of the latter
tree-level, two-body interaction Lagrangian L(2) reads (with rAB ≡ |xA − xB|, nAB ≡ (xA −
xB)/rAB)

L(2) = 1
2

∑
A 6=B

GmAmB

rAB

[
1 + 3

2c2 (v2
A + v2

B)− 7
2c2 (vA · vB)− 1

2c2 (nAB · vA)(nAB · vB) +O

( 1
c4

)]
(21.13)

The two-body interactions, Eq. (21.13), exhibit v2/c2 corrections to Newton’s 1/r potential induced
by spin-2 exchange (“gravito-magnetism”). Consistency at the 1PN level, v2/c2 ∼ Gm/rc2, requires
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4 21. Experimental Tests of Gravitational Theory

that one also considers the three-body interactions contained in the one-loop contribution Sone−loop,
corresponding to terms induced by some of the three-graviton vertices and other non-linearities
(terms O(h2) and O(hT ) in Eq. (21.15) below), i.e., to the O(V 2) term in Eq. (21.8):

L(3) = −1
2

∑
B 6=A 6=C

G2mAmBmC

rAB rAC c2 +O

( 1
c4

)
. (21.14)

21.2.3 Gravitational Waves in GR
The linearized approximation to Einstein’s field equations, Eq. (21.7), in harmonic gauge

∂ν(hµν − 1
2hηµν) = 0 (with h ≡ ηµνhµν), reads

�hµν = −16πG
c4 (Tµν − 1

2Tηµν) +O(h2) +O(hT ) . (21.15)

Outside of any source (i.e., when Tµν = 0), this yields �hµν = 0, with ∂ν(hµν − 1
2hηµν) = 0.

The generic linearized solution (modulo the diffeomorphism freedom) of the latter vacuum Einstein
equations can be written as (with k2 = k · k = ηµνk

µkν , k · x = kµx
µ)

hµν(x) =
∫
d4kδ(k2)εµν(k)eik·x , (21.16)

where the polarization tensor εµν(k) must be transverse (εµνkν = 0) and traceless (ηµνεµν = 0).
In addition, εµν(k) can be freely submitted to the gauge freedom ε′µν = εµν + ξµkν + ξνkµ. This
implies that gravitational waves (GW) propagate with the speed of light, and (like electromagnetic
waves) have only two independent polarizations. In a frame where, say, kµ = (ck, 0, 0, k), the two
independent linear polarization tensors can be taken to have components only in the transverse
1-2 plane, of the following form: ε+11 = −ε+22 = ε+, with ε+12 = ε+21 = 0; or ε×12 = +ε×21 = ε×, with
ε×11 = ε×22 = 0. Under a little-group rotation of angle θ in the 1-2 plane, the two circular polarization
amplitudes ε(±) = ε+ ∓ i ε× vary as ε′(±) = e±2iθε(±), thereby characterizing the helicity-2 nature
of GWs.

When solving the inhomogeneous equation Eq. (21.15), taking into account the nonlinear con-
tributions O(h2) + O(hT ), one finds that, to lowest order, the GW amplitude emitted at large
distances by a matter distribution is given by the following “quadrupole formula”

hTT
ij (T,X) ≈ 2G

c4 P
TT
ijab(N)Q̈ab(T −R/c)

R
, (21.17)

where Qij(t) =
∫
d3xσ(t,x)(xixj − 1

3δijx
2) (a, b, i, j = 1, 2, 3) is the quadrupole moment of the

source, R = |X| the distance to the source, N = X/R the unit direction from the source to the
observer, and PTT

ijab(N) = (δia − NiNa)(δjb − NjNb) − 1
2(δij − NiNj)(δab − NaNb) the transverse-

traceless projector onto the 2-plane orthogonal to N.

21.2.4 Strong gravitational fields: neutron stars and black holes
The nonlinear structure of Einstein’s equations implies many predictions for strong gravitational

fields that distinguish GR from Newtonian gravity. For instance, in Newtonian gravity, there is no
upper limit to the dimensionless gravitational potential U/c2, with U satisfying Poisson’s equation
∆U = −4πGρ, where ρ denotes the Newtonian mass density. By contrast, in GR, the dimensionless
surface gravitational potential GM/(c2R) of a spherically symmetric (perfect fluid) body cannot
exceed 4

9 [2].
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5 21. Experimental Tests of Gravitational Theory

Given an equation of state p = f(ρ) modeling the interior of a (cold) spherically symmetric body
(say a non-rotating neutron star), Einstein equations, Eq. (21.7), with Tµν = (ρ+ p)uµuν + pgµν ,
and

gµνdx
µdxν = −e2Φ(r)c2dt2 + dr2

1− 2GM(r)
c2r

+ r2
(
dθ2 + sin2 θdφ2

)
, (21.18)

yield the following Tolman-Oppenheimer-Volkoff radial equations:

p′(r) = −G(ρ+ p/c2)(M(r) + 4πr3p/c2)
r2(1− 2GM(r)/(c2r)) ; (21.19)

M ′(r) = 4πr2ρ ; (21.20)

Φ′(r) = G(M(r) + 4πr3p/c2)
r2(1− 2GM(r)/(c2r)) . (21.21)

In the exterior of the star (r ≥ R) , the metric takes the Schwarzschild form

gµνdx
µdxν = −

(
1− 2GM

c2r

)
c2dt2 + dr2

1− 2GM
c2r

+ r2
(
dθ2 + sin2 θdφ2

)
, (21.22)

where M ≡M(R) is the total gravitational mass of the star. GR predicts, for any given p = f(ρ),
several (in principle) observable features of neutron stars, such as: (i) the maximum mass of a neu-
tron star; (ii) the relation between the radius R and the total massM ; (iii) the dimensionless surface
gravitational potential GM/(c2R) (linked to the surface redshift

√
−g00 =

√
1− 2GM

c2R measured by
an observer at infinity); (iv) the moment of inertia; and (v) the Love number (tidal polarizability).
The current uncertainty on the equation of state of a neutron star yields the GR-predicted ap-
proximate range for the maximum mass of non-rotating neutron stars 1.5M� . Mmax . 2.5M�,
and the absolute upper bound Mmax < 3M� [3]. The surface gravitational potential of a typical
neutron star is GM/c2RNS ' 0.17, which is a factor ∼ 108 higher than the surface potential of the
Earth, and a mere factor 3 below the black hole limit GM/c2RBH = 1

2 to be discussed next.
The existence of a maximum mass for a neutron star led Oppenheimer and Snyder [4] to

predict that the end point of stellar evolution for sufficiently heavy stars, after exhaustion of
all thermonuclear sources of energy, will be what are now called “black holes.” The latter are
solutions of Einstein’s equations whose past structure involves a gravitationally collapsing star, but
whose presently observable structure is essentially described (for non-rotating black holes) by the
vacuum Schwarzschild solution Eq. (21.22). It took many years for theoretical (and mathematical)
physicists to understand that the apparent singularity of the Schwarzschild solution at r = 2GM

c2

was a coordinate singularity and that the Schwarzschild spacetime was regular at the “black hole
horizon”, RBH ≡ 2GM

c2 . The rotating analog of the Schwarzschild spacetime is the Kerr black
hole [5].

Black holes are outstanding consequences of GR which enjoy many remarkable properties,
notably: (i) presence of a one-way surface (the horizon) for all waves and particles; (ii) absence
of “hair” (i.e., barring a possible electric charge, their structure is fully described by only two
parameters, total mass,M , and total angular momentum, J ≤ GM2/c); (iii) existence of a spectrum
of damped quasi-normal vibrational modes; and (iv) a behavior under external perturbations similar
to ordinary physical objects satisfying the laws of (dissipative) thermodynamics. Moreover, though
no classical waves or particles can get out of the horizon, black holes are predicted to slowly
evaporate via quantum particle creation.
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6 21. Experimental Tests of Gravitational Theory

21.2.5 Cosmology
To complete our short tour of the main predictions of GR, let us mention that GR offers the

current standard framework for describing the large-scale structure of the Cosmos, from the nearly
homogeneous Big Bang (and its plausible inflationary beginning) to the current inhomogeneous
Universe undergoing an accelerated expansion. The spacetime structure on large (temporal and
spatial) scales is well described by a solution of Einstein’s equations of the form

ds2 = − (1 + 2Φ(t,x)) c2dt2 + 2Wi(t,x)dtdxi + a2(t) ((1− 2Ψ(t,x)) δij + hij(t,x)) dxidxj ,
(21.23)

where, after a suitable gauge-fixing [6], Wi(t,x) is transverse, while hij(t,x) is transverse and
traceless. The source Tµν must involve a certain number of postulated ingredients: an inflaton
field; the matter of the Standard Model; a dark matter component; and a cosmological constant
contribution TµνΛ = −ρvacg

µν , with ρvac ≡ c4Λ/(8πG). The scale factor a(t) of the Friedmann
background metric ds2

0 = −c2dt2 + a2(t)δijdxidxj satisfies the GR-predicted Friedmann equations
(with vanishing spatial curvature k = 0),

H2 ≡
(
ȧ

a

)2
= 8πG

3 ρtot , (21.24)

ä

a
= −4πG

3

(
ρtot + 3

c2 ptot

)
, (21.25)

while the scalar (Φ(t,x),Ψ(t,x)), vector (Wi(t,x)), and tensor (hij(t,x)) inhomogeneous perturba-
tions satisfy some GR-predicted propagation equations (coupled to matter perturbations); see [6]
and the following Reviews. When the cosmic fluid is well approximated by a perfect fluid, Einstein’s
equations predict the following link between the scalar perturbations

Φ(t,x) = Ψ(t,x) . (21.26)

21.3 A roadmap of parametrizations of deviations from GR, and of modified
gravity

As will be discussed below, all currently performed gravitational experiments are compatible
with GR. However, similarly to what is done in discussions of precision electroweak experiments, it is
useful to quantify the significance of precision gravitational experiments by parameterizing possible
deviations from GR. One can distinguish two main approaches to considering, and parameterizing,
deviations from GR: (i) theory-agnostic phenomenological approaches; or, (ii) the study of the
predictions of specific classes of alternative theories of gravity. Both types have led to useful ways
of discussing tests of gravity. Both types also have their limitations. Considering them together
leads to cross-fertilization.
21.3.1 Theory-agnostic phenomenological approaches to parameterizing deviations
from GR

The theory-agnostic phenomenological approach is the oldest, and, arguably, the most robust
one. It essentially consists in starting from specific observable predictions within the considered
standard theory, and of deforming them by introducing some free parameters measuring either
deviations from effects already present within the standard theory, or new effects absent from the
standard theory. A classic example is the periastron advance of Mercury (and the other planets).
When working within Newtonian gravity as a standard theory of gravity, the rate of periastron
advance of Mercury, ω̇, is (when neglecting the quadrupole moment of the Sun) a calculable function
of the masses and semi-major axes of the other planets of the solar system, say ω̇Newton(mi, ai).
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However, ω̇ is also a directly observable quantity, so that one can parameterize the periastron
advance of Mercury by writing

ω̇obs = ω̇Newton(mi, ai) +∆ω̇ . (21.27)

Using other observable data to determine some “observed” values of the mi’s and ai’s, one can then
measure the anomalous periastron precession ∆ω̇ and see whether it is compatible with zero, or
not. As is well-known, Leverrier used such a methodology and, in 1859, measured an anomalous
periastron precession of about ∆ω̇ ' 38 arcsec/century (later re-estimated at 43 arcsec/century),
which was explained in 1915 as a GR prediction. Let us discuss further examples of the use of such
theory-agnostic approaches for discussing deviations from GR.
21.3.2 Parameterized post-Newtonian (PPN) formalism.

When considering the weak-field slow-motion limit appropriate to describing gravitational ex-
periments in the solar system, it has been traditional to parameterize possible (long-range) de-
viations from the GR-predicted 1PN metric by introducing extra dimensionless coefficients in the
various terms of the metric of Eq. (21.8). The minimal version of the parameterized post-Newtonian
(PPN) formalism (essentially due to Eddington) involves only two parameters β and γ, namely

g00 = −1 + 2
c2V −

2β
c4 V

2 +O

( 1
c6

)
, (21.28)

g0i = −2(γ + 1)
c3 Vi +O

( 1
c5

)
, (21.29)

gij = δij

[
1 + 2γ

c2 V

]
+O

( 1
c4

)
, (21.30)

with V and Vi defined by Eq. (21.9), with the same vectorial source σi = T 0i

c , but a modified scalar
source

σPPN = 1
c2

([
1 + (3γ − 2β − 1)V

c2

]
T 00 + γ T ii

)
. (21.31)

In GR, βGR = 1 and γGR = 1, so that deviations from GR are parameterized by β ≡ β − 1
and γ ≡ γ − 1. Richer versions of the PPN formalism (involving up to ten parameters) were
developed in interaction with the study of classes of alternative theories of gravity [7,8]. This led to
parameterizing new types of contributions to the 1PN metric that are absent in the GR framework.

When deriving the 1PN-accurate dynamics of N point masses predicted by the PPN-modified
metric, Eq. (21.28), one finds that the free Lagrangian is not modified (because we are consider-
ing here a Lorentz-invariant subclass of PPN metrics), while there are modifications of both the
two-body Lagrangian, L(2), Eq. (21.13), and the three-body one, L(3), Eq. (21.14). More pre-
cisely, denoting η ≡ 4β − γ, the Newtonian interaction energy term in Eq. (21.13) is modified into
GABmAmB/rAB, with a body-dependent gravitational “constant”

GAB = G[1 + η(Egrav
A /mAc

2 + Egrav
B /mBc

2) +O(1/c4)] , (21.32)

where Egrav
A denotes the gravitational binding energy of body A. In addition, there is the additional

contribution + γ(vA − vB)2/c2 in the brackets on the right-hand side of L(2), Eq. (21.13). As for
the three-body interaction term L(3), Eq. (21.14), it is modified by the overall factor 1 + 2β.

These results show how the introduction of the two minimal PPN deviation parameters β ≡ β−1
and γ ≡ γ−1 suffices to introduce many different observable effects. Some of them (the ones linked
with γ) concern deviations at the linearized (one-graviton-exchange) level (and affect, for instance,
light deflection and time-delay effects), while the deviation parameter β parameterizes effects linked
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8 21. Experimental Tests of Gravitational Theory

to the cubic vertex of Einstein’s gravity (and affects, for instance, periastron precession). Of
particular interest is the fact that Eq. (21.32) shows that the combination η ≡ 4β−γ parameterizes
a violation of the Strong Equivalence Principle, because the gravitational interaction between self-
gravitating bodies is seen to be influenced by the gravitational binding energy of each body [9].
As stated above, this effect is absent in GR (where ηGR = 0). This is an example where the fact
of contrasting GR with some deviations from it gives physical significance to a null effect in GR
(namely the universality of free fall of self-gravitating bodies).

Finally, one can extend the PPN formalism by allowing for a slow, phenomenological time
variation of Newton’s constant:

G(t) = G0

[
1 + Ġ0

G0
(t− t0)

]
. (21.33)

Here, one assumes that there exist units in which the masses, mi, of elementary particles stay
constant, and that G is measured in such units. A possible time variation of G then corresponds
to a possible common variation of the dimensionless couplings Gm2

i /(~c).

21.3.3 Parameterized post-Keplerian (PPK) formalism.
The discovery of pulsars (i.e., rotating neutron stars emitting a beam of radio noise) in grav-

itationally bound orbits [10, 11] has given us our first experimental handle on a regime of rela-
tivistic gravity going significantly beyond the uniformly weak-field, and quasi-stationary regime
of solar-system gravity. Binary pulsars allow us to probe some radiative effects, and also some
strong-gravitational-field effects. In these systems, the finite speed of propagation of the gravi-
tational interaction between the pulsar and its companion generates damping-like terms at order
(v/c)5 in the equations of motion [12]. These damping forces are the local counterparts of the
gravitational radiation emitted at infinity by the system (“gravitational radiation reaction”). They
cause the binary orbit to shrink and its orbital period Pb to decrease. The remarkable stability
of pulsar clocks has allowed one to measure the corresponding very small orbital period decay
Ṗb ≡ dPb/dt ∼ −(v/c)5 ∼ −10−12–10−14 in several binary systems, thereby giving us a direct
experimental handle on the propagation properties of the gravitational field. In addition, the
large surface gravitational potential of a neutron star allows one to probe the quasi-static strong-
gravitational-field regime, as is discussed below.

It is possible to extract phenomenological (theory-independent) tests of gravity from binary
pulsar data by using the parameterized post-Keplerian (PPK) formalism [13]. The basis of this
formalism is the fact that, after correcting for the Earth’s motion around the Sun and for the
dispersion due to propagation in the interstellar plasma, the time of arrival of the Nth pulse tN
can be described by a generic, parameterized “timing formula” [13, 14], whose functional form is
common to the whole class of tensor-scalar gravitation theories:

tN − t0 = F [TN (νp, ν̇p, ν̈p) ; {pK} ; {pPK}] . (21.34)

Here, TN is the pulsar proper time corresponding to the Nth turn given by N/2π = νpTN +
1
2 ν̇pT

2
N + 1

6 ν̈pT
3
N (with νp ≡ 1/Pp the spin frequency of the pulsar, etc.), {pK} = {Pb, T0, e, ω0, x} is

the set of “Keplerian” parameters (notably, orbital period Pb, eccentricity e, periastron longitude ω0
and projected semi-major axis x = a sin i/c), and {pPK} = {k, γtiming, Ṗb, r, s, δθ, ė, ẋ} denotes the
set of (separately measurable) “post-Keplerian” parameters. Most important among these are: the
fractional periastron advance per orbit k ≡ ω̇Pb/2π; a dimensionful time-dilation parameter γtiming;
the orbital period derivative Ṗb; and the “range” and “shape” parameters of the gravitational time
delay caused by the companion, r and s.
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9 21. Experimental Tests of Gravitational Theory

Without assuming any specific theory of gravity, one can phenomenologically analyze the data
from any binary pulsar by least-squares fitting the observed sequence of pulse arrival times to the
timing formula of Eq. (21.34). This fit yields the “measured” values of the parameters {νp, ν̇p, ν̈p},
{pK}, {pPK}. Now, each specific relativistic theory of gravity predicts that, for instance, k, γtiming,
Ṗb, r, and s (to quote parameters that have been successfully measured from some binary pulsar
data) are some theory-dependent functions of the Keplerian parameters and of the (unknown)
masses m1, m2 of the pulsar and its companion. For instance, in GR, one finds (withM ≡ m1 +m2,
n ≡ 2π/Pb),

kGR(m1,m2) =3(1− e2)−1(GMn/c3)2/3 ,

γGR
timing(m1,m2) =en−1(GMn/c3)2/3m2(m1 + 2m2)/M2 ,

ṖGR
b (m1,m2) =− (192π/5)(1− e2)−7/2

(
1 + 73

24 e
2 + 37

96 e
4
)

× (GMn/c3)5/3m1m2/M
2 ,

rGR(m1,m2) =Gm2/c
3 ,

sGR(m1,m2) =nx(GMn/c3)−1/3M/m2 .

(21.35)

In alternative gravity theories each of the functions ktheory(m1,m2), γtheory
timing(m1,m2), Ṗ theory

b (m1,m2),
etc., is modified by quasi-static strong field effects (associated with the self-gravities of the pulsar
and its companion), while the particular function Ṗ theory

b (m1,m2) is further modified by radiative
effects [15–18]. If one measures N > 2 PPK parameters from the data of a specific binary pulsar,
these N measurements determine, for each given theory, N curves (defined by the N equations
ktheory
i (m1,m2) = kobs

i ) in the two-dimensional mass plane (m1,m2). This yields N − 2 tests of the
specified theory, according to whether the N curves (or strips) have one point in common, as they
should.
21.3.4 Parameterized-post-Friedmannian (PPF) formalisms.

We have recalled above that, in GR, the two functions, Φ(t,x), and Ψ(t,x), parameterizing (in
the “longitudinal gauge”) the scalar perturbations of the background Friedmann metric are related
(in absence of anisotropic stresses) by Eq. (21.26). Several authors [19–28] have defined various
types of parameterized-post-Friedmannian (PPF) formalisms involving (generally space and time
dependent) phenomenological parameters. The simplest versions of these formalisms involve two
phenomenological parameters measuring: (i) the ratio between Φ(t,x), and Ψ(t,x), say (using a
parametrization which parallels the usual PPN parametrization)

Ψ(t,x) = γcosmo(t,x)Φ(t,x) ; (21.36)

and (ii) the effective gravitational constant entering the Poisson equation for Φ(t,x), say

∆Φ(t,x) = 4πGΦ(t,x)δρ(t,x) . (21.37)

However, the peculiarities of cosmological observables limit the domain of applicability of such
phenomenological approaches [26] (notably because the strong dependence of cosmological probes
on epochs and scales obliges one to rely on specific parameterizations of the functions γcosmo(t,x)
and GΦ(t,x), e.g., [25, 28]). Approaches based on specific classes of modified-gravity theories
allow for a more complete treatment involving, in principle, all existing cosmological observables:
Big Bang nucleosynthesis, cosmic microwave background, large-scale structure, Hubble diagram,
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10 21. Experimental Tests of Gravitational Theory

weak lensing, etc. Discussing the current cosmological tests using either such PPF formalisms, or
comparisons with the predictions of modified-gravity theories, is beyond the scope of this review.
See [29] for a comprehensive recent discussion. The bottom line is that all present cosmological
data have been found to be compatible with GR (within the Friedmann-Lemaître-based ΛCDM
model). Beyond the quantitative limits on various parameterized theoretical models [29], one should
remember the striking (strong-field-type) qualitative verification of GR embodied in the fact that
relativistic cosmological models give an accurate picture of the Universe over a period during which
the spatial metric has been blown up by a gigantic factor, say (1 + z)2 ∼ 1019 between Big Bang
nucleosynthesis and now.
21.3.5 Various phenomenological tests of GR from gravitational wave (GW) data

The observations by the US-based Laser Interferometer Gravitational-wave Observatory (LIGO),
later joined by the Europe-based Virgo detector, of gravitational-wave (GW) signals [30–34], have
opened up a novel testing ground for relativistic gravity. The first three observing runs (O1, O2,
O3a and O3b) of the LIGO-Virgo collaboration, recently joined by the Japan-based KAGRA detec-
tor (LVK collaboration), have led to the confident detection of 93 GW signals, most of which come
from binary black-hole coalescences. These observations are summarized in three GW transient
catalogs: GWTC-1 [35], GWTC-2 [36] and GWTC-3 [37].

Several approaches have been used to either test consistency with GR, or to look for special
types of possible deviations. Making accurate predictions for GW signals from coalescing black
holes within GR took years of both analytical [38, 39] and numerical [40] work. Some works have
started (both analytically [15, 41–45] and numerically [46–48]) to derive the corresponding pre-
dictions within some modified-gravity theories. Phenomenological approaches are very useful for
parameterizing general, conceivable deviations from GR when analyzing the GW signals emitted
by coalescing black holes or neutron stars.

A first phenomenological, global consistency test simply consists of measuring the noise-weighted
correlation C between each detected strain signal and the corresponding best-fit GR-predicted
waveform. Cobs should be equal to 1, modulo statistical (and/or systematic) errors.

Various other phenomenological tests of the structure of the GR-predicted waveforms emitted by
coalescing compact binaries have been suggested. One general idea [49–51] (dubbed “parameterized
post-Einsteinian formalism” in [52]) is to modify the GR-predicted Fourier-domain value ψ(f) of
the phase of black-hole coalescence GW signals h(f) = A(f)eiψ(f) by introducing GR-deviation
parameters, say

ψ(f) =
∑
i

[
pGR,NS
i (m1,m2)(1 + δp̂i) + pGR,S

i (m1,m2, S1, S2)
]
ui(f). (21.38)

Here, the ui(f)’s define a basis of functions of the GW frequency f , and the superscript NS
refers to the nonspinning contribution, while the superscript S refers to the spinning one. Such a
GR-modification directly applies to the phenomenological representation [53] of ψ(f), and can be
generalized to any waveform model by adding the non-GR phase term

∑
i p

GR,NS
i (m1,m2)δp̂iui(f)

to the corresponding GR-predicted Fourier-domain phase ψ(f) [54]. For instance, the leading-
order (LO), quadrupolar term in the GR phase evolution during the early inspiral corresponds
to u0(f) = f−5/3 and pGR

0 = 3(m1+m2)2

128m1m2
(πG(m1 + m2)/c3)−5/3, while the next-to-leading-order

(NLO) term is a O(v2/c2) correction pGR
2 u2(f) with u2(f) = f−1. In the phenomenological model

[53] these terms (as well as the other inspiral contributions) are cut-off beyond the frequency
G(m1 +m2)f/c3 = 0.018.

Each dimensionless parameter δp̂i introduces a fractional deviation from the corresponding indi-
vidual phasing GR effect having the frequency dependence ui(f), and can, in principle, be extracted
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11 21. Experimental Tests of Gravitational Theory

by fitting the inspiral part of the observed waveform to the deformed template of Eq. (21.38).
However, one must also use this deformed template for simultaneously extracting the values of
m1,m2, S1, and S2. Together with signal-to-noise ratio (SNR) considerations, and parameter-
correlation issues, this limits the applicability of such a test to introducing only one deformation
parameter δp̂i at a time. A particularly meaningful test [49] is to leave undeformed the LO and
NLO terms pGR

0 u0(f) + pGR
2 u2(f) and to vary the third coefficient p3 parameterizing the next,

“GW tail”-related O(v3/c3) correction, with u3(f) = f−2/3. Another well-motivated test [52] is
to introduce a new coefficient δp̂−2, which is absent in GR, and which parameterizes an O((vc )−2)
fractional correction to the LO, quadrupolar term, thereby allowing for a possible dipolar GW flux
(indeed, dipolar GW radiation generally exists in theories containing scalar excitations). As pGR

−2
vanishes, δp̂−2 is added as an absolute deviation, scaled by the LO term pGR

0 .
The coalescence of two black holes, or of a black hole and a neutron star (or of two heavy-enough

neutron stars) leads to the formation of a black hole that is initially formed in a perturbed state.
The relaxation of the latter perturbed black hole into its stationary, equilibrium state leads to the
emission of characteristic (rapidly decaying) ringing GWmodes (a.k.a. quasi-normal modes) [55,56],
whose frequencies and decay times are functions of the mass (Mf ) and spin (Sf ≡ GM2

f af/c) of
the final black hole, say

ωa = (c3/GMf )[2πf̂QNM
a (af )− i/τ̂QNM

a (af )] , (21.39)

where a = 1, 2, . . . labels the various ringing modes, starting from the least-damped one. In prin-
ciple, if the SNR is large enough, one can directly test for the presence of one or several of these
modes in the post-merger signal, and measure both Re(ωa) and Im(ωa) in a theory-independent
way. These phenomenological measurements then lead to null tests of GR, from which one can
extract theoretical information about eventual deviations from GR [57,58].

As recalled above, GR predicts that GWs propagate (in vacuum) at exactly the same speed
as light (i.e., they have the same dispersion law gµνkµkν = 0 in curved spacetime). Deviations
from such a universal, scale-free dispersion law can be phenomenologically parameterized in several
ways. If one phenomenologically assumes that the graviton dispersion law includes a mass term,
say gµνkµkν + m2

g/~2 = 0, or some more general type of frequency-dependent modification, such
changes affect the phasing of the inspiral GW signal and can be directly tested [59]. When one
observes both GWs and electromagnetic waves emitted by the same system, one can also directly
test whether both types of waves propagate in the same way.

Let us now present some examples of theory-dependent discussions of experimental tests based
on considering specific classes of alternative theories. The most conservative deviations from Ein-
stein’s pure spin-2 theory are defined by adding new, bosonic, light or massless, macroscopically
coupled fields.
21.3.6 Gravity tests within classes of tensor-scalar theories of gravity

The possible existence of new gravitational-strength couplings leading to deviations from Ein-
steinian (and Newtonian) gravity has been suggested by many natural extensions of GR, starting
with the classic Kaluza-Klein idea, and continuing up to now with the study of extended super-
gravity theories, and of (super-)string theory. In particular, a recurrent suggestion of such theories
(which dates back to pioneering work by Jordan, and by Fierz [60]) is the existence of a scalar field
ϕ coupled both to the scalar curvature R and to the various F aµν2 gauge-field actions. Such fields
(“dilaton” or “moduli”) generically appear in string theory and are massless at the tree-level, but
could acquire a self-interaction potential V (ϕ) beyond the tree-level.

The exchange of such a dilaton-like field leads to several types of observational deviations from
GR. For experimental limits on the gravitational inverse-square-law (down to the micrometer range)
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see Refs. [61–65]. If the potential V (ϕ) is zero or negligible for the considered range, the coupling
of ϕ to F aµν2 leads to apparent violations of the weak equivalence principle, with rather specific
composition-dependence [66]. Next, when neglecting the fractionally small composition-dependent
effects, such a field approximately couples to the trace of the energy-momentum tensor T = gµνT

µν .
The most general such theory contains (after suitable field redefinitions) two arbitrary functions of
the scalar field, namely the self-interaction potential V (ϕ), and a matter-coupling function a(ϕ):

Ltot[gµν , ϕ, ψ,Aµ, H] = c4

16πG∗
√
g(R(gµν)− 2gµν∂µϕ∂νϕ)

−√gV (ϕ) + LSM[ψ,Aµ, H, g̃µν ] .
(21.40)

Here G∗ is a “bare” Newton constant, and the Standard Model matter is coupled not to the
“Einstein” (pure spin-2) metric gµν , but to the conformally related (“Jordan-Fierz”) metric

g̃µν = exp(2a(ϕ))gµν . (21.41)

The scalar field equation
�gϕ = 4πG

c4

(
−α(ϕ)T + ∂V (ϕ)

∂ϕ

)
, (21.42)

features
α(ϕ) ≡ ∂a(ϕ)/∂ϕ , (21.43)

as the basic (field-dependent) coupling between ϕ and matter [15,67]. The best-known, special case
of these theories is the one-parameter (ω) Jordan-Fierz-Brans-Dicke theory [68], with V (ϕ) = 0
and a(ϕ) = α0ϕ, leading to a field-independent coupling α(ϕ) = α0 (with α0

2 = 1/(2ω+ 3)). More
generally, if we consider the massless theories (V (ϕ) = 0) with arbitrary (non-linear) coupling
function a(ϕ), they modify Einstein’s predictions in the weak-field slow-motion limit appropriate
to describing gravitational experiments in the solar system (1PN approximation) only through
the appearance of exactly the same two “post-Einstein” dimensionless parameters γ = γ − 1 and
β = β − 1 that entered the minimal (Eddington) PPN formalism presented above. However, we
now have the following theoretical expressions relating the latter phenomenological parameters to
the coupling functions entering the tensor-scalar action Eq. (21.40):

γ = −2 α2
0

1 + α2
0

; (21.44)

β = + 1
2

β0α
2
0

(1 + α2
0)2 . (21.45)

Here α0 ≡ α(ϕ0), and β0 ≡ ∂α(ϕ0)/∂ϕ0, with ϕ0 denoting the vacuum expectation value (VEV)
of ϕ around the solar system. In addition, the observable value Gobs of the gravitational constant
is found to be field-dependent and given (at a place where ϕ = ϕ0) by

Gobs = G(ϕ0) ≡ G∗ exp[2a(ϕ0)](1 + α2
0) . (21.46)

This makes it clear that the parameter γ is the basic post-Einstein parameter, which measures
the admixture of an additional field (here a spin-0 field) to the pure spin-2 GR. One also sees
how the parameter β is linked to non-linear effects (here coupling terms β0(ϕ − ϕ0)2T in the
action), and how the Nordtvedt parameter η ≡ 4β − γ is related to the field-dependence of Gobs

(η = (α0/(1 + α2
0))∂ lnG(ϕ0)/∂ϕ0).
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The advantage of a theory-dependent approach, such as Eq. (21.40), over the phenomenological
minimal PPN approach of Eq. (21.28), is that it allows one to consistently predict the observa-
tional deviations from GR in all possible gravity regimes: the quasi-stationary weak-field regime;
the wavelike weak-field regime; the strong-field regime; the cosmological regime, etc. All such obser-
vational deviations can be consistently worked out once one chooses specific forms of the coupling
function a(ϕ), and of V (ϕ). The simple choice of a two-parameter quadratic coupling function, say
a(ϕ) = α0(ϕ− ϕ0) + 1

2β0(ϕ− ϕ0)2, has been found useful for describing many possible observable
deviations from GR.

The observable consequences for binary pulsar observations of the strong-field and radiative
effects linked to the coupling to ϕ have been explicitly worked out in Refs. [15,44] in the case where
ϕ is massless (see Ref. [69] for the case where ϕ is massive). In particular, the strong-field nature
of the pulsar tests is demonstrated by the fact that some tensor-scalar theories can be as close as
desired to GR in the weak-field regime of the solar-system (i.e., γ and β can be as small as desired,
or even exactly zero), while developing (via a “spontaneous scalarization” mechanism) differences
of order unity with GR in binary pulsar experiments [17,18].
21.3.7 Attractor and screening mechanisms in modified gravity

As will follow from the discussion of experimental data below, the comparison between the
predictions of general massless tensor-scalar theories and current data shows that the basic coupling
parameter α0 must be tuned to a small value (especially when allowing for composition-dependent
effects). This raises the issue of the naturalness of such small coupling parameters. It has been
shown in this respect that, in many tensor-scalar theories, there is an attractor mechanism by which
the cosmological evolution naturally drives the VEV ϕ0(t) towards a value for which the coupling
parameter α0 = α(ϕ0) vanishes, thereby making it natural to expect only small deviations from
GR (at least for the weak-field regime) at our current cosmological epoch [70,71].

There are other theoretical mechanisms (generically called “screening mechanisms”) that could
explain why a theory of gravity whose theoretical content significantly differs from that of GR
could naturally pass all the stringent, GR-compatible experimental limits that will be discussed
below. In particular, when considering a self-interacting scalar field (V (ϕ) 6= 0), the interplay
between the two terms on the right-hand side of Eq. (21.42) tends to drive the local VEV ϕ0 of
ϕ to a density-dependent value. In turn, this leads to a corresponding density-dependent effective
mass m0(ϕ0) =

√
4πG∂2V (ϕ0)/∂ϕ2

0 of the ϕ field, and to density-dependent matter couplings [72].
Various choices of the functions V (ϕ) and a(ϕ) can then reduce the ϕ-induced deviations from GR
in dense environments while still allowing for significant deviations in different (e.g., cosmological)
regimes [73–77].

Other screening mechanisms have been invoked, based on an environment dependence mediated
by (first or second) derivatives of a scalar degree of freedom. Roughly speaking, such mechanisms
involve a (possibly effective) scalar degree of freedom ϕ that satisfies a field equation that is more
general than Eq. (21.42) in that the left-hand side, �gϕ, is replaced by a non-linear function of ϕ,
∂ϕ and ∂2ϕ. The presence of non-linear derivative self-interactions of ϕ can weaken the effective
coupling of ϕ to matter. A simple toy-model showing this weakening would be to replace Eq. (21.42)
by an equation of the form

Z(ϕ, ∂ϕ, ∂2ϕ)�gϕ = 4πG
c4

(
−α(ϕ)T + ∂V (ϕ)

∂ϕ

)
. (21.47)

Such an equation is equivalent, at a first level of approximation, to replacing the gravitational
constant G entering Eq. (21.42) by Geff(ϕ0, ∂ϕ0, ∂

2ϕ0) ≡ G/Z0, where Z0 ≡ Z(ϕ0, ∂ϕ0, ∂
2ϕ0). This

has a screening effect if Z0 � 1. Indeed, the replacement G→ Geff diminishes the strength of the
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interaction potential due to ϕ exchange by a factor of 1/Z0. In addition, the range of this interaction
is also affected: m0(ϕ0) =

√
4πG∂2V (ϕ0)/∂ϕ2

0 → m0eff(ϕ0, ∂ϕ0, ∂
2ϕ0) =

√
4πGeff∂2V (ϕ0)/∂ϕ2

0 =
Z
−1/2
0 m0.
Screening mechanisms based on such non-linear derivative self-interactions are often referred to

as being “Vainshtein-like” because a similar mechanism was first invoked in Ref. [78] as a conjectural
way to ensure that the extra degrees of freedom associated with a massive (rather than massless)
graviton become effectively weakly coupled to matter within a large domain around gravitational
sources. Here, one is considering massive deformations of the massless spin-2 metric field of GR
by a very small mass, possibly of cosmological scale: mg ∼ ~H0 ∼ 10−33 eV. The construction
of ghost-free potential terms for a spin-2 field has turned out to be a delicate matter [79]. The
phenomenology of a very-low-mass graviton is still partly uncontrolled, both because of the unknown
extent to which the Vainshtein screening is really active, and because of subtle constraints linked to
an eventual UV completion of the theory beyond the unusually low energy scale where it becomes
strongly coupled:

Λstrong coupling ∼ (MPlanckm
2
0)1/3 ∼ 10−13

(
m0
~H0

)2/3
eV . (21.48)

The search for modified gravity theories incorporating an extra scalar degree of freedom po-
tentially able to yield a Vainshtein-like screening led to writing down the following general class of
tensor-scalar Lagrangian [80,81]:

Ltot[gµν , ϕ, ψ] =G2(ϕ,X)−G3(ϕ,X)�gϕ+G4(ϕ,X)R
+G4X(ϕ,X)[(�gϕ)2 − ϕµνϕµν ]

+G5(ϕ,X)Gµνϕµν −
1
6G5X(ϕ,X)[(�gϕ)3

−3�gϕϕµν + 2ϕµνϕµλϕνλ] + Lmatter[gµν , ψ] .
(21.49)

Here gµν denotes the matter-coupled metric, X ≡ −1
2g
µν∂µϕ∂νϕ, ϕµν ≡ ∇µ∇νϕ, Gµν ≡ Rµν −

1
2Rg

µν , and the various coefficients Gn(ϕ,X) are arbitrary functions of two variables (with GnX ≡
∂Gn/∂X). The field equations derived from the Lagrangian of Eq. (21.49) are only of second order
in derivatives in spite of the non-linear structure of Ltot. This implies that the tensor-scalar theories
defined by Eq. (21.49) feature three degrees of freedom, corresponding to a massless spin-2 excitation
(GW) and a spin-0 excitation. Contrary to the simpler tensor-scalar theories of Eq. (21.40), it is
found that the speed of propagation of GWs implied by Eq. (21.49) is generically different from the
speed of light:

c2
GW
c2 = G4 −X(ϕ̈G5X +G5ϕ)

G4 − 2XG4X −X(Hϕ̇G5X −G5ϕ) . (21.50)

More general modified gravity models have been proposed (see, e.g. Refs. [82, 83]). Apart
from the simplest of them, most of these models have a rather artificial flavor, and do not lead
to convincing alternative explanations either of dark matter or of dark energy. In addition, many
of them do not lead (contrary to GR) to mathematically “well-posed” evolution problems [84–86].
This entails a serious challenge to deriving strong-field predictions for such models. It has been
argued that many of these (dark-energy motivated) models should be viewed as effective field
theory (EFT) approximations that need some sort of UV completion at an unusually low frequency
scale [87]. In spite of these shortcomings, such models are conceptually interesting because they
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give examples of deviations for various predictions of GR, existing independently from each other,
in various regimes. For instance, some special tensor-scalar models lead to black hole solutions
modified by scalar-hair [88–90]. For other types of black holes with scalar-hair, see Ref. [91]. This
shows the interest of phenomenologically testing, in a democratic and agnostic way, all conceivable
deviations from GR.

Let us now turn to briefly presenting current experimental results of various phenomenological
tests of the main GR predictions recalled in Section 21.2 above.

21.4 Experimental tests of the Equivalence Principle ( i.e., of the matter-gravity
coupling)
21.4.1 Tests of the constancy of constants

Stringent limits on a possible time variation of the basic coupling constants have been obtained
by analyzing a natural fission reactor phenomenon that took place at Oklo, Gabon, two billion years
ago [92, 93]. These limits are at the 1× 10−8 level for the fractional variation of the fine-structure
constant αem [93], and at the 4 × 10−9 level for the fractional variation of the ratio mq/ΛQCD
between the light quark masses and ΛQCD [94]. The determination of the lifetime of Rhenium 187
from isotopic measurements of some meteorites dating back to the formation of the solar system
(about 4.6 Gyr ago) yields comparably strong limits [95]. Measurements of absorption lines in
astronomical spectra also give stringent limits on the variability of both αem and µ = mp/me at
cosmological redshifts, e.g.,

∆αem/αem = (1.2± 1.7stat ± 0.9sys)× 10−6 , (21.51)

at redshifts z = 1.0–2.4 [96], and

|∆µ/µ| < 4× 10−7(95% C.L.) , (21.52)

at a redshift z = 0.88582 [97]. There are also significant limits on the variation of αem and
µ = mp/me at redshift z ∼ 103 from cosmic microwave background data, e.g., ∆αem/αem =
(3.6± 3.7)× 10−3 [98]. Direct laboratory limits (based on monitoring the frequency ratio of several
different atomic clocks) on the present time variation of αem, and µ = mp/me have reached the
levels [99,100]

d ln(αem)/dt = (1.8± 2.5)× 10−19yr−1,

d ln(µ)/dt = (−8± 36)× 10−18yr−1. (21.53)

There are also experimental limits on a possible dependence of coupling constants on the gravita-
tional potential [99, 100].

Experimental limits on the present time variation of the gravitational constant, Eq. (21.33),
have been derived from planetary ephemerides [101], lunar laser ranging [102], and binary-pulsar
data [103,104]. The most stringent limits come from lunar-laser-ranging data [102]:

Ġ0
G0

= (7.1± 7.6)× 10−14 yr−1 . (21.54)

21.4.2 Tests of the isotropy of space and of Local Lorentz invariance
The highest precision tests of the isotropy of space have been performed by looking for possible

quadrupolar shifts of nuclear energy levels [105]. The (null) results can be interpreted as testing
the fact that the various pieces in the matter Lagrangian, Eq. (21.6), are indeed coupled to the
same external metric gµν to the 10−29 level.

Stringent tests of possible violations of local Lorentz invariance in gravitational interactions
have been obtained both from solar-system data [8] and pulsar data [106, 107]. For astrophysical
constraints on possible Planck-scale violations of Lorentz invariance, see Ref. [108].
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21.4.3 Tests of the universality of free fall (weak, and strong equivalence principles)
The universality of the acceleration of free fall has been verified, for laboratory bodies, both on

the ground [109,110] (at the 10−13 level), and in space [111,112] (at the 10−15 level):

(∆a/a)BeTi = (0.3± 1.8)× 10−13 ;
(∆a/a)BeAl = (−0.7± 1.3)× 10−13 ;
(∆a/a)TiPt = (−1.5± 2.3(stat)± 1.5(syst))× 10−15 . (21.55)

The universality of free fall has also been verified when comparing the fall of classical and quantum
objects (at the 6× 10−9 level [113]), or of two quantum objects (at the (0.3± 5.4)× 10−7 [114], and
(1± 1.4)× 10−9, levels [115]).

The universality of free fall of self-gravitating bodies (strong equivalence principle) has been
verified in both the weak-gravity, and the strong-gravity regimes. The gravitational accelerations
of the Earth and the Moon toward the Sun have been checked to agree at the 10−13 level [102]

(∆a/a)EarthMoon = (−3± 5)× 10−14. (21.56)

The latter result constrains the Nordtvedt PPN parameter [9] η ≡ 4β − γ to the 10−4 level:

η = (−0.2± 1.1)× 10−4 . (21.57)

See below for strong-field tests of the strong equivalence principle.
Finally, the universality of the gravitational redshift of clock rates has been verified at the 10−4

level by comparing a hydrogen-maser clock flying on a rocket up to an altitude of about 10, 000 km
to a similar clock on the ground [116]. The redshift due to a height change of only 33 cm has been
detected by comparing two optical clocks based on 27Al+ ions [117]. The gravitational redshift
has also been detected in the orbit of a star near the supermassive black hole at the center of our
Galaxy [118,119], and its universality has been verified at the 5% level [120].

21.5 Tests of quasi-stationary, weak-field gravity
All currently performed gravitational experiments in the solar system, including perihelion

advances of planetary orbits, the bending and delay of electromagnetic signals passing near the
Sun, and very accurate ranging data to the Moon obtained by laser echoes, are compatible with
the post-Newtonian results of Eq. (21.15), Eq. (21.13), and Eq. (21.14). The “gravito-magnetic”
interactions ∝ vAvB contained in Eq. (21.13) are involved in many of these experimental tests. They
have been particularly tested in lunar-laser-ranging data [121], in the combined LAGEOS-LARES
satellite data [122,123], and in the dedicated Gravity Probe B mission [124].

To assess in a quantitative manner the results of the various solar-system tests of gravity it is
convenient to express them in terms of the PPN parameters defined above. The best current limit
on the post-Einstein parameter γ ≡ γ − 1 is

γ = (2.1± 2.3)× 10−5 , (21.58)

as deduced from the additional Doppler shift experienced by radio-wave beams connecting the
Earth to the Cassini spacecraft when they passed near the Sun [125].

The (cubic-vertex-related) post-Einstein parameter β ≡ β − 1 is constrained at the 10−4 level
both from a study of the global sensitivity of planetary ephemerides to post-Einstein parameters
[101],

|β| < 7× 10−5 , (21.59)
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and from lunar-laser-ranging data [102]

β = (−4.5± 5.6)× 10−5 . (21.60)

The periastron advance of the star S2 around the Galactic center massive black hole has been
observed to agree with GR within 20% [126]. More stringent limits on γ (i.e. the coupling of
ϕ to matter) are obtained in dilaton-like models where scalar couplings violate the Equivalence
Principle [127].

21.6 Tests of strong-field gravity (neutron stars and black holes)
Experimental tests of strong-field gravity have been obtained in various physical systems, no-

tably binary pulsars and coalescing binary black holes.
It is convenient to quantitatively express binary-pulsar tests of strong-field gravity by using

the PPK formalism defined above. We recall that the measurement of N phenomenological PPK
parameters leads to N − 2 tests of strong-field gravity. In all, thirteen tests of strong-field and/or
radiative gravity have been obtained in the four different (double neutron-star) binary pulsar sys-
tems PSR1913+16 [10, 11, 128], PSR1534+12 [129–131], PSR J1141−6545 [132–135], and PSR
J0737−3039 A,B [136–140]. These consist of N − 2 = 5− 2 = 3 tests from PSR1913+16 ; 5− 2 = 3
tests from PSR1534+12; 4 − 2 = 2 tests from PSR J1141−6545; and 7 − 2 = 5 tests from PSR
J0737−3039 (see, also, Ref. [141] for additional, less accurate tests of relativistic gravity). Among
these tests, four of them (those involving the measurement of the PPK parameter Ṗb) probe ra-
diative effects, and will be discussed in the following section. The four binary pulsar systems
PSR1913+16, PSR1534+12, PSR J1141−6545, and PSR J0737−3039 A,B have given nine tests of
quasi-static, strong-field gravity. GR passes all these tests within the measurement accuracy. Let
us only highlight here some of the most accurate strong-field tests.

In the binary pulsar PSR 1534+12 [129] one has measured five post-Keplerian parameters: k,
γtiming, r, s, and (with less accuracy) Ṗb [130, 131]. This yields three tests of relativistic gravity.
Among these tests, the two involving the measurements of k, γtiming, r, and s accurately probe
strong field gravity, without mixing of radiative effects [130]. The most precise (10−3 level) of these
pure strong-field tests is the one obtained by combining the measurements of k, γtiming, and s;
namely, [131], [

sobs

sGR[kobs, γobs
timing]

]
1534+12

= 1.002± 0.002 . (21.61)

The discovery of the remarkable double binary pulsar PSR J0737−3039 A and B [136, 137]
has led to the measurement of seven independent parameters [138–140]: five of them are the
post-Keplerian parameters k, γtiming, r, s, and Ṗb entering the relativistic timing formula of the
fast-spinning pulsar PSR J0737−3039 A; a sixth is the ratio R = xB/xA between the projected
semi-major axis of the more slowly spinning companion pulsar PSR J0737−3039 B, and that of PSR
J0737−3039 A (the theoretical prediction for the ratio R = xB/xA, considered as a function of the
(inertial) masses m1 = mA and m2 = mB, is Rtheory = m1/m2 +O((v/c)4) [13, 14], independently
of the gravitational theory considered). Finally, the seventh parameter ΩSO,B is the angular rate of
(spin-orbit) precession of PSR J0737−3039 B around the total angular momentum vector [139,140].
These seven measurements give us five tests of relativistic gravity [138,142,143], four of which are
quasi-static, strong-field tests. GR passes all those tests with flying colors [144]. The most accurate
is at the 2× 10−4 level:[

sobs

sGR[kobs, γtimingobs]

]
0737−3039

= 1.00009± 0.00018 . (21.62)
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Binary pulsar data on other types of pulsar systems can be used to test strong-field aspects
of the “strong equivalence principle,” namely the GR prediction that strong-self-gravity objects
(such as neutron stars) should fall with the same acceleration as weak-self-gravity objects (such as
white-dwarfs) in the (external) gravitational field created by other objects (such as the Galaxy, or
another white dwarf). The first binary-pulsar tests of this property have been obtained in nearly
circular binary systems (made of a neutron star and a white dwarf) falling in the field of the
Galaxy, and have led to strong-field confirmations (at the 2× 10−3 level) of the strong equivalence
principle [104,145–147]. The remarkable discovery of the pulsar PSR J0337+1715 in a hierarchical
triple system [148] has allowed one to derive a much more accurate test of the strong equivalence
principle because the inner binary (comprising a pulsar and a close white-dwarf companion) falls
toward the outer white-dwarf companion with an acceleration that is 108 times larger than the
Galactic acceleration. This leads to a 95% confidence level limit on a possible fractional difference
in free-fall acceleration of the pulsar and its close companion of [149,150]

|∆a/a| < 2.05× 10−6 (95% C.L.) . (21.63)

This limit yields strong constraints on tensor-scalar gravity models.
Measurements over several years of the pulse profiles of various pulsars have detected secular

changes compatible with the prediction [151] that the general relativistic spin-orbit coupling should
cause a secular change in the orientation of the pulsar beam with respect to the line of sight
(“geodetic precession”). Such confirmations of general-relativistic spin-orbit effects were obtained
in PSR 1913+16 [152], PSR B1534+12 [131], PSR J1141−6545 [153], PSR J0737−3039 [139, 140],
and PSR J1906+0746 [154,155]. In some cases (notably PSR 1913+16 and PSR J1906+0746) the
secular change in the orientation of the pulsar beam is expected to lead to the disappearance of the
beam (as seen on the Earth) on a human time scale (the second pulsar in the double system PSR
J0737−3039 already disappeared in March 2008 and is expected to reappear around 2035 [140]).

Recently, the ultimate strong-field regime of black holes has started to be quantitatively probed
via GW observations. The LIGO-Virgo(-Kagra) collaboration has detected (starting in September
2015) GW signals [35], which, besides testing the radiative structure of gravity (see next section),
are in excellent qualitative and quantitative agreement with the structure and dynamics of black-
hole horizons in GR. Because of the mixing of strong-field effects with radiative effects during the
coalescence of two black holes, and because of the lack of detailed alternative-theory predictions
for this process (see, however, Refs. [46–48]), it is not easy to set quantitative limits on possible
strong-field deviations from GR, independently of radiative effects. Direct tests of the existence
of black-hole horizons are scarce (see, however, Sec. VIIIB of [156] which reports the lack of any
statistical evidence for GW echoes).

Let us also mention that the Event Horizon Telescope collaboration has obtained event-horizon-
scale images of the supermassive black hole candidates in the center of the giant elliptical galaxy
M87, and in the center of our Galaxy. These images are consistent with GR models of accreting
Kerr black holes [157, 158]. For discussions of the corresponding constraints on the black hole
geometry in the vicinity of the light ring see Refs. [159–161].

21.7 Tests of radiative gravity (both in binary-pulsar data and in GW data)
Experimental confirmations of the GR predictions for the radiative structure of gravity have

been obtained both in binary-pulsar data and in the observation of GW signals from coalescing
compact binaries (binary black holes and binary neutron stars).

Binary-pulsar observations involving the measurement of the orbital period derivative Ṗb give
direct experimental tests of the reality of gravitational radiation, and, in particular, an experimental
confirmation that the speed of propagation of gravity cg is equal to the speed of light c (indeed, as
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recalled above, Ṗb is a consequence of the propagation of the gravitational interaction between the
two neutron stars [12]). Even in the presence of screening mechanisms within the binary system,
the value of Ṗb yields a measurement of the speed of propagation of GWs at the 10−2 level [162].
The currently most accurate binary-pulsar tests of the radiative properties of gravity come from
the binary neutron-star systems PSR1913+16 and PSR J0737−3039 A,B, as well as from several
neutron-star-white-dwarf systems, notably PSR J1738+0333.

After subtracting a small (∼ 10−14 level in Ṗ obs
b = (−2.423 ± 0.001) × 10−12), but significant,

“Galactic” perturbing effect (linked to Galactic accelerations and to the pulsar proper motion) [163],
one finds that the phenomenological test obtained by combining the measurements of the three PPK
parameters (k − γtiming − Ṗb)1913+16 is passed by GR with complete success [128]:[

Ṗ obs
b − Ṗ gal

b

ṖGR
b [kobs, γobs

timing]

]
1913+16

= 0.9983± 0.0016 . (21.64)

Here ṖGR
b [kobs, γobs

timing] is the result of inserting in ṖGR
b (m1,m2) the values of the masses predicted

by the two equations kobs = kGR(m1,m2), and γobs
timing = γGR

timing(m1,m2). This yields experimental
evidence for the reality of gravitational radiation damping forces at the (−1.7± 1.6)× 10−3 level.

An even better experimental test of the radiative structure of gravity (6× 10−5 level) has been
recently obtained from the combined measurement in PSR J0737−3039 A,B of the three parameters
k, s, and Ṗb [144]: [

Ṗ obs
b − Ṗ gal

b

ṖGR
b [kobs, sobs]

]
0737−3039

= 0.999963± 0.000063 . (21.65)

In addition to the above tests, further very stringent tests of radiative gravity follow from the
measurement of the orbital period decay Ṗb of low-eccentricity pulsar-white dwarf systems. Notably,
the system PSR J1738+0333 yields an intrinsic orbital decay of [164][

Ṗ obs
b − Ṗ gal

b

]
1738+0333

= (−25.9± 3.2)× 10−15 , (21.66)

to be compared to [
ṖGR
b

]
1738+0333

= (−27.7+1.5
−1.9)× 10−15 . (21.67)

The fractional agreement between the (corrected) observed period decay and the GR-predicted one
seems to be quantitatively less impressive than the double-neutron-star results cited above, but
the crucial point is that asymmetric binary systems (such as neutron-star-white-dwarf ones) are
strong emitters of dipolar gravitational radiation in tensor-scalar theories, with Ṗb scaling (modulo
matter-scalar couplings) like m1m2/(m1 + m2)2(v/c)3, instead of the parametrically smaller GR-
predicted quadrupolar radiation Ṗb ∼ (v/c)5 [7, 15]. In view of the very small absolute value of
Ṗb, this makes such systems (and notably PSR J1738+0333) very sensitive probes of tensor-scalar
gravity [103,164–168]. It is then useful to turn to a theory-dependent analysis of pulsar data. Such
an analysis (see, e.g., [17, 130, 164, 167, 168]) leads to excluding a large portion of the parameter
space of tensor-scalar gravity allowed by solar-system tests. As a result, the basic matter-scalar
coupling α2

0 is more strongly constrained, over most of the parameter space, than the best current
solar-system limits of Eq. (21.58) (namely below the 10−5 level) [164,167].

We now turn to the tests of radiative gravity that can be deduced from the GW data gathered
from the first three observing runs of the LIGO-Virgo-Kagra collaboration. All currently detected
GW signals are consistent with GR predictions. Several phenomenological approaches were used
and led to setting limits on possible deviations from GR [51,156,169,170].
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A theory-agnostic quantitative assessment on possible deviations from GR is given by measuring
the agreement between the full observed GW signal of coalescing binary black holes, and the GR-
predicted one. One of the strongest results was obtained with the first event: GW150914, which
had an SNR of 24. The noise-weighted correlation between the GW150914 signal and the best-fit
GR-predicted waveform was found to be ≥ 97% [51, 169]. In other words, GR-violation effects
that cannot be reabsorbed in a redefinition of physical parameters are limited (in a noise-weighted
sense) to less than 3%.

Besides checking the agreement between the full observed GW signals and the corresponding
best-fit full signals predicted by GR, one also tested the consistency between separate parts of the
signals. A first approach [156,169,170] separates: (i) the lower-frequency signal emitted during the
inspiral phase (considered up to the innermost stable circular orbit); and (ii) the higher-frequency
remaining signal emitted during the postinspiral phase, comprising the late-inspiral, the merger,
and the ringdown. Separately fitting each of these partial signals to GR-based templates then
yields separate estimates of the binary’s parameters, leading to separate estimates of the mass Mf

and dimensionless spin parameter af = Jf/(GM2
f ) of the final black hole that would be formed

(in GR) by the coalescence of the two initial black holes. The consistency with GR then consists
in testing whether the two estimates (Mf , af )insp and (Mf , af )postinsp are compatible with each
other. They were found to be compatible for all events whose corresponding separate SNRs made
such an analysis meaningful (see Figs. 3 and 4 in [170] and Fig.3 in [156]). Quantitatively, the
(population-marginalized) fractional differences

∆Mf

M̄f

= 2
M insp
f −Mpostinsp

f

M insp
f +Mpostinsp

f

,

∆af
āf

= 2
ainsp
f − apostinsp

f

ainsp
f + apostinsp

f

, (21.68)

between the two estimates were found to be consistent with zero (i.e. with GR) [156]

∆Mf

M̄f

= −0.02+0.07
−0.06,

∆af
āf

= −0.06+0.10
−0.07. (21.69)

A second approach studies the consistency of the ringdown GW signal (emitted by the final, vi-
brating black hole) with GR predictions. See, in particular, section VIIIA, and Figs. 13 and 14,
of [156]. The results are rather sensitive to various data analysis assumptions (notably the use
of complete waveform models versus an analysis using only the ringdown signal). Though there
is no clear sign of any deviations from GR, the current SNRs do not yield strong theory-agnostic
evidence for the presence of ringing overtones.

The parametrization of Eq. (21.38) for possible deviations in the frequency dependence of the
Fourier-domain phase ψ(f) of the black hole coalescence GW signal was used to measure best-fit
values for each fractional deviation parameter δp̂i, considered separately (the other ones being set
to zero). In all cases, the posterior distribution for each δp̂i is consistent with the GR value, i.e.,
δp̂GR
i = 0 (see Fig. 6 in [156]). The current limits on δp̂i are (roughly) of order unity, except for

the two parameters highlighted above: δp̂3 (parameterizing the O((vc )3) fractional correction to the
LO, quadrupolar term); and δp̂−2 (parameterizing a possible dipolar-radiation-related O((vc )−2)
fractional correction to the LO, quadrupolar term). Ref. [170] gives 90%-credible intervals for δp̂3
of −0.02+0.11

−0.10 (when using a phenomenological model [53]), and −0.01+0.10
−0.11 (when using an effective
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one-body model [38]). Ref. [156] gives a 90%-credible upper bound for a possible dipolar term of
|δp̂−2| ≤ 7.3× 10−4.

As recalled above, GR predicts that the polarization content of GWs is pure helicity-2, i.e.
described by the two independent components of a traceless tensor transverse to the propagation
direction. A (massless) scalar excitation would add a pure-trace “breathing mode” in the plane
transverse to the propagation direction. A phenomenological approach to generic metric theories of
gravity would allow for up to six polarizations for a GW [171], namely two tensor, two vector and
two scalar modes. The LVK collaboration tested possible polarization deviations from GR in various
ways [33,156,169]. Recent results are given in section VII of [156]. Though pure-scalar, pure-vector
and vector-scalar hypotheses are significantly disfavored, any mixed hypothesis involving tensor
modes (i.e., tensor-scalar, tensor-vector, and tensor-vector-scalar) cannot be ruled out conclusively.

GR also predicts that GWs are non dispersive, and propagate at the same speed as light. One
can phenomenologically modify the GR-predicted GW phase evolution by adding the putative effect
of an anomalous dispersion relation of the form E2 = p2c2 + Apαcα. GW data have been used to
set bounds on the anomalous coefficient A for various values of the exponent α. The case α = 0
is equivalent to assuming that gravitons disperse as a massive particle [59]. The current (90%-
credibility) phenomenological GW limit on the graviton mass is mg ≤ 1.27 × 10−23eV/c2 [156].
This is 2.5 times more stringent than the Solar System bound of 3.16× 10−23eV/c2 [65].

Finally, a very constraining bound on the speed of propagation of gravity cGW was derived from
the observed time delay of 1.7 s between GW170817 and the associated γ-ray burst. Namely, the
fractional difference between cGW and clight ≡ c is constrained to be [172]

− 3× 10−15 <
cGW − c

c
< +7× 10−16 . (21.70)

When comparing the latter bound to the prediction Eq. (21.50) from general second-order tensor-
scalar theories, Eq. (21.49), one is led to conclude that the coupling function G5(ϕ,X) has to be
ignored and that the coupling function G4(ϕ,X) has to be restricted to depend only on ϕ. This
drastically reduces the viable tensor-scalar modified-gravity models [173–176].

Let us finally mention that four pulsar timing arrays have recently given tantalizing evidence for
the existence of a stochastic background of gravitational waves with frequency ∼ 10−9 Hz [177–180].

21.8 Conclusions
All present experimental tests are compatible with the predictions of the current “standard”

theory of gravitation, Einstein’s General Relativity. Let us recap the main tests. The universality
of the coupling between matter and gravity (Equivalence Principle) has been verified at around the
10−15 level. Solar system experiments have tested the weak-field predictions of Einstein’s theory at
the few times 10−5 level. The propagation properties (in the near zone) of relativistic gravity, as well
as several of its static strong-field aspects, have been verified at the 10−4 level (or better) in several
binary pulsar experiments. Interferometric detectors of gravitational radiation have given direct
observational proofs of the existence, and properties, of gravitational waves (in the wave zone),
and of the existence of coalescing black holes, and they have already set strong limits on possible
deviations; in particular: an upper bound |δp̂−2| < 7.3 × 10−4 on a possible dipolar contribution
to the GW flux; the O(10−15) bound of Eq. (21.70) on the speed of gravity; and confirmation of
the tensor polarization structure of gravitational waves. In addition, laboratory experiments have
set strong constraints on sub-millimeter modifications of Newtonian gravity, while many different
cosmological data sets have been used to set limits on possible GR deviations on cosmological
scales [29]. In spite of the uneasiness of having to assume the existence of dark matter, and the
presence of an unnaturally small cosmological constant (as dark energy), General Relativity stands
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out as a uniquely successful description of gravity on all the scales that have been explored so far.
There are no modified-gravity models which naturally pass all existing experimental tests, while
either explaining away the need for dark matter or for dark energy.
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