60. Top Quark

Revised August 2019 by T.M. Liss (City Coll. of New York), F. Maltoni (CP3 U. catholique de Louvain; Bologna U.) and A. Quadt (Göttingen U.).

60.1 Introduction

In the Standard Model (SM), the left-handed top quark is the Q = 2/3, $T_3 = +1/2$ member of the weak-isospin doublet containing the bottom quark, while the right-handed top is an $SU(2)_L$ singlet (see, e.g., the review "Electroweak Model and Constraints on New Physics"). Its phenomenology is driven by its large mass. Being heavier than a W boson, it is the only quark that decays semi-weakly, i.e., into a real W boson and a b quark. Therefore, it has a very short lifetime and decays before hadronization can occur. In addition, it is the only quark whose Yukawa coupling to the Higgs boson is of order unity. For these reasons, the top quark plays a special role in the Standard Model and in many extensions thereof. Top quark physics provides a unique laboratory where our understanding of the strong interactions, both in the perturbative and non-perturbative regimes, can be tested. An accurate knowledge of its properties (mass, couplings, production cross sections, decay branching ratios, *etc.*) can bring key information on fundamental interactions at the electroweak symmetry-breaking scale and beyond. This review provides a concise discussion of the experimental and theoretical issues involved in the determination of the top-quark properties.

60.2 Top-quark production at the Tevatron and LHC

In hadron collisions, top quarks are produced dominantly in pairs through the processes $q\bar{q} \rightarrow t\bar{t}$ and $gg \rightarrow t\bar{t}$, at leading order in QCD. Approximately 85% of the production cross section at the Tevatron ($p\bar{p}$ at 1.96 TeV) is from $q\bar{q}$ annihilation, with the remainder from gluon-gluon fusion, while at LHC (pp) energies about 90% of the production is from the latter process at $\sqrt{s} = 14$ TeV ($\approx 80\%$ at $\sqrt{s} = 7$ TeV).

Predictions for the top-quark production total cross sections are available at next-to-next-to leading order (NNLO) [1,2], also including next-to-next-to-leading-log (NNLL) soft gluon resummation. Assuming a top-quark mass of 173.3 GeV/c², close to the Tevatron + LHC average [3], the resulting theoretical prediction of the top-quark pair cross-section at NNLO+NNLL accuracy at the Tevatron at $\sqrt{s} = 1.96$ TeV is $\sigma_{t\bar{t}} = 7.16^{+0.11+0.17}_{-0.20-0.12}$ pb where the first uncertainty is from scale dependence and the second from parton distribution functions. At the LHC, assuming a top-quark mass of 172.5 GeV/c² the cross sections are: $\sigma_{t\bar{t}} = 177.3^{+4.6+9.0}_{-6.0-9.0}$ pb at $\sqrt{s} = 7$ TeV, $\sigma_{t\bar{t}} = 252.9^{+6.4+11.5}_{-8.6-11.5}$ pb at $\sqrt{s} = 8$ TeV, $\sigma_{t\bar{t}} = 831.8^{+19.8+35.1}_{-29.2-35.1}$ pb at $\sqrt{s} = 13$ TeV, and $\sigma_{t\bar{t}} = 984.5^{+23.2+41.3}_{-34.7-41.3}$ pb at $\sqrt{s} = 14$ TeV [1].

Electroweak single top-quark production mechanisms, namely from $q\bar{q}' \to t\bar{b}$ [4], $qb \to q't$ [5], mediated by virtual s-channel and t-channel W-bosons, and Wt-associated production, through $bg \to W^- t$, lead to somewhat smaller cross sections. For example, t-channel production, while suppressed by the weak coupling with respect to the strong pair production, is kinematically enhanced, resulting in a sizeable cross section both at Tevatron and LHC energies. At the Tevatron, the t- and s-channel cross sections for top quarks are identical to those for antitop quarks , while at the LHC they are not, due to the charge-asymmetric initial state. Approximate NNLO cross sections for t-channel single top-quark production $(t + \bar{t})$ are calculated for $m_t = 173.3 \text{ GeV/c}^2$ to be $2.06^{+0.13}_{-0.13}$ pb in $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV (scale and parton distribution functions uncertainties are combined in quadrature) [6]. Recently, calculations at NNLO accuracy for the t-channel cross section at the LHC have appeared [7,8], predicting $(m_t = 172.5 \text{ GeV/c}^2)$: $\sigma_{t+\bar{t}} = 64.0^{+0.77}_{-0.38}$ pb at $\sqrt{s} = 7$ TeV, $\sigma_{t+\bar{t}} = 84.6^{+1.0}_{-0.51}$ pb at $\sqrt{s} = 8$ TeV, $\sigma_{t+\bar{t}} = 215^{+2.1}_{-1.3}$ pb at $\sqrt{s} = 13$ TeV, and $\sigma_{t+\bar{t}} = 245^{+2.7}_{-1.3}$ pb at $\sqrt{s} = 14$ TeV, where the quoted uncertainties are from scale variation only. For the s-channel, NNLO approximated calculations yield $1.03^{+0.05}_{-0.05}$ pb for the Tevatron, and $4.5^{+0.2}_{-0.2}(5.5^{+0.2}_{-0.2})$ pb for $\sqrt{s} = 7$ (8) TeV at the LHC, with 69% (31%) of top (anti-top) quarks [9]. While negligible at the Tevatron, at LHC energies the *Wt*-associated production becomes relevant. At $\sqrt{s} = 7$ (8) TeV, an approximate NNLO calculation gives $15.5^{+1.2}_{-1.2}(22.1^{+1.5}_{-1.5})$ pb $(t + \bar{t})$, with an equal proportion of top and anti-top quarks [10].

Assuming $|V_{tb}| \gg |V_{td}|, |V_{ts}|$ (see the review "The CKM Quark-Mixing Matrix" for more information), the cross sections for single top production are proportional to $|V_{tb}|^2$, and no extra hypothesis is needed on the number of quark families or on the unitarity of the CKM matrix in extracting $|V_{tb}|$. Separate measurements of the *s*- and *t*-channel processes provide sensitivity to physics beyond the Standard Model [11].

With a mass above the Wb threshold, and $|V_{tb}| \gg |V_{td}|$, $|V_{ts}|$, the decay width of the top quark is expected to be dominated by the two-body channel $t \to Wb$. Neglecting terms of order m_b^2/m_t^2 , α_s^2 , and $(\alpha_s/\pi)M_W^2/m_t^2$, the width predicted in the SM at NLO is [12]:

$$\Gamma_t = \frac{G_F m_t^3}{8\pi\sqrt{2}} \left(1 - \frac{M_W^2}{m_t^2}\right)^2 \left(1 + 2\frac{M_W^2}{m_t^2}\right) \left[1 - \frac{2\alpha_s}{3\pi} \left(\frac{2\pi^2}{3} - \frac{5}{2}\right)\right],\tag{60.1}$$

where m_t refers to the top-quark pole mass. The width for a value of $m_t = 173.3 \text{ GeV/c}^2$ is 1.35 GeV/c^2 (we use $\alpha_s(M_Z) = 0.118$) and increases with mass. With its correspondingly short lifetime of $\approx 0.5 \times 10^{-24}$ s, the top quark is expected to decay before top-flavored hadrons or $t\bar{t}$ -quarkonium-bound states can form [13]. In fact, since the decay time is close to the would-be-resonance binding time, a peak will be visible in e^+e^- scattering at the $t\bar{t}$ threshold [14] and it is in principle present (yet very difficult to measure) in hadron collisions, too [15]. The order α_s^2 QCD corrections to Γ_t are also available [16], thereby improving the overall theoretical accuracy to better than 1%.

The final states for the leading pair-production process can be divided into three classes:

A.
$$t\bar{t} \to W^+ b W^- \bar{b} \to q\bar{q}' bq'' \bar{q}''' \bar{b},$$
 (45.7%)
B. $t\bar{t} \to W^+ b W^- \bar{b} \to q\bar{q}' b\ell^- \bar{\nu}_\ell \bar{b} + \ell^+ \nu_\ell b q'' \bar{q}''' \bar{b},$ (43.8%)
C. $t\bar{t} \to W^+ b W^- \bar{b} \to \ell^+ \nu_\ell b \ell'^- \bar{\nu}_{\ell'} \bar{b}.$ (10.5%)

The quarks in the final state evolve into jets of hadrons. A, B, and C are referred to as the all-hadronic, lepton+jets (ℓ +jets), and dilepton ($\ell\ell$) channels, respectively. Their relative contributions, including hadronic corrections, are given in parentheses assuming lepton universality. While ℓ in the above processes refers to e, μ , or τ , most of the analyses distinguish the e and μ from the τ channel, which is more difficult to reconstruct. Therefore, in what follows, we will use ℓ to refer to e or μ , unless otherwise noted. Here, typically leptonic decays of τ are included. In addition to the quarks resulting from the top-quark decays, extra QCD radiation (quarks and gluons) from the colored particles in the event can lead to extra jets.

The number of jets reconstructed in the detectors depends on the decay kinematics, as well as on the algorithm for reconstructing jets used by the analysis. Information on the transverse momenta of neutrinos is obtained from the imbalance in transverse momentum measured in each event (missing p_T , which is here also called missing E_T).

The identification of top quarks in the electroweak single top channel is much more difficult than in the QCD $t\bar{t}$ channel, due to a less distinctive signature and significantly larger backgrounds, mostly due to $t\bar{t}$ and W+jets production.

Fully exclusive predictions via Monte Carlo generators for the $t\bar{t}$ and single top production processes at NLO accuracy in QCD, including top-quark decays and possibly off-shell effects are available [17, 18] through the MC@NLO [19] and POWHEG [20] methods. Besides fully inclusive QCD or EW top-quark production, more exclusive final states can be accessed at hadron colliders, whose cross sections are typically much smaller, yet can provide key information on the properties of the top quark. For all relevant final states (*e.g.*, $t\bar{t}V$, $t\bar{t}VV$ with $V = \gamma, W, Z, t\bar{t}H, t\bar{t}+$ jets, $t\bar{t}b\bar{b}, t\bar{t}t\bar{t}$) automatic or semi-automatic predictions at NLO accuracy in QCD also in the form of event generators, *i.e.*, interfaced to parton-shower programs, are available (see the review "Monte Carlo event generators" for more information).

60.3 Top-quark measurements

Since the discovery of the top quark, direct measurements of $t\bar{t}$ production have been made at six center-of-mass energies in pp or $p\bar{p}$ and one in pPb collisions, providing stringent tests of QCD. The first measurements were made in Run I at the Tevatron at $\sqrt{s} = 1.8$ TeV. In Run II at the Tevatron relatively precise measurements were made at $\sqrt{s} = 1.96$ TeV. Finally, beginning in 2010, measurements have been made at the LHC at $\sqrt{s} = 7$ TeV, $\sqrt{s} = 8$ TeV, and $\sqrt{s} = 13$ TeV, and recently also in a dedicated low energy run at $\sqrt{s} = 5.02$ TeV and at 8.16 TeV in pPb collisions.

Production of single top quarks through electroweak interactions has now been measured with good precision at the Tevatron at $\sqrt{s} = 1.96$ TeV, and at the LHC at $\sqrt{s} = 7$ TeV, $\sqrt{s} = 8$ TeV, and also at $\sqrt{s} = 13$ TeV. Measurements at the Tevatron have managed to separate the *s*- and *t*-channel production cross sections, and at the LHC, the *tW* mechanism as well, though the *t*-channel is measured with best precision to date. The measurements allow an extraction of the CKM matrix element V_{tb} . Also more exclusive production modes and top-quark properties have been measured in single-top production.

With approximately 10 fb⁻¹ of Tevatron data, and almost 5 fb⁻¹ at 7 TeV, 20 fb⁻¹ at 8 TeV and 139 fb⁻¹ at 13 TeV at the LHC, many properties of the top quark have been measured with high precision. These include properties related to the production mechanism, such as $t\bar{t}$ spin correlations, forward-backward or charge asymmetries, and differential production cross sections, as well as properties related to the tWb decay vertex, such as the helicity of the W-bosons from the top-quark decay. Also studies of the $t\bar{t}\gamma$, $t\bar{t}Z$ vertices as well as contact $t\bar{t}b\bar{b}$, and $t\bar{t}t\bar{t}$ interactions have been made. In addition, many searches for physics beyond the Standard Model or $t\bar{t}h$ or thproduction are being performed with increasing reach in both production and decay channels.

In the following sections we review the current status of measurements of the characteristics of the top quark.

60.3.1 Top-quark production

$60.3.1.1 \ t\bar{t} \ production$

Fig. 60.1 summarizes the $t\bar{t}$ production cross-section measurements from both the Tevatron and LHC. Please note that some cross section measurements at the LHC have luminosity-related uncertainties which have improved in the meantime [21]. The most recent measurement from DØ [22] ($p\bar{p}$ at $\sqrt{s} = 1.96$ TeV), combining the measurements from the dilepton and lepton plus jets final states in 9.7 fb⁻¹, is $7.26 \pm 0.13^{+0.57}_{-0.50}$ pb.

From CDF the most precise measurement made recently [23] is in 8.8 fb⁻¹ in the dilepton channel requiring at least one b-tag, yielding 7.09 ± 0.84 pb. Both of these measurements assume a top-quark mass of 172.5 GeV/c². The dependence of the cross-section measurements on the value chosen for the mass is less than that of the theory calculations because it only affects the determination of the acceptance. In some analyses also the shape of topological variables might be modified.

Combining the recent cross section measurements with older ones in other channels yields $\sigma_{t\bar{t}} = 7.63 \pm 0.50$ pb (6.6%) for CDF, $\sigma_{t\bar{t}} = 7.56 \pm 0.59$ pb (7.8%) for DØ and $\sigma_{t\bar{t}} = 7.60 \pm 0.41$ pb (5.4%) for the Tevatron combination [24] in good agreement with the SM expectation of $7.35^{+0.28}_{-0.33}$ pb at NNLO+NNLL in perturbative QCD [1] for a top mass of 172.5 GeV. The contributions to the

uncertainty are 0.20 pb from statistical sources, 0.29 pb from systematic sources, and 0.21 pb from the uncertainty on the integrated luminosity.

CDF has measured the $t\bar{t}$ production cross section in the dilepton channel with one hadronically decaying tau in 9.0 fb⁻¹, yielding $\sigma_{t\bar{t}} = 8.1 \pm 2.1$ pb. By separately identifying the single-tau and the ditau components, they measure the branching fraction of the top quark into the tau lepton, tau neutrino, and bottom quark to be $(9.6 \pm 2.8)\%$ [25]. CDF also performs measurements of the $t\bar{t}$ production cross section normalized to the Z production cross section in order to reduce the impact of the luminosity uncertainty [26].

DØ has performed a measurement of differential $t\bar{t}$ cross sections in 9.7 fb⁻¹ of lepton+jets data as a function of the transverse momentum and absolute value of the rapidity of the top quarks as well as of the invariant mass of the $t\bar{t}$ pair [27]. Observed differential cross sections are consistent with SM predictions.

The LHC experiments ATLAS and CMS use similar techniques to measure the $t\bar{t}$ cross section in pp collisions. The most precise measurements come from the dilepton channel, and in particular the $e\mu$ channel. At $\sqrt{s} = 7$ TeV, ATLAS uses 4.6 fb⁻¹ of $e\mu$ events in which they select an extremely clean sample and determine the $t\bar{t}$ cross section simultaneously with the efficiency to reconstruct and tag b-jets, yielding $\sigma_{t\bar{t}} = 182.9 \pm 7.1$ pb, corresponding to 3.9% precision [28]. Other measurements by ATLAS at $\sqrt{s} = 7$ TeV, include a measurement in 0.7 fb⁻¹ in the lepton+jets channel [29], in the dilepton channel [30], and in 1.02 fb^{-1} in the all-hadronic channel [31], which together yield a combined value of $\sigma_{t\bar{t}} = 177 \pm 3(stat.)^{+8}_{-7}(syst.) \pm 7(lumi.)$ pb (6.2%) assuming $m_t = 172.5 \text{ GeV/c}^2$ [32]. In 4.7 fb⁻¹ of all-hadronic events, they obtain $\sigma_{t\bar{t}} = 168 \pm 62 \text{ pb}$ [33]. Further analyses in the hadronic τ plus jets channel in 1.67 fb⁻¹ [34] and the hadronic τ + lepton channel in 2.05 fb⁻¹ [35], and the all-hadronic channel in 4.7 fb⁻¹ [33] yield consistent albeit less precise results. Another simultaneous measurement of the $t\bar{t}, W^+W^-$, and $Z/\gamma^* \to \tau\tau$ cross section using the full 7 TeV dataset with 4.6 fb⁻¹ yields $\sigma_{t\bar{t}} = 181 \pm 11$ pb, corresponding to a 6% precision [36]. The most precise measurement from CMS at $\sqrt{s} = 7$ TeV is also obtained in the dilepton channel, where they measure $\sigma_{t\bar{t}} = 162 \pm 2(stat.) \pm 5(syst.) \pm 4(lumi.)$ pb, corresponding to a 4.2% precision [37]. Other measurements at $\sqrt{s} = 7$ TeV from CMS include measurements with 2.3 fb⁻¹ in the e/μ +jets channel [38], with 3.5 fb⁻¹ in the all-hadronic channel [39], with 2.2 fb⁻¹ in the lepton+ τ channel [40], and with 3.9 fb⁻¹ in the τ +jets channel [41]. ATLAS and CMS also provide a combined cross section at $\sqrt{s} = 7$ TeV of $173.3 \pm 2.3(stat.) \pm 7.6(syst.) \pm 6.3(lumi.)$ pb using slightly older results based on 0.7 - 1.1 fb⁻¹ [42].

At $\sqrt{s} = 8$ TeV, ATLAS measures the $t\bar{t}$ cross section with 20.3 fb⁻¹ using $e\mu$ dilepton events, with a simultaneous measurement of the b-tagging efficiency, yielding $\sigma_{t\bar{t}} = 242.4 \pm$ $1.7(stat.) \pm 5.5(syst.) \pm 7.5(lumi.) \pm 4.2(beam \, energy)$ pb [43] assuming $m_t = 172.5 \, \text{GeV}/c^2$ which corresponds to a 4.7% precision. In the lepton+jets channel, they measure $\sigma_{t\bar{t}} = 260 \pm$ $1(stat.)^{+20}_{-23}(syst.) \pm 8(lumi.) \pm 4(beam \, energy)$ pb [29] in 20.3 fb⁻¹ using a likelihood discriminant fit and b-jet identification. Subsequently, ATLAS performed a new analysis in 20.2 fb⁻¹ lepton+jets events. They model the W+jets background using Z+jets data and employ neural networks in three jet-multiplicity and b-jet multiplicity regions for the signal and background separation, yielding $\sigma_{t\bar{t}} = 248.3 \pm 0.7(stat.) \pm 13.4(syst.) \pm 4.7(lumi.)$ pb [44]. ATLAS also performed a cross section measurement in the hadronic τ +jets channel yielding consistent, albeit less precise results [45]. CMS performs a template fit to the M_{lb} mass distribution using 19.6 fb⁻¹ in the lepton+jets channel yielding $\sigma_{t\bar{t}} = 228.5 \pm 3.8(stat.) \pm 13.7(syst.) \pm 6(lumi.)$ pb [46, 47]. These 8 TeV measurements are in agreement with QCD predictions up to NLO accuracy. In the $e\mu$ channel, initially using 5.3 fb⁻¹ [47] and then using 19.7 fb⁻¹, the cross sections are extracted using a binned likelihood fit to multi-differential final state distributions related to identified bquark and other jets in the event, yielding $\sigma_{t\bar{t}} = 244.9 \pm 1.4(stat.)^{+6.3}_{-5.5}(sys.) \pm 6.4(lumi.)$ pb [48]. The cross section and its ratio between 7 TeV and 8 TeV measurements are found to be consistent with pQCD calculations. The cross section is also measured in the hadronic τ +jets channel, yielding $\sigma_{t\bar{t}} = 257 \pm 3(stat.) \pm 24(syst.) \pm 7(lumi.)$ pb [49] and in the all-hadronic final state giving $\sigma_{t\bar{t}} = 275.6 \pm 6.1(stat.) \pm 37.8(syst.) \pm 7.2(lumi.)$ pb [50]. In combination of the most precise $e\mu$ measurements in 5.3 – 20.3 fb⁻¹, ATLAS and CMS together yield at 8 TeV $\sigma_{t\bar{t}} = 241.5 \pm 1.4(stat.) \pm 5.7(syst.) \pm 6.2(lumi.)$ pb [51], which corresponds to a 3.5% precision, challenging the precision of the corresponding theoretical predictions. The LHCb collaboration presented the first observation of top-quark production in the forward region in *pp*-collisions. The W + b final state with $W \rightarrow \mu\nu$ is reconstructed using muons with a transverse momentum, p_T , larger than 25 GeV in the pseudorapidity range 2.0 < η < 4.5. The *b*-jets are required to have 50 GeV < p_T < 100 GeV and 2.2 < η < 4.2, while the transverse component of the sum of the muon and *b*-jet momenta must satisfy $p_T > 20$ GeV. The results are based on data corresponding to integrated luminosities of 1.0 and 2.0 fb⁻¹ collected at center-of-mass energies of 7 and 8 TeV by LHCb. The inclusive top quark production cross sections in the fiducial region are $\sigma_{t\bar{t}} = 239 \pm 53(stat.) \pm 38(syst.)$ pb at 7 TeV, and $\sigma_{t\bar{t}} = 289 \pm 43(stat.) \pm 46(syst.)$ pb at 8 TeV [52].

ATLAS and CMS have also measured the $t\bar{t}$ production cross section with Run-II data at $\sqrt{s} = 13$ TeV. In the $e\mu$ events with at least one b-tag, ATLAS uses 78 pb⁻¹ and obtains $\sigma_{t\bar{t}} =$ 825 ± 114 pb [53]. This measurement is updated with lepton identification and trigger efficiencies to give $\sigma_{t\bar{t}} = 829 \pm 50(stat) \pm 56(syst) \pm 83(lumi)$ pb [54]. In this note, ATLAS also presents a $t\bar{t}$ cross section measurement in the ee and $\mu\mu$ dilepton channel with one and two b-tags using a counting approach, yielding $\sigma_{t\bar{t}} = 749 \pm 57(stat) \pm 79(syst) \pm 74(lumi)$ pb. In the lepton-plus-jets channel, using 85 pb^{-1} , the cross-section is extracted by counting the number of events with exactly one electron or muon and at least four jets, at least one of which is identified as originating from a bquark, yielding $\sigma_{t\bar{t}} = 817 \pm 13(stat) \pm 103(syst) \pm 88(lumi)$ pb, both assuming $m_t = 172.5$ GeV [54]. The cross section measurement in the $e\mu$ channel counting events with one or with two b-tags is also repeated using 3.2 pb⁻¹ and yields $\sigma_{t\bar{t}} = 818 \pm 8(stat) \pm 27(syst) \pm 19(lumi) \pm 12(beam)$ pb [55], consistent with theoretical QCD calculations at NNLO. Very recently, ATLAS measures the inclusive $t\bar{t}$ cross section in 139 fb⁻¹ in the lepton-plus-jets channel through a profile-likelihood fit to be $\sigma_{t\bar{t}} = 830.4 \pm 0.4(stat)^{+38.2}_{-37.0}(syst)$ pb, with a relative uncertainty of 4.6% [56]. The result is consistent with the theoretical calculations at NLO order in QCD perturbation theory. In 36.1 fb⁻¹ of $e\mu$ data with one or two b-tags, ATLAS measures the $t\bar{t}$ cross section to $\sigma_{t\bar{t}} =$ $826.4 \pm 3.6(stat) \pm 11.5(syst) \pm 15.7(lumi) \pm 1.9(beam)$ pb, giving a total of 2.4%. This measurement is also used to determine the top quark pole mass and to derive ratios and double ratios of ttand Z cross-sections at different energies as well as absolute and normalised differential crosssections as functions of single lepton and dilepton kinematic variables [57]. CMS uses 43 pb^{-1} in the $e\mu$ channel to measure $\sigma_{t\bar{t}} = 746 \pm 58(stat) \pm 53(syst) \pm 36(lumi)$ pb, in agreement with the expectation from the standard model [58]. Using 2.2 fb⁻¹ in the $e\mu$ channel with at least one b-jet, CMS measures $\sigma_{t\bar{t}} = 815 \pm 9(stat) \pm 38(syst) \pm 19(lumi)$ pb, in agreement with the expectation from the Standard Model [59]. A first measurement of the total inclusive and the normalized differential cross section in the lepton-plus-jets channel is made in 42 pb^{-1} yielding $\sigma_{t\bar{t}} = 836 \pm 27(stat) \pm 88(syst) \pm 100(lumi)$ pb [60]. In 2.2 fb⁻¹, lepton-plus-jets events are categorized according to the accompanying jet multiplicity. From a likelihood fit to the invariant mass distribution of the isolated lepton and a b-jet, the cross section is measured to be $\sigma_{t\bar{t}} =$ $888 \pm 2(stat)^{+26}_{-28}(syst) \pm 20(lumi)$ pb, in agreement with the SM prediction [61]. This result is also used to extract the top-quark mass. Using 35.9 fb⁻¹ of dilepton data, CMS measures the $t\bar{t}$ cross section using a likelihood fit $\sigma_{t\bar{t}} = 803 \pm 2(stat) \pm 25(syst) \pm 20(lumi)$ pb, in agreement with the expectation from the SM calculation at NLO order. This result is also used to extract the top quark mass and the strong coupling constant [62]. Very recently, using the same dataset in the dilepton channel with a hadronically decaying τ , they measure $\sigma_{t\bar{t}} = 781 \pm 7(stat) \pm 62(syst) \pm 20(lumi)$ pb [63]. In the all-hadronic channel, CMS uses 2.53 fb⁻¹ of data, yielding a cross section of $\sigma_{t\bar{t}} = 834 \pm 25(stat.) \pm 23(lumi.)$ pb [64]. Also differential cross sections as a function of the leading top quark transverse momentum are measured. As general feature found across channels, it is found that measured top quark p_T spectrum is significantly softer than the theory predictions.

In addition, CMS has also measured the top-quark pair production cross section in a special LHC run with $\sqrt{s} = 5.02$ TeV, accumulating 27.4 pb⁻¹. The measurement is performed by analyzing events with at least one charged lepton. The measured cross section is $\sigma_{t\bar{t}} = 69.5 \pm 8.4$ pb [65], in agreement with the expectation from the Standard Model. In order to test consistency of the cross-section measurements with some systematic uncertainties cancelling out while testing pQCD and PDFs, cross-section ratios between mesurements at 7 TeV and at 8 TeV are performed and cited in several cases. In other cases, the cross-section ratio between $t\bar{t}$ - and Z-production is determined as that is independent of luminosity uncertainties, but keeps its sensitivity to the ratio of gluon versus quark PDFs. These experimental results should be compared to the theoretical calculations at NNLO+NNLL that yield $7.16^{+0.20}_{-0.23}$ pb for top-quark mass of 173.3 GeV/c² [1] at $\sqrt{s} = 1.96$ TeV, and for top-quark mass of 173.2 GeV/c² $\sigma_{t\bar{t}} = 173.6^{+4.5+8.9}_{-5.9-8.9}$ pb at $\sqrt{s} = 7$ TeV, $\sigma_{t\bar{t}} = 247.7^{+6.3+11.5}_{-8.5-11.5}$ pb at $\sqrt{s} = 8$ TeV, and $\sigma_{t\bar{t}} = 816.0^{+19.4+34.4}_{-18.6-34.4}$ pb at $\sqrt{s} = 13$ TeV, at the LHC [1]. CMS also performed a measurement of top-quark pair production in *pPb* heavy ion collisions at $\sqrt{s} = 8.16$ TeV in 174 nb⁻¹ of lepton+jets events. They measure a cross section of $\sigma_{t\bar{t}} = 45 \pm 8$ pb, which is consistent with pQCD calculations and with the scaled *pp* data [66].

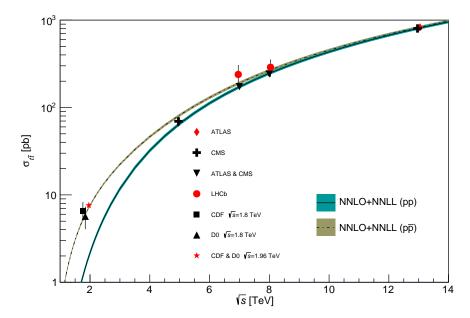


Figure 60.1: Measured and predicted $t\bar{t}$ production cross sections from Tevatron energies in $p\bar{p}$ collisions to LHC energies in pp collisions. Tevatron data points at $\sqrt{s} = 1.8$ TeV are from Refs. [67,68]. Those at $\sqrt{s} = 1.96$ TeV are from Refs. [22–24]. The ATLAS, CMS, and LHCb data points are from Refs. [28,37,42,47,51,52,55,62], and [65], respectively. Theory curves and uncertainties are generated using [1] for $m_t = 172.5$ GeV/c², the m_t value assumed in the cross-section measurements. Figure adapted from Ref. [69].

In Fig. 60.1, one sees the importance of $p\bar{p}$ at Tevatron energies where the valence antiquarks in the antiprotons contribute to the dominant $q\bar{q}$ production mechanism. At LHC energies, the dominant production mode is gluon-gluon fusion and the $pp-p\bar{p}$ difference nearly disappears. The excellent agreement of these measurements with the theory calculations is a strong validation of QCD and the soft-gluon resummation techniques employed in the calculations. The measurements reach high precision and provide stringent tests of pQCD calculations at NNLO+NNLL level including their respective PDF uncertainties.

Most of these measurements assume a $t \to Wb$ branching ratio of 100%. CDF and DØ have made direct measurements of the $t \to Wb$ branching ratio [70]. Comparing the number of events with 0, 1 and 2 tagged b jets in the lepton+jets channel, and also in the dilepton channel, using the known b-tagging efficiency, the ratio $R = B(t \to Wb) / \sum_{q=d,s,b} B(t \to Wq)$ can be extracted. In 5.4 fb⁻¹ of data, DØ measures $R = 0.90 \pm 0.04$, 2.5 σ from unity. The currently most precise measurement was made by CMS in 19.7 fb⁻¹ at $\sqrt{s} = 8$ TeV. They find $R = 1.014 \pm 0.003(stat.) \pm 0.032(syst.)$ and R > 0.955 at 95% C.L. [71]. A significant deviation of R from unity would imply either non-SM top-quark decay (for example a flavor-changing neutral-current decay), or a fourth generation of quarks.

Thanks to the large available event samples, the Tevatron and the LHC experiments also performed differential cross-section measurements in $t\bar{t}$ production. Such measurements are crucial, as they allow even more stringent tests of perturbative QCD as description of the production mechanism, allow the extraction or the use of PDF fits, and enhance the sensitivity to possible new physics contributions, especially now that NNLO predictions for the main differential observables in $t\bar{t}$ prediction have become available [72] and recently confirmed [2]. Furthermore, such measurements reduce the uncertainty in the description of $t\bar{t}$ production as background in Higgs physics and searches for rare processes or beyond Standard Model physics. Differential cross sections are typically measured by a selection of candidate events, their kinematic reconstruction and subsequent unfolding of the obtained event counts in bins of kinematic distributions in order to correct for detector resolution effects, acceptance and migration effects. In some cases a bin-by-bin unfolding is used, while other analyses use more sophisticated techniques.

Experiments at Tevatron and LHC measure the differential cross section with respect to the $t\bar{t}$ invariant mass, $d\sigma/dM_{t\bar{t}}$. The spectra are fully corrected for detector efficiency and resolution effects and are compared to several Monte Carlo simulations as well as selected theoretical calculations.

Using 9.45 fb⁻¹, CDF measured $d\sigma/dM_{t\bar{t}}$, in the lepton+jets channel providing sensitivity to a variety of exotic particles decaying into $t\bar{t}$ pairs [73]. In 9.7 fb⁻¹ of lepton+jets data, DØ measured the differential $t\bar{t}$ production cross section with respect to the transverse momentum and absolute rapidity of the top quarks as well as of the invariant mass of the $t\bar{t}$ pair [27], which are all found to be in good agreement with the SM predictions.

ATLAS measured the differential $t\bar{t}$ production cross section with respect to the top-quark transverse momentum, and of the mass, transverse momentum and rapidity of the top quark, the antitop quark as well as the $t\bar{t}$ system in 4.6 fb⁻¹ at $\sqrt{s} = 7$ TeV in the lepton+jets channel [74–76]. It is found that data is softer than all predictions for higher values of the mass of the $t\bar{t}$ system as well as in the tail of the top-quark p_T spectrum beginning at 200 GeV, particularly in the case of the Alpgen+Herwig generator. The $M_{t\bar{t}}$ spectrum is not well described by NLO+NNLL calculations and there are also disagreements between the measured rapidity of the $t\bar{t}$ system spectrum and the MC@NLO+Herwig and POWHEG+Herwig generators, both evaluated with the CT10 PDF set. All distributions show a preference for HERAPDF1.5 when used for the NLO QCD predictions. In 5.0 fb⁻¹ of $\sqrt{s} = 7$ TeV data in the lepton+jets and the dilepton channels, CMS measured normalised differential $t\bar{t}$ cross sections with respect to kinematic properties of the finalstate charged leptons and jets associated to *b*-quarks, as well as those of the top quarks and the $t\bar{t}$ system. The data are compared with several predictions from perturbative QCD calculations and found to be consistent [77]. ATLAS uses 4.6 fb⁻¹ of data at 7 TeV and 20.2 fb⁻¹ at 8 TeV to measure the differential $t\bar{t}$ cross section in the dilepton final state as a function of the mass, the transverse momentum and the rapidity of the $t\bar{t}$ system [78]. The results are compared with different Monte Carlo generators and theoretical calculations of $t\bar{t}$ production and found to be consistent with the majority of predictions in a wide kinematic range. Using 20.3 fb⁻¹ of $t\bar{t}$ events in the lepton+jets channel, ATLAS measures the normalized differential cross sections of $t\bar{t}$ production as a function of the top-quark, $t\bar{t}$ system and event-level kinematic observables [79]. The observables have been chosen to emphasize the $t\bar{t}$ production process and to be sensitive to effects of initial- and final-state radiation, to the different parton distribution functions, and to non-resonant processes and higherorder corrections. The results are in fair agreement with the predictions over a wide kinematic range. Nevertheless, most generators predict a harder top-quark transverse momentum distribution at high values than what is observed in the data. Predictions beyond NLO accuracy improve the agreement with data at high top-quark transverse momenta. Using the current settings in the Monte Carlo programs and parton distribution functions, the rapidity distributions are not well modelled by any generator under consideration. However, the level of agreement is improved when more recent sets of parton distribution functions are used. Using 20.3 fb^{-1} of 8 TeV data, ATLAS performed a dedicated differential $t\bar{t}$ cross-section measurement of highly boosted top quarks in the lepton+jets channel, where the hadronically decaying top quark has a transverse momentum above 300 GeV [80]. Jet substructure techniques are employed to identify top quarks, which are reconstructed with an anti- k_t jet with a radius parameters R = 1.0. The predictions of NLO and LO matrix element plus parton shower Monte Carlo generators are found to generally overestimate the measured cross sections.

Using 5.0 fb⁻¹ of data at 7 TeV and 19.7 fb⁻¹ at 8 TeV in the lepton+jets channel, CMS reports measurements of normalized differential cross sections for $t\bar{t}$ production with respect to four kinematic event variables: the missing transverse energy; the scalar sum of the jet transverse momentum (p_T) ; the scalar sum of the p_T of all objects in the event; and the p_T of leptonically decaying W bosons from top quark decays [81]. No significant deviations from the predictions of several SM event generators are observed. Using the full 19.7 fb⁻¹ data in the $e\mu$ channel, CMS measures normalized double-differential cross sections for $t\bar{t}$ production as a function of various pairs of observables characterizing the kinematics of the top quark and $t\bar{t}$ system [82]. The data are compared to calculations using perturbative QCD at NLO and approximate NNLO orders. They are also compared to predictions of Monte Carlo event generators that complement fixedorder computations with parton showers, hadronization, and multiple-parton interactions. Overall agreement is observed with the predictions, which is improved when the latest global sets (as determined here by CMS) of proton parton distribution functions are used. The inclusion of the measured $t\bar{t}$ cross sections in a fit of parametrized parton distribution functions is shown to have significant impact on the gluon distribution [82]. Another analysis at high transverse momentum regime for the top quarks, is performed by the CMS collaboration in 19.7 fb^{-1} at $\sqrt{s} = 8$ TeV [83]. The measurement is performed for events in electron/muon plus jets final states where the hadronically decaying top quark is reconstructed as a single large-radius jet and identified as a top candidate using jet substructure techniques. The integrated cross section is measured at particle-level within a fiducial region resembling the detector-level selection as well as at partonlevel. At particle-level, the fiducial cross section is measured to be $\sigma_{t\bar{t}} = 1.28 \pm 0.09(stat. +$ $syst.) \pm 0.10(pdf) \pm 0.09(scales) \pm 0.03(lumi.)$ pb for $p_T > 400$ GeV. At parton-level, it translates to $\sigma_{t\bar{t}} = 1.44 \pm 0.10(stat. + syst.) \pm 0.13(pdf) \pm 0.15(scales) \pm 0.04(lumi.)$ pb.

At parton-level, interactions between incoming partons (quarks or gluons) are considered via a gauge interaction yielding final state partons. While such interactions can be well described theoretically, partons are not visible in the detector. At the particle-level, visible and measurable hadrons, i.e. bound states of quarks and anti-quarks, are considered to form jets. The hadronisation process takes us from one level to the other.

In 19.7 fb⁻¹ at $\sqrt{s} = 8$ TeV, CMS repeated those measurements in the lepton+jets and in the dilepton channels [84]. While the overall precision is improved, no significant deviations from the Standard Model are found, yet a softer spectrum for the top quark at high p_T with respect to theoretical available predictions has been observed. This behaviour has been also observed in the all-hadronic final state [85], where also a total cross measurement is performed, yielding $\sigma_{t\bar{t}} = 275.6 \pm 6.1(stat) \pm 37.8(syst) \pm 7.2(lumi)$ pb is obtained. In 3.2 fb⁻¹ at $\sqrt{s} = 13$ TeV, ATLAS measured the differential $t\bar{t}$ cross section as a function of the transverse momentum and absolute rapidity of the top quark, and of the transverse momentum, absolute rapidity and invariant mass of the $t\bar{t}$ system [86,87]. The measured differential cross sections are compared to predictions of NLO generators matched to parton showers and the measurements are found to be consistent with all models within the experimental uncertainties with the exception of the Powheg-Box+ Herwig++predictions, which differ significantly from the data in both the transverse momentum of the top quark and the mass of the $t\bar{t}$ system. Using 3.2 fb⁻¹ of data in the lepton+jets channel, ATLAS measured the differential cross sections of $t\bar{t}$ production in fiducial phase-spaces as a function of top-quark and $t\bar{t}$ system kinematic observables [88]. Two separate selections are applied that each focus on different top-quark momentum regions, referred to as resolved and boosted topologies of the $t\bar{t}$ final state. The measured spectra are corrected for detector effects and are compared to several Monte Carlo simulations by means of calculated χ^2 and p-values. At a center-of-mass energy of 13 TeV, ATLAS presents a measurement of the boosted top quark differential cross section in the all-hadronic decay mode [89]. They require two top-quark candidates, one with $p_T > 500$ GeV and a second with $p_T > 350$ GeV, with each candidate reconstructed as an anti- k_T jet with radius parameter R = 1.0. The top-quark candidates are separated from the multijet background using the jet substructure and the presence of a b-quark tag in each jet. The observed kinematic distributions are unfolded to recover the differential cross sections in a limited phasespace region and compared with SM predictions, showing agreement. In addition, ATLAS measures the differential $t\bar{t}$ cross section of highly boosted top-quarks decaying to all-hadronic final states in 36.1 fb⁻¹ using jet substructure information [90]. In 36 fb⁻¹, ATLAS measures the single- and double-differential $t\bar{t}$ cross-section in the lepton + jets channel at particle and parton level. Two topologies, resolved and boosted, are considered and the results are presented as a function of several kinematic variables characterising the top and $t\bar{t}$ system and jet multiplicities. Overall, there is good agreement between the theoretical predictions and the data [91]. In 2.1 fb⁻¹ at $\sqrt{s} = 13$ TeV, CMS measures the normalized differential cross sections for $t\bar{t}$ production in the dilepton channels as a function of the kinematic properties of the leptons, jets from bottom quark hadronization, top quarks, and top quark pairs at the particle and parton levels [92]. The results are compared to several Monte Carlo generators that implement calculations up to NLO in perturbative QCD interfaced with parton showering, and also to fixed-order theoretical calculations of top quark pair production up to NNLO, showing agreement. In 2.3 fb^{-1} of events in the lepton+jets channel, CMS measures the differential and double-differential cross sections for the $t\bar{t}$ production as a function of jet multiplicity and of kinematic variables of the top quarks and the $t\bar{t}$ system [93]. The differential cross sections are presented at particle level, within a phase space close to the experimental acceptance, and at parton level in the full phase space. The results are compared to several SM predictions. Using 35.9 fb⁻¹, CMS measures the differential $t\bar{t}$ cross section in the single-lepton decay channel, as a function of a number of kinematic event variables. The data are compared to a variety of state-of-the-art LO and NLO simulations [94]. In 35.8 fb⁻¹, CMS measures the differential and double-differential $t\bar{t}$ cross sections in the lepton-plus-jets channel as a function of kinematic variables of the top quarks and the top quark-antiquark $(t\bar{t})$ system. In addition, kinematic variables and multiplicities of jets associated with the tt production are measured. The kinematic variables of the top quarks and the tt system are reasonably described in general, though

none predict all the measured distributions. In particular, the transverse momentum distribution of the top quarks is more steeply falling than predicted. The kinematic distributions and multiplicities of jets are adequately modeled by certain combinations of NLO calculations and parton shower models [95]. In the dilepton channel, CMS measures differential $t\bar{t}$ cross sections in 35.9 fb⁻¹ as functions of kinematic observables of the top quarks and their decay products, the $t\bar{t}$ system, and the total number of jets in the event. All results are compared with SM predictions from Monte Carlo simulations with NLO accuracy in QCD at matrix-element level interfaced to partonshower simulations. Where possible, parton-level results are compared to calculations with beyond-NLO precision in QCD. Significant disagreement is observed between data and all predictions for several observables. The measurements are used to constrain the top quark chromomagnetic dipole moment in an effective field theory framework at NLO in QCD and to extract $t\bar{t}$ and leptonic charge asymmetries [96]. In 35.9 fb⁻¹ of dilepton events, CMS measures normalised multi-differential $t\bar{t}$ cross sections as a function of the kinematic properties of the top quark and of the $t\bar{t}$ system at parton level in the full phase space. A triple-differential measurement is performed as a function of the invariant mass and rapidity of the $t\bar{t}$ system and the multiplicity of additional jets at particle level. The data are compared to predictions of Monte Carlo event generators that complement NLO QCD calculations with parton showers. The measurement is used to extract the strong coupling constant and the top-quark pole mass and parton distribution functions [97]. Further cross-section measurements are performed by ATLAS for $t\bar{t}$ +heavy flavour [98] and $t\bar{t}$ +jets production as well as the differential measurement of the jet multiplicity in $t\bar{t}$ events [99, 100]. Here, MC@NLO+Herwig MC is found to predict too few events at higher jet multiplicities. In addition, CMS measured the cross-section ratio $\sigma_{t\bar{t}b\bar{b}}/\sigma_{t\bar{t}jj}$ using 19.6 fb⁻¹ of 8 TeV data [101]. This is of high relevance for top quark production as background to searches, for example for measurements of $t\bar{t}h$ production and ongoing searches for 4-top quark production. Later, ATLAS also measured the $t\bar{t}$ production cross section along with as the branching ratios into channels with leptons and quarks using 4.6 fb^{-1} of 7 TeV data [102]. They find agreement with the standard model at the level of a few percent. In 36.1 fb⁻¹, ATLAS measures the $t\bar{t}b\bar{b}$ cross section in the dilepton and the lepton-plus-jet channels. Results are presented at particle level in the form of inclusive cross-sections of $t\bar{t}$ final states with three and four b-jets as well as differential cross-sections as a function of global event properties and properties of b-jet pairs. The measured inclusive fiducial cross-sections generally exceed the $t\bar{t}b\bar{b}$ predictions from various NLO matrix element calculations matched to a parton shower, but are compatible within the total uncertainties [103]. In 2.3 fb⁻¹, CMS measures the $t\bar{t}b\bar{b}$ cross section in the dilepton channel [104]. They also determine the cross section ratio $\sigma_{t\bar{t}b\bar{b}}/\sigma_{t\bar{t}ij}$. In 35.9 fb⁻¹ CMS recently measured the cross section $t\bar{t}b\bar{b}$ as well as the cross section ratio $\sigma_{t\bar{t}b\bar{b}}/\sigma_{t\bar{t}i\bar{i}i}$ in the dilepton and the lepton+jets channel [105]. They fit the distribution of the b tagging discriminant variable of the two jets that do not belong to the $t\bar{t}$ decay. In the same dataset, CMS measures the *ttbb* cross section in the all-jet channel by selecting events containing at least eight jets, of which at least two are identified as *b*-jets. A combination of multivariate analysis techniques is used to reduce the large background from multijet events not containing a top quark pair, and to help discriminate between jets originating from top quark decays and other additional jets. The measured cross sections are found to be larger than theoretical predictions by a factor of 1.5-2.4, corresponding to 1-2 standard deviations [106].

60.3.1.2 Single-top production

Single-top quark production was first observed in 2009 by DØ [107] and CDF [108, 109] at the Tevatron. The production cross section at the Tevatron is roughly half that of the $t\bar{t}$ cross section, but the final state with a single W-boson and typically two jets is less distinct than that for $t\bar{t}$ and much more difficult to distinguish from the background of W+jets and other sources. A comprehensive review of the first observation and the techniques used to extract the signal from the backgrounds can be found in [110].

The dominant production at the Tevatron is through s-channel and t-channel W-boson exchange. Associated production with a W-boson (tW production) has a cross section that is too small to observe at the Tevatron. The t-channel process is $qb \rightarrow q't$, while the s-channel process is $q\overline{q'} \rightarrow t\overline{b}$. The s- and t-channel productions can be separated kinematically. This is of particular interest because potential physics beyond the Standard Model, such as fourth-generation quarks, heavy W and Z bosons, flavor-changing-neutral-currents [11], or a charged Higgs boson, would affect the s- and t-channels differently. However, the separation is difficult and initial observations and measurements at the Tevatron by both experiments were of combined s + t-channel production. The two experiments combined their measurements for maximum precision with a resulting s + t-channel production cross section of $2.76^{+0.58}_{-0.47}$ pb [111]. The measured value assumes a top-quark mass of 170 GeV/c². The mass dependence of the result comes both from the acceptance dependence and from the $t\overline{t}$ background evaluation. Also the shape of discriminating topological variables is sensitive to m_t . The dependence on m_T is therefore not necessarily a simple linear dependence but amounts to only a few tenths of picobarns over the range $170 - 175 \text{ GeV/c}^2$. The measured value agrees well with the theoretical calculation at $m_t = 173 \text{ GeV/c}^2$ of $\sigma_{s+t} = 3.12 \text{ pb}$ (including both top and anti-top production) [6,9].

Using the full Run-II data set of up to 9.7 fb⁻¹, CDF and DØ have measured the *t*-channel single-top quark production to be $\sigma_{t+\bar{t}} = 2.25^{+0.29}_{-0.31}$ pb [112, 113]. In the same publication, they also present the simultaneously measured s- and t-channel cross sections and the s + t combined cross section measurement resulting in $\sigma_{s+t} = 3.30^{+0.52}_{-0.40}$ pb, without assuming the SM ratio of σ_s/σ_t . The modulus of the CKM matrix element obtained from the s + t-channel measurement is $|V_{tb}| = 1.02^{+0.06}_{-0.05}$ and its value is used to set a lower limit of $|V_{tb}| > 0.92$ at 95% C.L. Those results are in good agreement with the theoretical value at the mass 172.5 GeV/c² of $\sigma_t = 2.08 \pm 0.13$ pb [6]. It should be noted that the theory citations here list cross sections for t or \bar{t} alone, whereas the experiments measure the sum. At the Tevatron, these cross sections are equal. The theory values quoted here already include this factor of two.

Using datasets of 9.7 fb⁻¹ each, CDF and DØ combine their analyses and report the first observation of single-top-quark production in the *s*-channel, yielding $\sigma_s = 1.29^{+0.26}_{-0.24}$ pb [114]. The probability of observing a statistical fluctuation of the background of the given size is 1.8×10^{-10} , corresponding to a significance of 6.3 standard deviations.

At the LHC, the *t*-channel cross section is expected to be more than three times as large as *s*-channel and *tW* production, combined. Both ATLAS and CMS have measured single top production cross sections at $\sqrt{s} = 7$ TeV in *pp* collisions (assuming $m_t = 172.5$ GeV/c² unless noted otherwise).

Using 4.59 fb⁻¹ of data at $\sqrt{s} = 7$ TeV, ATLAS measures the *t*-channel single-top quark cross section in the lepton plus 2 or 3 jets channel with one *b*-tag by fitting the distribution of a multivariate discriminant constructed with a neural network, yielding $\sigma_t = 46\pm 6$ pb, $\sigma_{\bar{t}} = 23\pm 4$ pb with a ratio $R_t = \sigma_t/\sigma_{\bar{t}} = 2.04 \pm 0.18$ and $\sigma_{t+\bar{t}} = 68 \pm 8$ pb, consistent with SM expectations [115, 116]. CMS follows two approaches in 1.6 fb⁻¹ of lepton plus jets events. The first approach exploits the distributions of the pseudorapidity of the recoil jet and reconstructed top-quark mass using background estimates determined from control samples in data. The second approach is based on multivariate analysis techniques that probe the compatibility of the candidate events with the signal. They find $\sigma_{t+\bar{t}}^{t-channel} = 67.2 \pm 6.1$ pb, and $|V_{tb}| = 1.020 \pm 0.046(exp.) \pm 0.017(th.)$ [117].

At $\sqrt{s} = 8$ TeV, both experiments repeat and refine their measurements. ATLAS uses 20.2 fb⁻¹ of data. Total, fiducial and differential cross-sections are measured for both top-quark and top-

antiquark production [118]. An artificial neural network is employed to separate signal from background. The fiducial cross-section is measured with a precision of 5.8% (top quark) and 7.8% (top antiquark), respectively. The total cross-sections are measured to be $\sigma_t^{t-channel}(tq) = 56.7^{+4.3}_{-3.8}$ pb for top-quark production and $\sigma_{\bar{t}}^{t-channel}(\bar{t}q) = 32.9^{+3.0}_{-2.7}$ pb for top-antiquark production, in agreement with the SM prediction. In addition, the ratio of top-quark to top-antiquark production cross-sections is determined to be $R_t = 1.72 \pm 0.09$. The total cross-section is used to extract the Wtb coupling: $f_{LV} \cdot |V_{tb}| = 1.029 \pm 0.048$, which corresponds to $|V_{tb}| > 0.92$ at the 95% confidence level, when assuming $f_{LV} = 1$ and restricting the range of $|V_{tb}|$ to the interval [0, 1]. The differential cross-sections as a function of the transverse momentum and rapidity of both the top quark and the top antiquark are measured at both the parton and particle levels. The transverse momentum and rapidity differential cross-sections of the accompanying jet from the t-channel scattering are measured at particle level. All measurements are compared to various Monte Carlo predictions as well as to fixed-order QCD calculations where available. The SM predictions provide good descriptions of the data. Using the same dataset, ATLAS probes the Wtb vertex structure from polarisation observables in t-channel single-top quark events. The polarisation observables are extracted from asymmetries in angular distributions measured with respect to spin quantisation axes appropriately chosen for the top quark and the W-boson. The asymmetry measurements are performed at parton level by correcting the observed angular distributions for detector effects and hadronisation after subtracting the background contributions. The measured top-quark and W-boson polarisation values are in agreement with the Standard Model predictions [119]. CMS uses 19.7 $\rm fb^{-1}$ in the electron or muon plus jets channel, exploiting the pseudorapidity distribution of the recoil jet. They find $\sigma_t = 53.8 \pm 1.5(stat.) \pm 4.4(syst.)$ pb and $\sigma_{\bar{t}} = 27.6 \pm 1.3(stat.) \pm 3.7(syst.)$ pb, resulting in an inclusive t-channel cross section of $\sigma_{t+\bar{t}} = 83.6 \pm 2.3(stat.) \pm 7.4(syst.)$ [120]. They measure a cross section ratio of $R_t = \sigma_t / \sigma_{\bar{t}} = 1.95 \pm 0.10 (stat.) \pm 0.19 (syst.)$, in agreement with the SM. The CKM matrix element V_{tb} is extracted to be $|V_{tb}| = 0.998 \pm 0.038(exp.) \pm 0.016(th.)$. Later, CMS has also provided a fiducial cross section measurement for t-channel single top at $\sqrt{s} = 8$ TeV with 19.7 fb⁻¹ of data in signal events with exactly one muon or electron and two jets, one of which is associated with a b-hadron [121]. The definition of the fiducial phase space follows closely the constraints imposed by event-selection criteria and detector acceptance. The total fiducial cross section is measured using different generators at next-to-leading order plus parton-shower accuracy. Using as reference the aMC@NLO MC predictions in the four-flavour scheme a $\sigma_t^{\text{fid}} = 3.38 \pm 0.25(exp.) \pm 0.20(th.)$ pb is obtained, in good agreement with the theory predictions. At 13 TeV, ATLAS uses 3.2 fb^{-1} to measurement the *t*-channel cross section. Using a binned maximum-likelihood fit to the discriminant distribution of a neural network, the cross-sections are determined to be $\sigma_t(tq) = 156 \pm 5(stat.) \pm 27(syst.) \pm 3(lumi.)$ pb and $\sigma(\bar{t}q) = 91 \pm 4(stat.) \pm 18(syst.) \pm 2(lumi.)$ pb [122]. The cross-section ratio is measured to be $R_t = \sigma_t / \sigma_{\bar{t}} = 1.72 \pm 0.09(stat.) \pm 0.18(syst.)$. All results are in agreement with SM predictions. A measurement of the t-channel single top-quark cross section is also available at 13 TeV with the CMS detector, corresponding to an integrated luminosity of 2.2 fb⁻¹. Fits to the transverse W-mass and the output of an artificial neural network allow the determination of the background and the signal contribution. The measured cross-section is $\sigma_t = 238 \pm 13 \pm 29$ pb [123]. The CKM matrix is determined to $|V_{tb}| = 1.05 \pm 0.07(exp.) \pm 0.02(th.)$. Using 35.9 fb⁻¹ of data, CMS performs measurements of the t-channel cross sections of single top quarks and antiquarks in the t channel, and their ratio. Events with one muon or electron are selected, and different categories of jet and b-jet multiplicity and multivariate discriminators are applied to separate the signal from the background, resulting in $\sigma_t(tq) = 136 \pm 1(stat) \pm 22(syst)$ pb and $\sigma_t(\bar{t}q) = 82 \pm 1(stat) \pm 14(syst)$ pb, respectively, and their ratio is $1.66 \pm 0.02(stat) \pm 0.05(syst)$. The results are in agreement with the

predictions from the Standard Model [124].

The predicted cross section for tW process at the LHC $\sqrt{s} = 7$ TeV is 15.6 ± 1.2 pb [10]. This is of interest because it probes the Wtb vertex in a different kinematic region than s- and t-channel production, and because of its similarity to the associated production of a charged-Higgs boson and a top quark. The signal is difficult to extract because of its similarity to the $t\bar{t}$ signature. Furthermore, it is difficult to uniquely define because at NLO a subset of diagrams have the same final state as $t\bar{t}$ and the two interfere [125]. The cross section is calculated using the *diagram removal* technique [126] to define the signal process. In the diagram removal technique the interfering diagrams are removed, at the amplitude level, from the signal definition (an alternative technique, *diagram subtraction* removes these diagrams at the cross-section level and yields similar results [126]). These techniques work provided the selection cuts are defined such that the interference effects are small, which is usually the case.

Both, ATLAS and CMS, also provide evidence for the associate tW production at $\sqrt{s} = 7$ TeV [127,128]. ATLAS uses 2.05 fb⁻¹ in the dilepton plus missing E_T plus jets channel, where a template fit to the final classifier distributions resulting from boosted decision trees as signal to background separation is performed. The result is incompatible with the background-only hypothesis at the 3.3σ (3.4σ expected) level, yielding $\sigma_{tW} = 16.8 \pm 2.9(stat.) \pm 4.9(syst.)$ pb and $|V_{tb}| = 1.03^{+0.16}_{-0.19}$ [127]. CMS uses 4.9 fb⁻¹ in the dilepton plus jets channel with at least one *b*-tag. A multivariate analysis based on kinematic properties is utilized to separate the $t\bar{t}$ background from the signal. The observed signal has a significance of 4.0σ and corresponds to a cross section of $\sigma_{tW} = 16^{+5}_{-4}$ pb [128]. Both experiments repeated their tW-analyses at $\sqrt{s} = 8$ TeV. ATLAS uses 20.3 fb⁻¹ to select

Both experiments repeated their tW-analyses at $\sqrt{s} = 8$ TeV. ATLAS uses 20.3 fb⁻¹ to select events with two leptons and one central *b*-jet. The tW signal is separated from the backgrounds using boosted decision trees, each of which combines a number of discriminating variables into one classifier. Production of tW events is observed with a significance of 7.7σ . The cross section is extracted in a profile likelihood fit to the classifier output distributions. The tW cross section, inclusive of decay modes, is measured to be $\sigma_{tW} = 23.0 \pm 1.3(stat.)^{+3.2}_{-3.5}(syst.) \pm 1.1(lumi.)$ pb, yielding a value for the CKM matrix element $|V_{tb}| = 1.01 \pm 0.10$ and a lower limit of 0.80 at the 95% C.L. [129]. A fiducial cross section is also measured. CMS uses 12.2 fb⁻¹ in events with two leptons and a jet originated from a *b* quark. A multivariate analysis based on kinematic properties is utilized to separate the signal and background. The tW associate production signal is observed at the level of 6.1σ , yielding $\sigma_{tW} = 23.4 \pm 5.4$ pb and $|V_{tb}| = 1.03 \pm 0.12(exp.) \pm 0.04(th.)$ [130]. ATLAS and CMS also combine their measurements and obtain $\sigma_{tW} = 25.0 \pm 1.4(stat.) \pm 4.4(syst.) \pm 0.7(lumi.)$ pb = 25.0 ± 4.7 pb [131], in agreement with the NLO+NNLL expectation. They extract a 95% C.L. lower limit on the CKM matrix element of $|V_{tb}| > 0.79$.

At 13 TeV in the tW-channel, ATLAS uses 3.2 fb⁻¹ of events with two opposite sign isolated leptons and at least one jet; they are separated into signal and control regions based on their jet multiplicity and the number of jets with b-tags. Signal is separated from background in two regions using boosted decision trees. The cross section is extracted by fitting templates to the data distributions, and is measured to be $\sigma_{tW} = 94 \pm 10(stat.)^{+28}_{-22}(syst.) \pm 2(lumi.)$ pb [132]. The measurement is in agreement with the SM prediction. CMS uses 36 fb⁻¹ of events with two opposite sign isolated leptons, one tight and one loose jet and one b-tag. Signal and background is separated in categories depending on the number of jets and the subset of b-tagged jets using a boosted decision tree. A maximum likelihood fits yields $\sigma_{tW} = 63.1 \pm 6.6$ pb [133].

The s-channel production cross section is expected to be 4.6 ± 0.3 pb for $m_t = 173 \text{ GeV/c}^2$ at $\sqrt{s} = 7 \text{ TeV}$ [9]. At ATLAS, a search for s-channel single top quark production is performed in 0.7 fb⁻¹ at 7 TeV using events containing one lepton, missing transverse energy and two b-jets. Using a cut-based analysis, an observed (expected) upper limit at 95% C.L. on the s-channel crosssection of $\sigma_s < 26.5$ (20.5) pb is obtained [134]. At 8 TeV, ATLAS uses 20.3 fb⁻¹ of data with

one lepton, large missing transverse momentum and exactly two b-tagged jets. They perform a maximum-likelihood fit of a discriminant based on a Matrix Element Method and optimized in order to separate single top-quark s-channel events from the main background contributions which are top-quark pair production and W boson production in association with heavy flavour jets. They find $\sigma_s = 4.8 \pm 0.8(stat.)^{+1.6}_{-1.3}(syst.)$ pb with a signal significance of 3.2 standard deviations [135], which provides first evidence for s-channel single-top production at 8 TeV. The signal is extracted through a maximum-likelihood fit to the distribution of a multivariate discriminant defined using boosted decision trees to separate the expected signal contribution from background processes. At 7 TeV and 8 TeV, CMS uses 5.1 fb^{-1} and 19.3 fb^{-1} , respectively, and analyses leptonic decay modes by performing a maximum likelihood fit to a multivariate discriminant defined using a Boosted Decision Tree, yielding cross sections of $\sigma_s = 7.1 \pm 8.1$ pb and $\sigma_s = 13.4 \pm 7.3$ pb, respectively, and a best fit value of 2.0 ± 0.9 for the combined ratio of the measured σ_s values and the ones expected in the Standard Model [136]. The signal significance is 2.5 standard deviations. ALTAS and CMS present the combinations of their single-top-quark production cross-section measurements, using Run-I data corresponding to integrated luminosities of 1.17 to 5.1 fb⁻¹ at $\sqrt{s} = 7$ TeV and 12.2 to 20.3 fb⁻¹ at $\sqrt{s} = 8$ TeV. These combinations are performed per centre-of-mass energy and for each production mode: t-channel, tW, and s-channel. The combined t-channel cross-sections are 67.5 ± 5.7 pb and 87.7 ± 5.8 pb at $\sqrt{s} = 7$ and 8 TeV, respectively. The combined tW cross-sections are 16.3 ± 4.1 pb and 23.1 ± 3.6 pb at $\sqrt{s} = 7$ and 8 TeV, respectively. For the s-channel crosssection, the combination yields 4.9 ± 1.4 pb at $\sqrt{s} = 8$ TeV. The square of the magnitude of the CKM matrix element V_{tb} multiplied by a form factor f_{LV} is determined for each production mode and centre-of-mass energy, using the ratio of the measured cross-section to its theoretical prediction. All combined measurements are consistent with their corresponding SM predictions [137]. Both, ATLAS and CMS, also measured the electroweak production of single top-quarks in association with a Z-boson, see section C.2.4 of this review.

Fig. 60.2 provides a summary of all single top cross-section measurements at the Tevatron and the LHC as a function of the center-of-mass energy. All cross-section measurements are very well described by the theory calculation within their uncertainty.

Thanks to the large statistics now available at the LHC, both CMS and ATLAS experiments also performed differential cross-section measurements in single-top t-channel production [115], [138]. Such measurements are extremely useful as they test our understanding of both QCD and EW topquark interactions. The CMS collaboration has measured differential single top quark t-channel production cross sections as functions of the transverse momentum and the absolute value of the rapidity of the top quark. The analysis is performed in the leptonic decay channels of the top quark, with either a muon or an electron in the final state, using data collected with the CMS experiment at the LHC at $\sqrt{s} = 8$ TeV and corresponding to an integrated luminosity of 19.7 fb⁻¹. Neural networks are used to discriminate the signal process from the various background contributions. The results are found to agree with predictions from Monte Carlo generators [138]. Using the same data set and under the assumption that the spin analyzing power of a charged lepton is 100% as predicted in the SM, they are also able to measure the polarization of the top quark $P_t = 0.82 \pm 0.12(stat.) \pm 0.32(syst.)$ [139]. At 13 TeV, using 35.9 fb⁻¹, CMS measures the differential t-channel cross sections, for the first time in single-top production, and charge ratios for t-channel single top quark production [140]. The results are found to be in agreement with SM predictions using various NLO event generators and sets of parton distribution functions. Additionally, the spin asymmetry, sensitive to the top quark polarisation, is determined from the differential distribution of the polarisation angle at parton level to be 0.439 ± 0.062 , in agreement with the SM prediction. This disfavours the results obtained at 8 TeV.

ATLAS has measured the differential tW cross section in 36.1 fb⁻¹ at 13 TeV with respect to

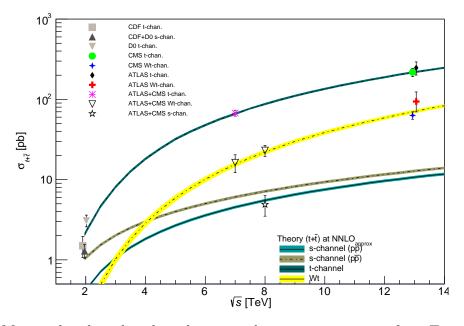


Figure 60.2: Measured and predicted single top production cross sections from Tevatron energies in $p\bar{p}$ collisions to LHC energies in pp collisions. Tevatron data points at $\sqrt{s} = 1.96$ TeV are from Refs. [113, 114]. The ATLAS and CMS data points at $\sqrt{s} = 7$ TeV are from Refs. [115, 117, 127, 128, 134, 136]. The ones at $\sqrt{s} = 8$ TeV are from Refs. [118, 120, 129, 130, 135, 136]. The ones at $\sqrt{s} = 13$ TeV are from Refs. [122, 123] Theory curves are generated using [6, 9, 10].

the energy of the *b*-jet, the energy of the system of the two leptons and *b*-jet, and the transverse mass or mass of combinations of leptons, the *b*-jet and neutrinos [141].

In 35.9 fb⁻¹, CMS managed to establish the first ecidence for the production of a single top quark in association with a photon [142]. A multivariate discriminant based on topological and kinematic event properties is employed to separate signal from background processes. An excess above the background-only hypothesis is observed, with a significance of 4.4 standard deviations.

60.3.1.3 Top-Quark Forward-Backward & Charge Asymmetry

A forward-backward asymmetry in $t\bar{t}$ production at a $p\bar{p}$ collider arises starting at order α_S^3 in QCD from the interference between the Born amplitude $q\bar{q} \rightarrow t\bar{t}$ with 1-loop box production diagrams and between diagrams with initial- and final-state gluon radiation. The asymmetry, A_{FB} , is defined by

$$A_{FB} = \frac{N(\Delta y > 0) - N(\Delta y < 0)}{N(\Delta y > 0) + N(\Delta y < 0)},$$
(60.2)

where $\Delta y = y_t - y_{\bar{t}}$ is the rapidity difference between the top- and the anti-top quark. Calculations at α_S^3 predict a measurable A_{FB} at the Tevatron. The most recent calculations up to order α_S^4 , including electromagnetic and electroweak corrections, yield a predicted asymmetry of $\approx (9.5 \pm 0.7)\%$ [143]. This is about 10% higher than the previous calculation at NLO [144, 145], and improves the agreement with experiment.

Both CDF and DØ measured asymmetry values in excess of the SM prediction, fueling speculation about exotic production mechanisms (see, for example, [146] and references therein). The first measurement of this asymmetry by DØ in 0.9 fb⁻¹ [147] found an asymmetry at the detector level of $(12 \pm 8)\%$. The first CDF measurement in 1.9 fb⁻¹ [148] yielded $(24 \pm 14)\%$ at parton level. Both values were higher, though statistically consistent with the SM expectation. With the

addition of more data, the uncertainties have been reduced, and the central values, if somewhat smaller, have remained consistent with the first measurements. At the same time, the improved calculations from theory have increased the predicted asymmetry values to the point where the discrepancy is no longer statistically significant.

CDF and DØ have now combined results using the full Tevatron dataset at $\sqrt{s} = 1.96$ TeV [149]. Three combined asymmetries are reported: $A_{FB}^{t\bar{t}}$ as defined in Eq. 2 for fully-reconstructed $t\bar{t}$ events, a single-lepton asymmetry, A_{FB}^{ℓ} defined as in Eq. 2 but with Δy replaced by the product of the lepton charge and pseudo-rapidity, and a dilepton asymmetry, $A_{FB}^{\ell\ell}$, defined as in Eq. 2 but with Δy replaced by $\Delta \eta$ between the two leptons. The combined results are $A_{FB}^{t\bar{t}} = 0.128 \pm 0.021 \pm 0.014$, $A_{FB}^{\ell} = 0.073 \pm 0.016 \pm 0.012$, and $A_{FB}^{\ell\ell} = 0.108 \pm 0.043 \pm 0.016$, where the first uncertainty is statistical and the second systematic. These are to be compared to SM predictions at NNLO QCD and NLO electroweak of $A_{FB}^{t\bar{t}} = 0.095 \pm 0.007$ [143], $A_{FB}^{\ell} = 0.038 \pm 0.003$, and $A_{FB}^{\ell\ell} = 0.048 \pm 0.004$ [145], respectively. Both experiments have also measured differential asymmetries, in bins of $M_{t\bar{t}}$, Δy , $q_{\ell} \times \eta_{\ell}$, and $\Delta \eta_{\ell\ell}$, with consistent results, though the growth of $A_{FB}^{t\bar{t}}$ with increasing $M_{t\bar{t}}$ and Δy appears somewhat more rapid than the SM prediction [149].

At the LHC, where the dominant $t\bar{t}$ production mechanism is the charge-symmetric gluongluon fusion, the measurement is more difficult. For the sub-dominant $q\bar{q}$ production mechanism, the symmetric pp collision does not define a forward and backward direction. Instead, the charge asymmetry, A_C , is defined in terms of a positive versus a negative $t - \bar{t}$ rapidity difference, Δy

$$A_C^{t\bar{t}} = \frac{N(\Delta|y| > 0) - N(\Delta|y| < 0)}{N(\Delta|y| > 0) + N(\Delta|y| < 0)}.$$
(60.3)

Both CMS and ATLAS have measured A_C in the LHC dataset. Using lepton+jets events in 4.7 fb⁻¹ of data at $\sqrt{s} = 7$ TeV, ATLAS measures $A_C^{t\bar{t}} = (0.6 \pm 1.0)\%$ [150]. ATLAS has reported on the same measurement performed at $\sqrt{s} = 8$ TeV with 20.3 fb⁻¹ of data, with a result of $A_C^{t\bar{t}} = (0.009 \pm 0.005)$ [151]. In the dilepton channel at $\sqrt{s} = 8$ TeV, ATLAS measures [152] $A_C^{t\bar{t}} = 0.021 \pm 0.016$, and $A_C^{\ell\ell} = 0.008 \pm 0.006$ (defined in terms of the $\Delta\eta$ of the two leptons) in agreement with the SM predictions of $(1.11 \pm 0.04)\%$ and $(0.64 \pm 0.03)\%$, respectively [145]. Using lepton+jets events CMS has measured A_C at both $\sqrt{s} = 7$ and 8 TeV. They measure $A_C^{t\bar{t}} = (0.4 \pm 1.5)\%$ and $A_C^{t\bar{t}} = (0.33 \pm 0.26(stat.) \pm 0.33(syst.))\%$ in 5.0 fb⁻¹ at $\sqrt{s} = 7$ TeV and In 19.7 fb⁻¹ at $\sqrt{s} = 8$ TeV, respectively [153, 154]. Both measurements are consistent with the SM expectations of $A_C^{t\bar{t}} = 1.23 \pm 0.05\%$ at $\sqrt{s} = 7$ TeV and $1.11 \pm 0.04\%$ at $\sqrt{s} = 8$ TeV [145], although the uncertainties are still too large for a precision test. In 19.5 fb⁻¹ of dilepton events at $\sqrt{s} = 8$ TeV, CMS measures $A_C^{t\bar{t}} = 0.011 \pm .013$ and $A_C^{\ell\ell} = 0.003 \pm 0.007$ [155], consistent with SM expectations [156].

In their 7 and 8 TeV analyses ATLAS and CMS also provide differential measurements as a function of $M_{t\bar{t}}$ and the transverse momentum p_T and rapidity y of the $t\bar{t}$ system. To reduce model-dependence, the CMS Collaboration has performed a measurement in a reduced fiducial phase space [157], with a result of $A_C = -0.0035 \pm 0.0072(stat.) \pm 0.0031(syst.)$, in agreement with SM expectations.

To specifically address the dependence of the asymmetry on $M_{t\bar{t}}$, ATLAS has performed a measurement in boosted $t\bar{t}$ events [158]. In 20.3 fb⁻¹ of data at $\sqrt{s} = 8$ TeV, in events with $M_{t\bar{t}} > 0.75$ TeV, and $|(\Delta|y|)| < 2$, ATLAS measures $A_C^{t\bar{t}} = (4.2 \pm 3.2)\%$ compared to a NLO SM prediction of $(1.60 \pm 0.04)\%$. The measurement is also presented in three bins of $M_{t\bar{t}}$, each in agreement, though with large uncertainties, with the SM expectations.

Both ATLAS and CMS have measured asymmetries in the distribution of leptons from $t\bar{t}$ decays. ATLAS, in 4.6 fb⁻¹ of $\sqrt{s} = 7$ TeV data, has measured $A^{\ell\ell} = (2.4 \pm 1.5 (\text{stat.}) \pm 0.9 (\text{sys.}))\%$ in dilepton events [159]. Using a neutrino weighting technique in the same dataset to reconstruct the top quarks, ATLAS measures $A_C = (2.1\pm2.5 \text{ (stat.)}\pm1.7 \text{ (sys.)})\%$. CMS, in 5.0 fb⁻¹ of $\sqrt{s} = 7$ TeV data, uses dilepton events to measure $A_C = (1.0\pm1.5 \text{ (stat.)}\pm0.6 \text{ (sys.)})\%$, where a matrix weighting technique is used to reconstruct the top quarks, and $A^{\ell\ell} = (0.9\pm1.0 \text{ (stat.)}\pm0.6 \text{ (sys.)})\%$ [160]. An earlier result using lepton+jets events from the same CMS dataset found $A_C = (0.4\pm1.0\pm1.1)\%$ [153]. Combined results from ATLAS and CMS have recently been released [161]. At $\sqrt{s} = 7$ TeV the combined result is $A_C = (0.5\pm0.7 \text{ (stat.)}\pm0.6 \text{ (sys.)})\%$, and at $\sqrt{s} = 8$ TeV it is $A_C = (0.55\pm0.23\pm0.25)\%$. These results are all consistent, within their large uncertainties, with the SM expectations of $A^{\ell\ell} = (0.70\pm0.03)\%$ and $A_C = (1.23\pm0.05)\%$ [145].

A model-independent comparison of the Tevatron and LHC results is made difficult by the differing $t\bar{t}$ production mechanisms at work at the two accelerators and by the symmetric nature of the pp collisions at the LHC. A recent result from the CMS Collaboration [162] in 35.9 fb⁻¹ of lepton plus jets events at $\sqrt{s} = 13$ TeV, uses a likelihood analysis in to separate the $q\bar{q}$ process from production via gluon-gluon and gluon-quark interactions and extract $A_{FB} = 0.048^{+0.088}_{-0.084}$ (stat.) \pm 0.028 (sys.). In addition, given a particular model of BSM physics, a comparison can be obtained through the resulting asymmetry predicted by the model at the two machines, see for example [158].

60.3.2 Top-Quark Properties

60.3.2.1 Top-Quark Mass Measurements

The most precisely studied property of the top quark is its mass. The top-quark mass has been measured in the lepton+jets, the dilepton, and the all-jets channel by all four Tevatron and LHC experiments. The latest and/or most precise results are summarized in Table 60.1. The lepton+jets channel yields the most precise single measurements because of good signal to background ratio (in particular after b-tagging) and the presence of only a single neutrino in the final state. The momentum of a single neutrino can be reconstructed (up to a quadratic ambiguity) via the missing E_T measurement and the constraint that the lepton and neutrino momenta reconstruct to the known W boson mass. In the large data samples available at the LHC, measurements in the dilepton channel can be competitive and certainly complementary to those in the lepton+jets final state.

A large number of techniques have now been applied to measuring the top-quark mass. The original 'template method' [163], in which Monte Carlo templates of reconstructed mass distributions are fit to data, has evolved into a precision tool in the lepton+jets channel, where the systematic uncertainty due to the jet energy scale (JES) uncertainty is controlled by a simultaneous, in situ fit to the $W \to jj$ hypothesis [164]. All the latest measurements in the lepton+jets and the all-jets channels use this technique in one way or another. In 20.2 fb⁻¹ of data at $\sqrt{s} = 8$ TeV in the lepton+jets channel, ATLAS achieves a total uncertainty of 0.53% with a statistical component of 0.23% [165]. The measurement is based on a 3-dimensional template fit, determining the top-quark mass, the global jet energy scale and a b-to-light jet energy scale factor. The most precise CMS result in the lepton+jets channel uses an ideogram method and comes from a so-called 'hybrid' approach in which the prior knowledge about the jet energy scale is incorporated as a Gaussian constraint, with a width determined by the uncertainty on the jet energy corrections. In 19.7 $\rm fb^{-1}$ of $\sqrt{s} = 8$ TeV data, CMS achieves a total uncertainty of 0.30% with a statistical component of 0.09% with the hybrid approach [166]. Using this same method, CMS has recently released the first top-mass measurement from $\sqrt{s} = 13$ TeV data. Using 35.9 fb⁻¹ of lepton+jets events they measure the top mass with a precision of 0.36%, with a statistical component of 0.05% [167]. The measurements at $\sqrt{s} = 13$ TeV include, for the first time, an uncertainty due to 'color recoonection' [168,169]. In this same dataset, CMS has extracted a top mass from highly boosted top-quark decays by selecting events in which the hadronic-side top decay is reconstructed as a single jet with

 $P_T > 400$ GeV. The cross section as a function of jet mass is unfolded at the particle level to extract a top mass with a precision of 1.4% [170].

The template method is complemented by the 'matrix element' method. This method was first applied by the DØ Collaboration [171], and is similar to a technique originally suggested by Kondo *et al.* [172] and Dalitz and Goldstein [173]. In the matrix element method a probability for each event is calculated as a function of the top-quark mass, using a LO matrix element for the production and decay of $t\bar{t}$ pairs. The *in situ* calibration of dijet pairs to the $W \rightarrow jj$ hypothesis is now also used with the matrix element technique to constrain the jet energy scale uncertainty. In the lepton+jets channel, DØ uses the full Tevatron dataset of 9.7 fb⁻¹ and yields an uncertainty of about 0.43% [174].

In the dilepton channel, the signal to background is typically very good, but reconstruction of the mass is non-trivial because there are two neutrinos in the final state, yielding a kinematically unconstrained system. A variety of techniques have been developed to handle this. An analytic solution to the problem has been proposed [175], but this has not yet been used in the mass measurement. One of the most precise measurements in the dilepton channel comes from using the invariant mass of the charged lepton and b-quark system $(M_{\ell b})$, which is sensitive to the top-quark mass and avoids the kinematic difficulties of the two-neutrino final state. In 4.6 fb⁻¹ of $\sqrt{s} = 7$ TeV data, ATLAS has measured the top-quark mass in the dilepton channel to a precision of 0.53%using a template fit to the $M_{\ell b}$ distribution [176]. Using 19.7 fb⁻¹ of data at $\sqrt{s} = 8$ TeV, CMS has released [177] a mass measurement in the dilepton channel based on a simultaneous fit to $M_{\ell b}$ and a transverse-mass-like variable M_{T2} [178]. The most precise result in this analysis, which comes from a linear combination of fits with the jet energy scale fixed at its nominal value and one that simultaneously determines the top mass and jet energy scale, has a total uncertainty of 0.54%. At the LHC, because of their precision, these techniques have largely displaced a number of earlier techniques in the dilepton channel, though these techniques are still included, and described, in the combined results from CMS, reported in Ref. [166].

Table 60.1: Measurements of top-quark mass from Tevatron and LHC. $\int \mathcal{L}dt$ is given in fb⁻¹. The results are a selection of both published and preliminary (not yet submitted for publication as of September 2019) measurements. For a complete set of published results see the Listings. Statistical uncertainties are listed first, followed by systematic uncertainties.

$m_t \; (\text{GeV}/c^2)$	Source	∫Ldt	Ref.	Channel
$172.08 \pm 0.25 \pm 0.41$	ATLAS	20.2	[165]	ℓ +jets+ $\ell\ell$ +All jets
$172.44 \pm 0.13 \pm 0.47$	CMS	19.7	[166]	ℓ +jets+ $\ell\ell$ +All jets
$172.35 \pm 0.16 \pm 0.48$	CMS	19.7	[166]	$\ell + \mathrm{jets}$
$172.34 \pm 0.20 \pm 0.70$	CMS	35.9	[179]	$\ell\ell$
$173.72 \pm 0.55 \pm 1.01$	ATLAS	20.2	[180]	All jets
$172.25 \pm 0.08 \pm 0.62$	CMS	35.9	[167]	$\ell + \text{jets}$
$174.30 \pm 0.35 \pm 0.54$	CDF,DØ (I+II)	≤ 9.7	[181]	publ. or prelim.
$\underline{173.34 \pm 0.27 \pm 0.71}$	Tevatron+LHC	$\leq 8.7 + \leq 4.9$	[3]	publ. or prelim.

In the neutrino weighting technique, used by CDF to analyze the full Run 2 dilepton dataset of 9.1 fb⁻¹, a weight is assigned by assuming a top-quark mass value and applying energy-momentum conservation to the top-quark decay, resulting in up to four possible pairs of solutions for the neutrino and anti-neutrino momenta. The missing E_T calculated in this way is then compared to the observed missing E_T to assign a weight [182]. The CDF result achieves a precision of 1.8% using a combination of neutrino weighting and an "alternative mass", which is insensitive to the

jet energy scale [183]. The alternative mass depends on the angles between the leptons and the leading jets and the lepton four-momenta.

In the all-jets channel there is no ambiguity due to neutrino momenta, but the signal to background is significantly poorer due to the severe QCD multijets background. The emphasis therefore has been on background modeling, and reduction through event selection. The most recent measurement in the all-jets channel, by CMS in 35.9 fb⁻¹ of $\sqrt{s} = 13$ TeV data [179], uses an ideogram method and a 2-dimensional simultaneous fit for m_t and the jet energy scale to extract the topquark mass and achieves a precision of 0.36%. A recent measurement from ATLAS [180] uses a template fit to the ratio of three-jet (m_t) to two-jet (M_W) mass in the all-hadronic channel, the two-jet denominator provides an *in situ*, fit to the $W \rightarrow jj$ hypothesis. In 20.2 fb⁻¹ of data at $\sqrt{s} = 8$ TeV, the result has a precision of 0.65%. A measurement from CDF in 9.3 fb⁻¹ uses a two-dimensional template fit and achieves a precision of 1.1% [184].

The CMS Collaboration has, for the first time, extracted a top-quark mass measurement from single-top events [185], something not previously done because of the poor signal to background ratio. The mass is extracted from the invariant mass of the muon, bottom quark, and missing transverse energy. In 19.7 fb⁻¹ of data at $\sqrt{s} = 8$ TeV, a precision of 0.71% is achieved.

A dominant systematic uncertainty in these methods is the understanding of the jet energy scale, and so several techniques have been developed that have little sensitivity to the jet energy scale uncertainty. In addition to Reference [183] mentioned above, these include the measurement of the top-quark mass using the following techniques: Fitting of the lepton p_T spectrum of candidate events [186]; fitting of the transverse decay length of the *b*-jet (L_{xy}) [187]; fitting the invariant mass of a lepton from the *W*-decay and a muon from the semileptonic *b* decay [188], kinematic properties of secondary vertices from *b*-quark fragmentation [189], the invariant mass of the $J/\psi + \ell$ system in events in which a *b*-quark fragments to a J/ψ particle [190], fitting the *b*-jet energy peak [191], and dilepton kinematics in $e\mu$ events [192].

Several measurements have now been made in which the top-quark mass is extracted from the measured $t\bar{t}$ cross section using the theoretical relationship between the mass and the production cross section. These determinations make use of predictions calculated at higher orders, where the top mass enters as an input parameter defined in a given scheme. At variance with the usual methods, which involve the kinematic properties of the final states and therefore the pole mass, this approach can also directly determine a short-distance mass, such as the $\overline{\text{MS}}$ mass [193]. With an alternative method ATLAS recently extracted the top-quark pole mass using $t\bar{t}$ events with at least one additional jet, basing the measurement on the relationship between the differential rate of gluon radiation and the mass of the quark [194]. A similar analysis by CMS used the differential cross section as a function of the invariant mass of the $t\bar{t}$ system and the leading jet not associated with the top decays [195].

Each of the experiments has produced a measurement combining its various results. The combined measurement from CMS with up to 19.7 fb⁻¹ of data achieves statistical and systematic uncertainties of 0.08% and 0.27%, respectively [166]. The combined measurement from ATLAS, with up to 20.3 fb⁻¹ yields statistical and systematic uncertainties of 0.14% and 0.24%, respectively [165]. CDF has combined measurements with up to 9.3 fb⁻¹ [196] and achieves a statistical precision of 0.33% and a systematic uncertainty of 0.43%. DØ achieves a 0.33% statistical+JES and a 0.28% systematic uncertainty by combining results in 9.7 fb⁻¹ [197].

Combined measurements from the Tevatron experiments and from the LHC experiments take into account the correlations between different measurements from a single experiment and between measurements from different experiments. The Tevatron average [181], using up to 9.7 fb⁻¹ of data, now has a precision of 0.37%. The LHC combination, using up to 4.9 fb⁻¹ of data, has a precision of 0.56% [198], where more work on systematic uncertainties is required. A Tevatron-LHC combination has been released, combining the results of all four experiments, using the full Tevatron dataset and the $\sqrt{s} = 7$ TeV LHC data, with a resulting precision of 0.44% [3]

The direct measurements of the top-quark mass, such as those shown in Table 60.1, correspond to the parameter used in the Monte Carlo generators, which is generally agreed to be the pole mass. The relation between the pole mass and short-distance masses, such as $\overline{\text{MS}}$, is affected by non-perturbative effects. Recent calculations evaluate the size of this ambiguity to be below 250 MeV and therefore still smaller than the current measurement uncertainty [199,200].

As a result of renormalization at higher-orders in perturbation theory, the top quark mass depends on the scale at which is it evaluated. The CMS collaboration has made the first measurement of the so-called running of the top-quark mass in the $\overline{\text{MS}}$ scheme [201]. The running mass is extracted from a measurement of the differential cross section as a function of the $t\bar{t}$ invariant mass, unfolded back to the parton level, in $e\mu$ final states. The running mass varies by about 15% from $M_{t\bar{t}} = 400 \text{ GeV}$ to $M_{t\bar{t}} \approx 1 \text{ TeV}$, in good agreement with the renormalization group calculation at one-loop level. Compared to the hypothesis of no running, the significance of the measured running is 2.6σ .

With the discovery of a Higgs boson at the LHC with a mass of about 125 GeV/c² [202, 203], the precision measurement of the top-quark mass takes a central role in the question of the stability of the electroweak vacuum because top-quark radiative corrections tend to drive the Higgs quartic coupling, λ , negative, potentially leading to an unstable vacuum. A recent calculation at NNLO [204] leads to the conclusion of vacuum stability for a Higgs mass satisfying $M_H \geq 129.4 \pm 5.6$ GeV/c² [205]. Given the uncertainty, a Higgs mass of 125 GeV/c² satisfies the limit, but the central values of the Higgs and top-quark masses put the electroweak vacuum squarely in the metastable region. The uncertainty is dominated by the precision of the top-quark mass measurement and its interpretation as the pole mass. For more details, see the Higgs boson review in this volume.

As a test of the CPT-symmetry, the mass difference of top- and antitop-quarks $\Delta m_t = m_t - m_{\bar{t}}$, which is expected to be zero, can be measured. CDF measures the mass difference in 8.7 fb⁻¹ of 1.96 TeV data in the lepton+jets channel using a template methode to find $\Delta m_t = -1.95 \pm 1.11(stat.) \pm 0.59(syst.)$ GeV/c² [206] while DØ uses 3.6 fb⁻¹ of lepton+jets events and the matrix element method with at least one b-tag. They find $\Delta m_t = 0.8 \pm 1.8(stat.) \pm 0.5(syst.)$ GeV/c² [207]. In 4.7 fb⁻¹ of 7 TeV data, ATLAS measures the mass difference in lepton+jets events with a double b-tag requirement and hence very low background to find $\Delta m_t = 0.67 \pm 0.61(stat.) \pm 0.41(syst.)$ GeV/c² [208]. CMS measures the top-quark mass difference in 5 fb⁻¹ of 7 TeV data in the lepton+jets channel and finds $\Delta m_t = -0.44 \pm 0.46(stat.) \pm 0.27(syst.)$ GeV/c² [209]. They repeat this measurement with 19.6 fb⁻¹ of 8 TeV data to find $\Delta m_t = -0.15 \pm 0.19(stat.) \pm 0.09(syst.)$ GeV/c² [210]. All measurements are consistent with the SM expectation.

60.3.2.2 Top-Quark Spin Correlations, Polarization, and Width

One of the unique features of the top quark is that it decays before its spin can be flipped by the strong interaction. Thus the top-quark polarization is directly observable via the angular distribution of its decay products and it is possible to define and measure observables sensitive to the top-quark spin and its production mechanism. Although the top- and antitop-quarks produced by strong interactions in hadron collisions are essentially unpolarized, the spins of t and \bar{t} are correlated. For QCD production at threshold, the $t\bar{t}$ system is produced in a ${}^{3}S_{1}$ state with parallel spins for $q\bar{q}$ annihilation or in a ${}^{1}S_{0}$ state with antiparallel spins for gluon-gluon fusion. The situations at the Tevatron, where the production is primarily from $q\bar{q}$ annihilation, and at the LHC, where the production is primarily from gluon-gluon fusion, are therefore somewhat complementary. However, at the LHC production of $t\bar{t}$ pairs at large invariant mass occurs primarily via fusion of gluons with opposite helicities, and the $t\bar{t}$ pairs so produced have parallel spins as in production at the Tevatron via $q\bar{q}$ annihilation. The direction of the top-quark spin is 100% correlated to the angular distributions of the down-type fermion (charged leptons or *d*-type quarks) in the decay. The joint angular distribution [211–213]

$$\frac{1}{\sigma}\frac{d^2\sigma}{d(\cos\theta_+)d(\cos\theta_-)} = \frac{1}{4}(1+B_+\cos\theta_++B_-\cos\theta_-+\kappa\cdot\cos\theta_+\cdot\cos\theta_-),\tag{60.4}$$

where θ_+ and θ_- are the angles of the daughters in the top-quark rest frame with respect to a particular spin quantization axis (assumed here to be the same for θ_+ and θ_-), is a very sensitive observable. The maximum value for κ , 0.782 at NLO at the Tevatron [214], is found in the off-diagonal basis [211], while at the LHC the value at NLO is 0.326 in the helicity basis [214]. The coefficients B_+ and B_- are near zero in the SM because the top quarks are unpolarized in $t\bar{t}$ production. In place of κ , $A\alpha_+\alpha_-$ is often used, where α_i is the spin analyzing power, and A is the spin correlation coefficient, defined as

$$A = \frac{N(\uparrow\uparrow) + N(\downarrow\downarrow) - N(\uparrow\downarrow) - N(\downarrow\uparrow)}{N(\uparrow\uparrow) + N(\downarrow\downarrow) + N(\uparrow\downarrow) + N(\downarrow\uparrow)},\tag{60.5}$$

where the first arrow represents the direction of the top-quark spin along a chosen quantization axis, and the second arrow represents the same for the antitop-quark. The spin analyzing power α_i is +0.998 for positively charged leptons, -0.966 for down-type quarks from W decays, and -0.393 for bottom quarks [215]. The sign of α flips for the respective antiparticles. The spin correlation could be modified by a new $t\bar{t}$ production mechanism such as through a Z' boson, Kaluza-Klein gluons, a dark-matter mediator, or a Higgs boson.

The experiments typically use a Monte Carlo to provide templates for the measured distributions, or alternatively a matrix-element technique, and fit a parameter f, representing the fraction of events with the expected Standard Model correlation, with (1 - f) the fraction with no correlation. The correlation coefficient is extracted via $A_{\text{meas}} = f \cdot A_{\text{SM}}$. A 'fraction' f > 1 means that the measured correlation coefficient is larger than the Standard Model expectation.

CDF used 5.1 fb⁻¹ in the dilepton channel to measure the correlation coefficient in the beam axis [216]. The measurement was made using the expected distributions of $(\cos \theta_+, \cos \theta_-)$ and $(\cos \theta_b, \cos \theta_{\bar{b}})$ of the charged leptons or the *b*-quarks in the $t\bar{t}$ signal and background templates to calculate a likelihood of observed reconstructed distributions as a function of assumed κ . They determined the 68% confidence interval for the correlation coefficient κ as $-0.52 < \kappa < 0.61$ or $\kappa = 0.04 \pm 0.56$ assuming $m_t = 172.5 \text{ GeV}/c^2$.

CDF also analyzed lepton+jets events in 5.3 fb⁻¹ [217] assuming $m_t = 172.5 \text{ GeV/c}^2$. They form three separate templates - the same-spin template, the opposite-spin template, and the background template for the 2-dimensional distributions in $\cos(\theta_l)\cos(\theta_d)$ vs. $\cos(\theta_l)\cos(\theta_b)$. The fit to the data in the helicity basis returns an opposite helicity fraction of $F_{OH} = 0.74 \pm 0.24(stat.) \pm 0.11(syst.)$. Converting this to the spin correlation coefficient yields $\kappa_{helicity} = 0.48 \pm 0.48(stat.) \pm 0.22(syst.)$. In the beamline basis, they find an opposite spin fraction of $F_{OS} = 0.86 \pm 0.32(stat.) \pm 0.13(syst.)$ which can be converted into a correlation coefficient of $\kappa_{beam} = 0.72 \pm 0.64(stat.) \pm 0.26(syst.)$.

DØ performed a measurement of the ratio f of events with correlated t and \bar{t} spins to the total number of $t\bar{t}$ events. Combining dilepton and lepton plus jets events, and using a matrixelement technique in 9.7 fb⁻¹ of Tevatron data, DØ measures $f = 1.16 \pm 0.21$, corresponding to $A_{exp.} = 0.89 \pm 0.22(stat. + syst.)$ in the off-diagonal basis [218].

In Ref. [219] DØ presents a measurement of top-quark polarization in $t\bar{t}$ production at the Tevatron. In 9.7 fb⁻¹ of $p\bar{p}$ collisions, DØ uses lepton angular distributions in lepton+jets events to measure polarization in the beam, helicity, and transverse bases. The measurements are, respectively, 0.081 ± 0.048 , -0.102 ± 0.061 and, 0.040 ± 0.035 , where the beam-basis result is a

combination with an earlier $D\emptyset$ result in dilepton events [220]. These results are all consistent near-zero polarization, as predicted in the SM.

Spin correlations have been conclusively measured at the LHC by both the ATLAS and CMS collaborations. In the dominant gluon fusion production mode for $t\bar{t}$ pairs at the LHC, the angular distribution between the two leptons in $t\bar{t}$ decays to dileptons is sensitive to the degree of spin correlation [221].

Measurements have been made at 7, 8, and now 13 TeV. While there is some interest in the \sqrt{s} dependence of the correlations as a test of the the production mechanism ($q\bar{q}$ vs gluon-gluon and possible sensitivity to new physics) the earlier measurements at 7 and 8 TeV [222–227] had relatively large uncertainties and have now been overtaken by the high-statistics 13 TeV measurements, which we review here.

The most recent result from ATLAS, in 36.1 fb⁻¹ at $\sqrt{s} = 13$ TeV, uses $\Delta \phi$, the azimuthal angle between the two charged leptons in $e\mu$ events in an analysis that also measures the differential cross sections in $\Delta \phi$ and $\Delta \eta$ between the two leptons [228]. The result, measured by comparison with NLO Monte Carlo generators, is $f = 1.249 \pm 0.024 \pm 0.061 \pm 0.040$, where the uncertainties are statistical, systematic, and theoretical, is again greater than 1.0. Whereas the previous results were statistically consistent with the Standard Model expectation of 1.0, this result is inconsistent at the level of 3.2σ . The NLO generators are NLO in QCD only (and only at the production level). Including electroweak couplings produces a expected Standard Model distribution consistent with the data, but results in a large scale uncertainty, giving $f = 1.03 \pm 0.13$.

In 35.9 fb⁻¹ of data at $\sqrt{s} = 13$ TeV, CMS has measured spin correlations in dilepton events using $\Delta \phi$ and found $f = 1.05 \pm 0.03 \pm 0.08^{+0.09}_{-0.12}$ [229], where the uncertainties are statistical, systematic, and theoretical. The correlation is also measured using the coefficient κ in Eq. 60.4 (called $-C_{ij}$ in Reference [229]) using three orthogonal spin quantization axes defined in Ref. [230]. All results are consistent with f = 1. Measurements of the coefficients B_i in Eq. 60.4 in this analysis, which are expected to be nearly zero in the SM, yield $B_+ = 0.005 \pm 0.023$ and $B_- = 0.007 \pm 0.023$, consistent with the SM predictions at NLO of $0.0040^{+0.0017}_{-0.0012}$ [230]. These results are part of a complete study of the top-quark spin density matrix at $\sqrt{s} = 13$ TeV, through the measurement of the coefficients of Eq. 60.4.

In a similar ATLAS measurement at $\sqrt{s} = 8$ TeV [231], the spin-correlation coefficient κ is measured in the helicity basis to be $\kappa = 0.296 \pm 0.093$ in good agreement with the SM expectation of 0.318 (corresponding to a central value of f of 0.931). The polarization coefficients, B, in Eq. 60.4 are measured, also in the helicity basis, to be $B_{+} = -0.044 \pm 0.038$ and $B_{-} = -0.064 \pm 0.040$, consistent with the SM predictions of 0.0030 ± 0.0010 and 0.0034 ± 0.00104 , respectively.

Observation of top-quark spin correlations requires a top-quark lifetime less than the spin decorrelation timescale [232]. The top-quark width, inversely proportional to its lifetime, is expected to be of order 1 GeV/ c^2 (Eq. 1). Early measurements made at CDF [233] and CMS [234] established confidence-level intervals for the width, but did not have the sensitivity to make a direct measurement.

The first direct measurement comes from an ATLAS analysis that directly fits reconstructed lepton+jets events in 20.2 fb⁻¹ of data at $\sqrt{s} = 8$ TeV. They find $\Gamma_t = 1.76 \pm 0.33^{+0.79}_{-0.68}$ GeV/c² [235]. A more recent measurement from ATLAS with 139 fb⁻¹ of data at $\sqrt{s} = 13$ TeV [236], uses a template fit to the lepton-*b*-quark invariant mass in dilepton final states. The result, $\Gamma_t = (1.9 \pm 0.5)$ GeV/c², is the most precise measurement to date.

The total width of the top-quark can also be determined from the partial decay width $\Gamma(t \to Wb)$ and the branching fraction $B(t \to Wb)$. DØ obtains $\Gamma(t \to Wb)$ from the measured t-channel cross section for single top-quark production in 5.4 fb⁻¹, and $B(t \to Wb)$ is extracted from a measurement of the ratio $R = B(t \to Wb)/B(t \to Wq)$ in $t\bar{t}$ events in lepton+jets channels with 0,

1 and 2 b-tags. Assuming $B(t \to Wq) = 1$, where q includes any kinematically accessible quark, the result is: $\Gamma_t = 2.00^{+0.47}_{-0.43} \text{ GeV/c}^2$ which translates to a top-quark lifetime of $\tau_t = (3.29^{+0.90}_{-0.63}) \times 10^{-25}$ s. Assuming a high mass fourth generation b' quark and unitarity of the four-generation quark-mixing matrix, they set the first upper limit on $|V_{tb'}| < 0.59$ at 95% C.L. [237]. A similar analysis has performed by CMS in 19.7 fb⁻¹ of $\sqrt{s} = 8$ TeV data. It provides a better determination of the total width with respect to the measurement by DØ giving $\Gamma_t = 1.36 \pm 0.02(stat.)^{+0.14}_{-0.11}(syst.) \text{ GeV/c}^2$ [71].

60.3.2.3 W-Boson Helicity in Top-Quark Decay

The Standard Model dictates that the top quark has the same vector-minus-axial-vector (V-A) charged-current weak interactions $\left(-i\frac{g}{\sqrt{2}}V_{tb}\gamma^{\mu}\frac{1}{2}(1-\gamma_{5})\right)$ as all the other fermions. In the SM, the fraction of top-quark decays to longitudinally polarized W bosons is proportional to its Yukawa coupling and hence enhanced with respect to the weak coupling. It is expected to be [238] $\mathcal{F}_{0}^{\text{SM}} \approx x/(1+x)$, $x = m_{t}^{2}/2M_{W}^{2}$ ($\mathcal{F}_{0}^{\text{SM}} \sim 70\%$ for $m_{t} = 175 \text{ GeV}/c^{2}$). Fractions of left-handed, right-handed, or longitudinal W bosons are denoted as \mathcal{F}_{-} , \mathcal{F}_{+} , and \mathcal{F}_{0} respectively. In the SM, \mathcal{F}_{-} is expected to be $\approx 30\%$ and $\mathcal{F}_{+} \approx 0\%$. Predictions for the W polarization fractions at NNLO in QCD are available [239].

The Tevatron and the LHC experiments use various techniques to measure the helicity of the W boson in top-quark decays, in both the lepton+jets and in dilepton channels in $t\bar{t}$ production.

The first method uses a kinematic fit, similar to that used in the lepton+jets mass analyses, but with the top-quark mass constrained to a fixed value, to improve the reconstruction of finalstate observables, and render the under-constrained dilepton channel solvable. Alternatively, in the dilepton channel the final-state momenta can also be obtained through an algebraic solution of the kinematics. The distribution of the helicity angle $(\cos \theta^*)$ between the lepton and the *b* quark in the *W* rest frame provides the most direct measure of the *W* helicity. In a simplified version of this approach, the $\cos \theta^*$ distribution is reduced to a forward-backward asymmetry.

The second method (p_T^{ℓ}) uses the different lepton p_T spectra from longitudinally or transversely polarized W-decays to determine the relative contributions.

A third method uses the invariant mass of the lepton and the *b*-quark in top-quark decays $(M_{\ell b}^2)$ as an observable, which is directly related to $\cos \theta^*$.

At the LHC, top-quark pairs in the dilepton channels are reconstructed by solving a set of six independent kinematic equations in the missing transverse energy in x- and in y-direction, two W-masses, and the two top/antitop-quark masses. In addition, the two jets with the largest p_T in the event are interpreted as b-jets. The pairing of the jets to the charged leptons is based on the minimization of the sum of invariant masses M_{min} . Simulations show that this criterion gives the correct pairing in 68% of the events.

Finally, the Matrix Element Method (MEM) has also been used [172], in which a likelihood is formed from a product of event probabilities calculated from the MEM for a given set of measured kinematic variables and assumed W-helicity fractions.

The results of recent CDF, DØ, ATLAS, and CMS analyses are summarized in Table 60.2. The datasets are now large enough to allow for a simultaneous fit of \mathcal{F}_0 , \mathcal{F}_- and \mathcal{F}_+ , which we denote by '3-param' or \mathcal{F}_0 and \mathcal{F}_+ , which we denote by '2-param' in the table. Results with either \mathcal{F}_0 or \mathcal{F}_+ fixed at its SM value are denoted '1-param'. For the simultaneous fits, the correlation coefficient between the two values is about -0.8. A complete set of published results can be found in the Listings. All results are in agreement with the SM expectation.

CDF and DØ combined their results based on 2.7 - 5.4 fb⁻¹ [240] for a top-quark mass of 172.5 GeV/c². ATLAS presents results from 1.04 fb⁻¹ of $\sqrt{s} = 7$ TeV data using a template method for the $\cos \theta^*$ distribution and angular asymmetries from the unfolded $\cos \theta^*$ distribution in the lepton+jets and the dilepton channel [241]. CMS performs a similar measurement based

on template fits to the $\cos \theta^*$ distribution with 5.0 fb⁻¹ of 7 TeV data in the lepton+jets final state [242]. As the polarization of the W bosons in top-quark decays is sensitive to the Wtb vertex Lorentz structure and anomalous couplings, both experiments also derive limits on anomalous contributions to the Wtb couplings. Recently, both experiments also combined their results from 7 TeV data to obtain values on the helicity fractions as well as limits on anomalous couplings [243].

At 8 TeV, ATLAS came out with a measurement of the W-helicity fractions in 20.2 fb⁻¹ in lepton+jets events with at least one b-tag [244]. Using 19.8 fb⁻¹ of 8 TeV data, CMS measured the W-helicity in lepton + 4 jet events with two b-tags [245]. In $t\bar{t}$ events with two opposite-sign leptons (electron or muon) in the final state in this dataset, CMS applied six kinematic constraints on the kinematics of the produced particles [246]. Also, using the same dataset a first measurement of the W-boson helicity in top-quark decays was made in electroweak single top production [247], yielding similarly precise and consistent results.

Table 60.2: Measurement and 95% C.L. upper limits of the W helicity in top-quark decays. The table includes both preliminary, as of October 2019, and published results. A full set of published results is given in the Listings.

	a	6.01	DC	
W Helicity	Source	∫Ldt	Ref.	Method
		$({\rm fb}^{-1})$		
$\mathcal{F}_0 = 0.722 \pm 0.081$	CDF+DØ Run II	2.7 - 5.4	[240]	$\cos \theta^*$ 2-param
$\mathcal{F}_0 = 0.682 \pm 0.057$	CDF+DØ Run II	2.7 - 5.4	[240]	$\cos \theta^*$ 1-param
$\mathcal{F}_0 = 0.726 \pm 0.094$	CDF Run II	8.7	[248]	ME 2-param
$\mathcal{F}_0 = 0.67 \pm 0.07$	ATLAS (7 TeV)	1.0	[241]	$\cos \theta^*$ 3-param
$\mathcal{F}_0 = 0.682 \pm 0.045$	CMS (7 TeV)	5.0	[242]	$\cos \theta^*$ 3-param
$\mathcal{F}_0 = 0.626 \pm 0.059$	ATLAS+CMS (7 TeV)	2.2	[243]	$\cos \theta^*$ 3-param
$\mathcal{F}_0 = 0.709 \pm 0.019$	ATLAS (8 TeV)	20.2	[244]	$\cos \theta^*$ 3-param
$\mathcal{F}_0 = 0.681 \pm 0.026$	CMS (8 TeV)	19.8	[245]	$\cos \theta^*$ 3-param
$\mathcal{F}_0 = 0.653 \pm 0.029$	CMS (8 TeV)	19.7	[246]	$\cos \theta^*$ 3-param
$\mathcal{F}_0 = 0.720 \pm 0.054$	CMS (8 TeV)	19.7	[247]	$\cos \theta^*$ 3-param
$\mathcal{F}_{+} = -0.033 \pm 0.046$	CDF+DØ Run II	2.7 - 5.4	[240]	$\cos \theta^*$ 2-param
$\mathcal{F}_{+} = -0.015 \pm 0.035$	CDF+DØ Run II	2.7 - 5.4	[240]	$\cos\theta^*$ 1-param
$\mathcal{F}_{+} = -0.045 \pm 0.073$	CDF Run II	8.7	[248]	ME 2-param
$\mathcal{F}_{+} = 0.01 \pm 0.05$	ATLAS (7 TeV)	1.0	[241]	$\cos \theta^*$ 3-param
$\mathcal{F}_{+} = 0.008 \pm 0.018$	CMS (7 TeV)	5.0	[242]	$\cos \theta^*$ 3-param
$\mathcal{F}_{+} = 0.015 \pm 0.034$	ATLAS+CMS (7 TeV)	2.2	[243]	$\cos \theta^*$ 3-param
$\mathcal{F}_{+} = -0.008 \pm 0.014$	ATLAS (8 TeV)	20.2	[244]	$\cos \theta^*$ 3-param
$\mathcal{F}_{+} = -0.004 \pm 0.015$	CMS (8 TeV)	19.8	[245]	$\cos \theta^*$ 3-param
$\mathcal{F}_{+} = 0.018 \pm 0.027$	CMS (8 TeV)	19.7	[246]	$\cos \theta^*$ 3-param
$\mathcal{F}_{+} = -0.018 \pm 0.022$	CMS (8 TeV)	19.7	[247]	$\cos \theta^*$ 3-param

60.3.2.4 Top-Quark Electroweak Charges and Couplings

The top quark is the only quark whose electric charge has not been measured through production at threshold in e^+e^- collisions. Furthermore, it is the only quark whose electromagnetic coupling has not been observed and studied until recently. Since the CDF and DØ analyses on top-quark production did not associate the b, \bar{b} , and W^{\pm} uniquely to the top or antitop, decays such as $t \to W^+\bar{b}, \bar{t} \to W^-b$ were not excluded. A charge 4/3 quark of this kind is consistent with current electroweak precision data. The $Z \to \ell^+\ell^-$ and $Z \to b\bar{b}$ data, in particular the discrepancy between A_{LR} from SLC at SLAC and $A_{FB}^{0,b}$ of *b*-quarks and $A_{FB}^{0,\ell}$ of leptons from LEP at CERN, can be fitted with a top quark of mass $m_t = 270 \text{ GeV}/c^2$, provided that the right-handed *b* quark mixes with the isospin +1/2 component of an exotic doublet of charge -1/3 and -4/3 quarks, $(Q_1, Q_4)_R$ [249,250]. Also the third component of the top quark's weak isospin has not been measured so far.

DØ studied the top-quark charge in double-tagged lepton+jets events, CDF did it in single tagged lepton+jets and dilepton events. Assuming the top- and antitop-quarks have equal but opposite electric charge, then reconstructing the charge of the *b*-quark through jet charge discrimination techniques, the $|Q_{top}| = 4/3$ and $|Q_{top}| = 2/3$ scenarios can be differentiated. For the exotic model of Chang *et al.* [250] with a top-quark charge $|Q_{top}| = 4/3$, CDF excluded the model at 99% C.L. [251] in 5.6 fb⁻¹, while DØ excluded the model at a significance greater than 5 standard deviations using 5.3 fb⁻¹ and set an upper limit of 0.46 on the fraction of such quarks in the selected sample [252]. These results indicate that the observed particle is indeed consistent with being a SM |Q| = 2/3 quark.

In 2.05 fb⁻¹ at $\sqrt{s} = 7$ TeV, ATLAS performed a similar analysis, reconstructing the *b*-quark charge either via a jet-charge technique or via the lepton charge in soft muon decays in combination with a kinematic likelihood fit. They measure the top-quark charge to be $0.64 \pm 0.02(stat.) \pm 0.08(syst.)$ from the charges of the top-quark decay products in single lepton $t\bar{t}$ events, and hence exclude the exotic scenario with charge -4/3 at more than 8σ [253].

In 4.6 fb⁻¹ at $\sqrt{s} = 7$ TeV, CMS discriminates between the SM and the exotic top-quark charge scenario in the muon+jets final states in $t\bar{t}$ events. They exploit the charge correlation between high- p_t muons from W-boson decays and soft muons from B-hadron decays in b-jets. Using an asymmetry technique, where A = -1 represent the exotic Q = -4/3 scenario and A = +1 the SM Q = +2/3 scenario, they find $A_{meas} = 0.97 \pm 0.12(stat.) \pm 0.31(sys.)$, which agrees with the Standard Model expectation and excludes the exotic scenario at 99.9% C.L. [254].

The electromagnetic or the weak coupling of the top quark can be probed directly by investigating $t\bar{t}$ events with an additional gauge boson, such as $t\bar{t}\gamma$, $t\bar{t}W$, and $t\bar{t}Z$ events. The corresponding coupling can be extracted from the corresponding cross section or extracted from effective field theory (EFT) fits to various measured distributions and differential cross sections.

CDF performed a search for events containing a lepton, a photon, significant missing transverse momentum, and a jet identified as containing a *b*-quark and at least three jets and large total transverse energy in 6.0 fb⁻¹. They reported evidence for the observation of $t\bar{t}\gamma$ production with a cross section $\sigma_{t\bar{t}\gamma} = 0.18 \pm 0.08$ pb and a ratio of $\sigma_{t\bar{t}\gamma}/\sigma_{t\bar{t}} = 0.024 \pm 0.009$ [255].

ATLAS performed a first measurement of the $t\bar{t}\gamma$ cross section in pp collisions at $\sqrt{s} = 7$ TeV using 4.6 fb⁻¹ of data. Events are selected that contain a large transverse momentum electron or muon and a large transverse momentum photon, yielding 140 and 222 events in the electron and muon samples, respectively. The production of $t\bar{t}\gamma$ events was observed with a significance of 5.3 standard deviations. The resulting cross section times branching ratio into the single lepton channel for $t\bar{t}\gamma$ production with a photon with transverse momentum above 20 GeV is $\sigma^{fid.}(t\bar{t}\gamma) \times BR = 63 \pm 8(stat.)^{+17}_{-13}(syst.) \pm 1(lumi.)$ pb per lepton flavour [256], which is consistent with leading-order theoretical calculations.

At 8 TeV, ATLAS has used 20.2 fb⁻¹ of data to measure the $t\bar{t}\gamma$ cross section with a photon above 15 GeV and $|\eta| < 2.37$. The fiducial cross section is measured to be 139 ± 18 fb [257], in good agreement with the NLO prediction [258]. Using 19.7 fb⁻¹ of data at 8 TeV, CMS performed a similar measurement of the $t\bar{t}\gamma$ production cross section in the lepton+jets decay mode with a photon transverse momentum above 25 GeV and $|\eta| < 1.44$. They obtain a normalized cross section $\mathcal{R} = \sigma_{t\bar{t}+\gamma}/\sigma_{t\bar{t}} = (5.7 \pm 1.8) \times 10^{-4}$ in e+jets and $(4.7 \pm 1.3) \times 10^{-4}$ in μ +jets. The fiducial $t\bar{t}\gamma$ cross section is obtained by multiplying by the measured $t\bar{t}$ fiducial cross section of 244.9 $\pm 1.4(stat.)^{+6.3}_{-5.5}(sys.) \pm 6.4(lumi.)$ pb. Extrapolating to the full phase space, the result is $\sigma_{t\bar{t}\gamma} \times BR = (515 \pm 108)$ fb, per lepton+jets final state [259], in good agreement with the theoretical prediction.

At $\sqrt{s} = 13$ TeV, using 36.1 fb⁻¹ of single-lepton and dilepton events with exactly one photon, ATLAS measures the $t\bar{t}\gamma$ cross section. They employ neural network algorithms to separate the signal from the backgrounds. The fiducial cross-sections are measured to be $521 \pm 9(stat.) \pm$ 41(sys.) fb and $69 \pm 3(stat.) \pm 4(sys.)$ fb for the single-lepton and dilepton channels, respectively. The differential cross-sections are measured as a function of photon transverse momentum, photon absolute pseudorapidity, and angular distance between the photon and its closest lepton in both channels, as well as azimuthal opening angle and absolute pseudorapidity difference between the two leptons in the dilepton channel. All measurements are in agreement with the theoretical predictions [260]. Very recently, ATLAS uses 139 fb⁻¹ of $\sqrt{s} = 13$ TeV $e\mu + \gamma$ events with at least two jets. out of which at least one is b-tagged, to measure the inclusive and differential cross-sections for the production of a top-quark pair in association with a photon. The fiducial cross-section is measured to be 44.2 ± 2.6 fb. Differential cross-sections as functions of several observables are compared to state-of-the-art Monte Carlo simulations and next-to-leading order theoretical calculations. These include cross-sections as functions of the photon transverse momentum and absolute pseudorapidity and angular variables related to the photon and the leptons and between the two leptons in the event. All measurements are in agreement with the predictions [261]. In 35.9 fb⁻¹ of lepton-plusphoton-plus-jets events, CMS manages to establish the first evidence for the associated production of a single-top quark and a photon at $\sqrt{s} = 13$ TeV. They employ a multivariate discriminant based on topological and kinematic event properties to separate signal from background processes. An excess above the background-only hypothesis is observed, with a significance of 4.4 standard deviations. A fiducial cross section is measured for isolated photons with transverse momentum greater than 25 GeV in the central region of the detector. The measured product of the cross section and branching fraction is $\sigma(pp \to t\gamma j)B(t \to \mu\gamma b) = 115 \pm 17(stat) \pm 30(syst)$ fb, which is consistent with the SM prediction [262]. A precision test of the vector and axial vector couplings in $t\bar{t}\gamma$ events or searches for possible tensor couplings of top-quarks to photons will only be feasible with an integrated luminosity of several hundred fb^{-1} in the future [263].

ATLAS and CMS have also studied the associate production of top-antitop quark pairs along with an electroweak gauge boson, where in the Standard Model the W-boson is expected to be produced via initial state radiation, while the Z-boson can also be radiated from a final-state topquark and hence provides sensitivity to the top-quark neutral current weak gauge coupling, which implies a sensitivity to the third component of the top-quark's weak isospin, which has not been measured so far.

CMS performed measurements of the $t\bar{t}W$ and $t\bar{t}Z$ production cross section at $\sqrt{s} = 7$ TeV with 5 fb⁻¹, yielding $\sigma_{t\bar{t}V} = 0.43^{+0.17}_{-0.15}(stat.)^{+0.09}_{-0.07}(syst.)$ pb (V = Z, W) and $\sigma_{t\bar{t}Z} = 0.28^{+0.14}_{-0.11}(stat.)^{+0.06}_{-0.03}(syst.)$ fb, at about 3 standard deviations significance [264] and compatible with the SM expectations of $0.306^{+0.031}_{-0.053}$ pb and $0.137^{+0.012}_{-0.016}$ pb, respectively [265,266]. ATLAS performed a similar analysis with 4.7 fb⁻¹ in the three-lepton channel and set an upper limit of 0.71 pb at 95% C.L. [267].

Using 20.3 fb⁻¹ of 8 TeV data, ATLAS performs a simultaneous measurement of the $t\bar{t}W$ and $t\bar{t}Z$ cross section. They observe the $t\bar{t}W$ and $t\bar{t}Z$ production at the 5.0 σ and 4.2 σ level, respectively, yielding $\sigma_{t\bar{t}W} = 369^{+100}_{-91}$ fb and $\sigma_{t\bar{t}Z} = 176^{+58}_{-52}$ fb [268]. CMS performs an analysis where signal events are identified by matching reconstructed objects in the detector to specific final state particles from $t\bar{t}W$ and $t\bar{t}Z$ decays using 19.5 fb⁻¹ of 8 TeV data. They obtain $\sigma_{t\bar{t}W} = 382^{+117}_{-102}$ fb and $\sigma_{t\bar{t}Z} = 242^{+65}_{-55}$ fb, yielding a significance of 4.8 and 6.4 standard, respectively [269]. These measurements are used to set bounds on five anomalous dimension-six operators that would affect the $t\bar{t}W$ and $t\bar{t}Z$ cross sections.

The most recent measurements in these channels are made at 13 TeV from ATLAS and CMS

in multilepton final states. ATLAS made a measurement using 36.1 fb⁻¹ of events with two, three or four leptons. In multiple regions, the $t\bar{t}Z$ and $t\bar{t}W$ cross sections are simultaneously measured using a combined fit to all regions, yielding $\sigma_{t\bar{t}Z} = 0.95 \pm 0.08(stat) \pm 0.10(syst)$ pb and $\sigma_{t\bar{t}W} = 0.87 \pm 0.13(stat) \pm 0.14(syst)$ pb [270] to be compared with the NLO+NLL (QCD) and NLO (EW) SM predictions, $\sigma_{t\bar{t}W} = 579^{+14\%}_{-9\%}$ fb and $\sigma_{t\bar{t}Z} = 811^{+11\%}_{-10\%}$ fb [271].

CMS uses 35.9 fb^{-1} of data to measure $t\bar{t}W$ and $t\bar{t}Z$ production cross sections of $0.77^{+0.12}_{-0.11}$ pb and $0.99^{+0.09}_{-0.08}$ $^{+0.12}_{-0.10}$ pb, and significances over the background-only hypotheses of 5.5σ and 9.5σ , respectively [272], firmly establishing the observation of these processes. Very recently, CMS measured the inclusive $t\bar{t}Z$ cross section in 77.5 fb⁻¹ of events with three or four charged leptons, and the Z boson is detected through its decay to an oppositely charged lepton pair. The production cross section is measured to be $\sigma(t\bar{t}Z) = 0.95 \pm 0.05(stat) \pm 0.06(syst)$ pb. This measurement includes differential cross sections as functions of the transverse momentum of the Z boson and the angular distribution of the negatively charged lepton from the Z boson decay as well as stringent direct limits on the anomalous tZ couplings [273].

The electroweak couplings can also be probed in single-top production in association with a Z boson. The $pp \rightarrow tZq$ process at the LHC probes both the WWZ coupling in the case where the Z emerges from the t-channel W in single-top production and, in the case where the Z is radiated from the top quark, the tZ coupling. A CMS search at 8 TeV produced a hint of a tZq signal in trilepton events, with a significance compared to the background-only hypothesis of 2.4σ [274]. At 13 TeV the signal has begun to emerge. In 35.9 fb⁻¹ of events with three leptons, the tZq production cross section is measured to be $\sigma_{tZq} = 123^{+33}_{-31}(stat)^{+29}_{-23}(syst)$ fb, where ℓ also includes tau leptons, with observed and expected significances of 3.7 and 3.1 standard deviations, respectively [262].

Searches for and now also measurements of the associate production of a top-antitop quark pair along with a Higgs boson, $t\bar{t}h$, with various subsequent decays provide sensitivity to the top-Higgs Yukawa coupling. For further details, see the review on "Higgs".

60.3.3 Searches for Physics Beyond the Standard Model

The top quark plays a special role in the SM. Being the only quark with a coupling to the Higgs boson of order one, it provides the most important contributions to the quadratic radiative corrections to the Higgs mass exposing the issue of the naturalness of the SM. It is therefore very common for models where the naturalness problem is addressed to have new physics associated with the top quark. In SUSY, for instance, naturalness predicts the scalar top partners to be the lightest among the squarks and to be accessible at the LHC energies (see the review "Supersymmetry: Theory"). In models where the Higgs is a pseudo-Goldstone boson, such as Little Higgs models, naturalness predicts the existence of partners of the top quarks with the same spin and color, but with different electroweak couplings, the so-called vectorial t'. Stops and t''s are expected to have sizeable branching ratios to top quarks. Another intriguing prediction of SUSY models with universal couplings at the unification scale is that for a top-quark mass close to the measured value. the running of the Yukawa coupling down to 1 TeV naturally leads to the radiative breaking of the electroweak symmetry [275]. In fact, the top quark plays a role in the dynamics of electroweak symmetry breaking in many models [276]. One example is topcolor [277], where a large top-quark mass can be generated through the formation of a dynamic $t\bar{t}$ condensate, X, which is formed by a new strong gauge force coupling preferentially to the third generation. Another example is topcolorassisted technicolor [278], predicting the existence of a heavy Z' boson that couples preferentially to the third generation of quarks. If light enough such a state might be directly accessible at the present hadron collider energies, or if too heavy, lead to four-top interactions possibly visible in the $t\bar{t}t\bar{t}$ final state. This final state has been recently observed by CMS [279] and limits are provided by ATLAS [280].

Current strategies to search for new physics in top-quark events at hadron colliders are either tailored to the discovery of specific models or model independent. They can be broadly divided in two classes. In the first class new resonant states are looked for through decay processes involving the top quarks. Current searches for bosonic resonances in $t\bar{t}$ final states, or for direct stop and t' production, or for a charged Higgs in $H^+ \rightarrow t\bar{b}$ fall in the category. On the other hand, if new states are too heavy to be directly produced, they might still give rise to deviations from the SM predictions for the strength and Lorentz form of the top-quark couplings to other SM particles. Accurate SM predictions and measurements are therefore needed and the results be efficiently interpreted in the framework of an effective field theory [281,282] as done for example in recent analyses sensitive to the strength and structure of the top quark couplings [270,279]. Global effective field theory interpretations based on publicly available measurements in the top quark sector have also appeared [283–285].

60.3.3.1 New Physics in Top Quark Production

Theoretical [286,287] and experimental efforts have been devoted to the searches of $t\bar{t}$ resonances. At the Tevatron, both the CDF and DØ collaborations have searched for resonant production of $t\bar{t}$ pairs in the lepton+jets channel [288,289]. In both analyses, the data indicate no evidence of resonant production of $t\bar{t}$ pairs. They place upper limits on the production cross section times branching fraction to $t\bar{t}$ in comparison to the prediction for a narrow ($\Gamma_{Z'} = 0.012M_{Z'}$) leptophobic topcolor Z' boson. Within this model, they exclude Z' bosons with masses below 915 (CDF-full data set) and 835 (DØ, 5 fb⁻¹) GeV/c² at the 95% C.L. These limits turn out to be independent of couplings of the $t\bar{t}$ resonance (pure vector, pure axial-vector, or SM-like Z'). A similar analysis has been performed by CDF in the all-hadronic channel using 2.8 fb⁻¹ of data [290].

At the LHC, both the CMS and ATLAS collaborations have searched for resonant production of $t\bar{t}$ pairs, employing different techniques and final-state signatures (all-hadronic, lepton+jets, dilepton) at $\sqrt{s} = 7$, 8 and 13 TeV. In the low mass range, from the $t\bar{t}$ threshold to about one TeV/ c^2 , standard techniques based on the reconstruction of each of the decay objects (lepton, jets and *b*-jets, missing E_T) are used to identify the top quarks, while at higher invariant mass, the top quarks are boosted and the decay products more collimated and can appear as large-radius jets with substructure. Dedicated reconstruction techniques have been developed in recent years for boosted top quarks [291] that are currently employed at the LHC. Most of the analyses are model-independent (i.e., no assumption on the quantum numbers of the resonance is made) yet they assume a small width and no signal-background interference.

Using lepton+jets and fully hadronic channels in a data set corresponding to an integrated luminosity of 35.9 fb⁻¹ at 13 TeV, the CMS collaboration finds no significant deviations from the SM background [292]. In particular, the existence of a leptophobic topcolor particle Z' is excluded at the 95% confidence level for resonances in the mass range $0.6 < M_{Z'} < 3.8 \text{ TeV/c}^2$, $0.5 < M_{Z'} < 5.25 \text{ TeV/c}^2$, and $0.5 < M_{Z'} < 6.65 \text{ TeV/c}^2$ for $\Gamma_{Z'} = 1\%$, 10%, 30% $M_{Z'}$, respectively [293]. Kaluza-Klein excitations of a gluon with $M_{G_{KK}} < 4.55 \text{ TeV/c}^2$ (at 95% confidence level) in the Randall-Sundrum model are also excluded.

The ATLAS collaboration has performed a search for resonant $t\bar{t}$ production in the lepton+jets channel using 36.1 fb⁻¹ of proton-proton (pp) collision data collected at a center-of-mass energy $\sqrt{s} = 13$ TeV [294]. A search for local excesses in the number of data events compared to the Standard Model expectation in the $t\bar{t}$ invariant mass spectrum is performed. No evidence for a $t\bar{t}$ resonance is found and 95% confidence-level limits on the production rate are determined for massive states predicted in several benchmark models. For instance, a narrow leptophobic topcolor Z' boson with a mass below 3.0 TeV/c² is excluded. A Kaluza-Klein excitation of the graviton is excluded for masses in the range 0.45 TeV/c² < $m_G < 0.65$ TeV/c². A Kaluza-Klein excitation of the gluon in a Randall-Sundrum model is excluded for masses below $3.8 \text{ TeV}/c^2$.

ATLAS has also conducted a search for resonances in the all-jet final state at 13 TeV corresponding to an integrated luminosity of 36.1 fb^{-1} [295]. The $t\bar{t}$ events are reconstructed by selecting two top quarks in their fully hadronic decay modes. The invariant mass distribution of the two reconstructed top-quark candidates is examined for resonant production of new particles with various spins and decay widths. No significant deviation from the Standard Model prediction is observed and limits are set on the production cross-section times branching fraction for new hypothetical Z' bosons, dark-matter mediators, Kaluza-Klein gravitons and Kaluza-Klein gluons. For example, the Z' in the topcolor-assisted-technicolor model is excluded for masses up to 3.1-3.6 TeV, the dark-matter mediators in a simplified framework are excluded in the mass ranges from 0.8 to 0.9 TeV/c² and from 2.0 to 2.2 TeV/c², and the Kaluza-Klein gluon is excluded for masses up to 3.4 TeV/c², depending on the decay widths of the particles.

Heavy charged bosons, such as W' or H^+ , can also be searched for in $t\bar{b}, tj$ final states (for more information see the review "W'-boson searches" and "Higgs Bosons: theory and searches"), while heavy fermion resonances, such as vectorial or excited quarks, in final states such as tZ, tH, tW, bW.

CMS has performed several searches in this context, the most stringent limits coming from those at at $\sqrt{s} = 13$ TeV [296–302]. For instance, a $W' \to t\bar{b}$ has been searched for in lepton+jets in 35.9 fb⁻¹. No evidence has been found for a right-handed W' boson and masses below 3.6 TeV/c² are excluded at 95% confidence level providing the most stringent limits for right-handed W' bosons in the top and bottom quark decay channel to date [296].

Single production of a vector-like quark decaying to a W boson and a top quark, with one lepton in the final state, also been searched in the same data set. No significant deviation from the standard model background expectation is observed. Exclusion limits at 95% confidence level are set on the product of the production cross section and branching fraction as a function of the vector-like quark mass, which range from 0.3 to 0.03 pb for vector-like quark masses of 700 to 2000 GeV/c². Mass exclusion limits up to 1660 GeV/c² are obtained, depending on the vector-like quark type, coupling, and decay width. These represent the most stringent exclusion limits for the single production of vector-like quarks in this channel. [303]

In the same data set, searches for pair production of vector-like T or B quarks in fully hadronic final states have been performed based on two different techniques. A first cut-based analysis targets the bW decay mode of the T quark, while a second analysis, a multi-classification algorithm is deployed to label candidate jets as originating from top quarks, and W, Z, and H. Both analyses probe all possible branching fraction combinations of the T and B quarks and set limits at 95% confidence level on their masses, ranging from 740 to 1370 GeV/c² [304].

ATLAS has performed searches for heavy bosons and fermions decaying to one top quark at $\sqrt{s} = 7$, 8 and 13 TeV. A $W' \rightarrow t\bar{b}$ has been searched for at 13 TeV in lepton+jets in 36.1 fb⁻¹. No evidence has been found for a right-handed W' boson with a mass below 3.25 TeV/c² are excluded at 95% [305]. ATLAS has conducted a search for the single and pair production of a new charge +2/3 quark (T) decaying via $T \rightarrow Zt$ (and also -1/3 quark (B) decaying via $B \rightarrow Zb$) in a dataset corresponding to 36.1 fb⁻¹ luminosity at $\sqrt{s} = 13$ TeV [306]. The final state used is characterized by the presence of b-tagged jets, as well as a Z boson with high transverse momentum, which is reconstructed from a pair of opposite-sign same-flavor leptons. No significant excess of events above the SM expectation is observed, and upper limits are derived for vector-like quarks of various masses in a two-dimensional plane of branching ratios. Under branching ratio assumptions corresponding to a particular weak-isospin doublet scenario, a T quark with mass lower than 1030 GeV/c² (1010 GeV/c² for a B quark) is excluded at the 95% confidence level. Under branching ratio assumptions corresponding to a particular weak-isospin doublet scenario, a T quark with mass lower than 1210 GeV/c² (1140 GeV/c² for a B quark) is excluded at the 95% confidence level.

In the same dataset, ATLAS combines the searches for pair-produced vector-like partners of the top and bottom quarks in various decay channels $(T \rightarrow Zt/Wb/Ht, B \rightarrow Zb/Wt/Hb)$. The observed data are found to be in good agreement with the Standard Model background prediction in all individual searches. Therefore, combined 95% confidence-level upper limits are set on the production cross-section for a range of vector-like quark scenarios, significantly improving upon the reach of the individual searches. Model-independent limits are set assuming the vector-like quarks decay to Standard Model particles. A singlet T is excluded for masses below 1.31 TeV/c² and a singlet B is excluded for masses below 1.22 TeV/c². Assuming a weak isospin (T, B) doublet and $|V_{Tb}| << |V_{tB}|, T$ and B masses below 1.37 TeV GeV/c² are excluded [307].

In many models top-quark partners preferably decay to top quarks and weakly interacting neutral stable particles, i.e., possibly dark matter candidates, that are not detected. An observable especially sensitive to new physics effects in $t\bar{t}$ production is therefore the missing transverse momentum.

CMS has presented a differential cross section measurement of top-quark pair and single production with missing transverse energy and corresponding interpretations in the context of dark matter (effective and simplified) models at 8 and 13 TeV [308–311]. The results obtained so far are consistent with the SM expectations. In particular the search performed at 13 TeV [311] is based on 35.9 fb⁻¹ of integrated luminosity. Upper limits are derived on the production cross section and interpreted in terms of a simplified model with a scalar/pseudoscalar mediator. Scalar and pseudoscalar mediator particles with masses below 290 and 300 GeV/c², respectively, are excluded at 95% confidence level, assuming a dark matter particle mass of 1 GeV/c² and mediator couplings to fermions and dark matter particles equal to unity.

A search for top squarks at a center-of-mass energy of 13 TeV in 36 fb⁻¹ of data has been performed by ATLAS [312] in final states with one isolated electron or muon, several energetic jets, and missing transverse momentum. The analysis also targets spin-0 mediator models, where the mediator decays into a pair of dark-matter particles and is produced in association with a pair of top quarks. No significant excess over the Standard Model prediction is observed. For pair-produced top-squarks decaying into top quarks, top-squark masses up to 940 GeV/c² are excluded. Stringent exclusion limits are also derived for all other considered top-squark decay scenarios. For the spin-0 mediator models, upper limits are set on the visible cross-section.

Flavor-changing-neutral-currents (FCNC) are hugely suppressed in the SM as non zero contributions only arise at one-loop and are proportional to the splitting between the quark masses. In the case of the top quark $B(t \to Bq)$ with $B = g, \gamma, Z, H$ and q = u, c are predicted to be order of 10^{-12} ($t \to cg$) or much smaller [313]. Several observables are accessible at colliders to test and constrain such couplings.

CMS has performed several studies on the search for FCNC in top-quark production. They have considered single-top quark production in the *t*-channel in 5 fb⁻¹ integrated luminosity at 7 TeV and 19.7 fb⁻¹ integrated luminosity at 8 TeV [314]. Events with the top quark decaying into a muon, neutrino and two or three jets are selected. The upper limits on effective coupling strength can be translated to the 95% upper limits on the corresponding branching ratios $B(t \to gu) \leq 2.0 \cdot 10^{-5}$, $B(t \to gc) \leq 4.1 \cdot 10^{-4}$. They have performed a search for a single top quark produced in association with a photon in 19.1 fb⁻¹ integrated luminosity at 8 TeV [315]. The event selection requires the presence of one isolated muon and jets in the final state. The upper limits on effective coupling strength can be translated to the 95% upper limits on the corresponding branching ratios $B(t \to \gamma u) \leq 0.0161\%$, $B(t \to \gamma c) \leq 0.182\%$.

Recently, a search for flavor-changing neutral currents in associated production of a top quark with a Higgs boson decaying into $b\bar{b}$ has also been presented by CMS, corresponding to an integrated luminosity of 35.9 fb⁻¹ at 13 TeV. Two complementary channels are considered: top quark pair production, with FCNC decay of the top quark or antiquark, and single top associated production. A final state with one isolated lepton and at least three reconstructed jets, among which at least two are identified as b quark jets, is considered. No significant deviation is observed from predicted background and upper limits at 95% confidence level are set on the branching ratios of top quark decays, $B(t \rightarrow uH) < 0.47\%$ and $B(t \rightarrow cH) < 0.47\%$ [316], which are similar to the combined limits on all decay channels obtained with the full data set at 8 TeV [317].

ATLAS has presented results on the search for single top-quark production via FCNC's in strong interactions using data collected at $\sqrt{s}=8$ TeV and corresponding to an integrated luminosity of 20.3 fb⁻¹. Flavor-changing-neutral-current events are searched for in which a light quark (*u* or *c*) interacts with a gluon to produce a single top quark, either with or without the associated production of another light quark or gluon. Candidate events of top quarks decaying into leptons and jets are selected and classified into signal- and background-like events using a neural network. The observed 95% C.L. limit is $\sigma_{qq\to t} \times B(t \to Wb) < 3.4$ pb that can be interpreted as limits on the branching ratios, $B(t \to ug) < 4 \cdot 10^{-5}$ and $B(t \to cg) < 1.7 \cdot 10^{-4}$ [318].

ATLAS has set limits on the coupling of a top quark, a photon, and an up or charm quark using 81 fb⁻¹ of data 13 TeV. Events with a photon, an electron or muon, a b-tagged jet, and missing transverse momentum are selected. The data are consistent with the background-only hypothesis, and limits are set on the strength of the $tq\gamma$ coupling in an effective field theory. These are also interpreted as 95% CL upper limits on $t \to u\gamma$ branching ratio via a left-handed (righthanded) interaction of 2.8×10^{-5} (6.1×10^{-5}) and on the $t \to c\gamma$ branching ratio for of 22×10^{-5} (18×10^{-5}) [319].

Constraints on FCNC couplings of the top quark can also be obtained from searches for anomalous single top-quark production in e^+e^- collisions, via the process $e^+e^- \rightarrow \gamma, Z^* \rightarrow t\bar{q}$ and its charge-conjugate (q = u, c), or in $e^{\pm}p$ collisions, via the process $e^{\pm}u \rightarrow e^{\pm}t$. For a leptonic W decay, the topology is at least a high- p_T lepton, a high- p_T jet and missing E_T , while for a hadronic W-decay, the topology is three high- p_T jets. Limits on the cross section for this reaction have been obtained by the LEP collaborations [320] in e^+e^- collisions, and by H1 [321] and ZEUS [322] in $e^{\pm}p$ collisions. When interpreted in terms of branching ratios in top decay [323,324], the LEP limits lead to typical 95% C.L. upper bounds of $B(t \rightarrow qZ) < 0.137$. Assuming no coupling to the Z boson, the 95% C.L. limits on the anomalous FCNC coupling $\kappa_{\gamma} < 0.13$ and < 0.27 by ZEUS and H1, respectively, are stronger than the CDF limit of $\kappa_{\gamma} < 0.42$, and improve over LEP sensitivity in that domain. The H1 limit is slightly weaker than the ZEUS limit due to an observed excess of five-candidate events over an expected background of 3.2 ± 0.4 . If this excess is attributed to FCNC top-quark production, this leads to a total cross section of $\sigma(ep \rightarrow e + t + X, \sqrt{s} = 319 \text{ GeV}) < 0.25 \text{ pb} [321, 325].$

60.3.3.2 New Physics in Top-Quark decays

The large sample of top quarks produced at the Tevatron and the LHC allows to measure or set stringent limits on the branching ratios of rare top-quark decays. For example, the existence of a light H^+ can be constrained by looking for $t \to H^+b$ decay, in particular with tau-leptons in the final state (for more information see the review "Higgs Bosons: theory and searches").

A first class of searches for new physics focuses on the structure of the Wtb vertex. Using up to 2.7 fb⁻¹ of data, DØ has measured the Wtb coupling form factors by combining information from the W-boson helicity in top-quark decays in $t\bar{t}$ events and single top-quark production, allowing to place limits on the left-handed and right-handed vector and tensor couplings [326–328].

ATLAS has published the results of a search for CP-violation in the decay of single top quarks produced in the *t*-channel where the top quarks are predicted to be highly polarized, using the lepton+jets final state [329]. The data analyzed are from pp collisions at $\sqrt{s} = 7$ TeV and correspond to an integrated luminosity of 4.7 fb⁻¹. In the Standard Model, the couplings at the Wtb vertex are left-handed, right-handed couplings being absent. A forward-backward asymmetry with respect to the normal to the plane defined by the W-momentum and the top-quark polarization has been used to probe the complex phase of a possibly non-zero value of the right-handed coupling, signaling a source of CP-violation beyond the SM. The measured value of the asymmetry is $0.031 \pm 0.065(stat.)^{+0.029}_{-0.031}(syst.)$ in good agreement with the Standard Model.

A second class of searches focuses on FCNC's in the top-quark decays. Both, CDF and DØ, have provided the first limits for FCNC's in Run I and II. The most recent results from CDF give $B(t \to qZ) < 3.7\%$ and $B(t \to q\gamma) < 3.2\%$ at the 95% C.L. [330] while DØ [331, 332] sets $B(t \to qZ)(q = u, c \text{ quarks}) < 3.2\%$) at 95% C.L., $B(t \to gu) < 2.0 \cdot 10^{-4}$, and $B(t \to gc) < 3.9 \cdot 10^{-3}$ at the 95% C.L. At the LHC, CMS has used a sample at a center-of-mass energy of 8 TeV corresponding to 19.7 fb⁻¹ of integrated luminosity to perform a search for flavor changing neutral current top-quark decay $t \to Zq$. Events with a topology compatible with the decay chain $t\bar{t} \to Wb + Zq \to \ell\nu \ b + \ell\ell q$ are searched for. There is no excess seen in the observed number of events relative to the SM prediction; thus no evidence for flavor changing neutral current in top-quark decays is found. A combination with a previous search at 7 TeV excludes a $t \to Zq$ branching fraction greater than 0.05% at the 95% confidence level [333]. CMS has also performed a search for the production of a single top quark in association with a Z boson in the same data set at 8 TeV. Final states with three leptons (electrons or muons) and at least one jet are investigated. Exclusion limits at 95% confidence level on the branching fractions are found to be $B(t \to uZ) < 0.022\%$ and $B(t \to cZ) < 0.049\%$ [334].

The ATLAS collaboration has also searched for FCNC processes in 31.1 fb⁻¹ of $t\bar{t}$ events at a center-of-mass energy of 13 TeV, with one top quark decaying through FCNC $(t \to qZ)$ and the other through the SM dominant mode $(t \to bW)$. Only the decays of the Z boson to charged leptons and leptonic W boson decays were considered as signal, leading to a final state topology characterized by the presence of three isolated leptons, at least two jets and missing transverse energy from the undetected neutrino. No evidence for an FCNC signal was found. An upper limit on the $t \to qZ$ branching ratio of $B(t \to Zu(c)) < 1.7(2.4) \times 10^{-4}$ is set at the 95% confidence level [335].

Another search for FCNCs is the interactions of a top-quark to a Higgs boson and a light parton, tqH, q = u, c. The CMS collaboration has performed a search using a sample at a centerof-mass energy of 13 TeV corresponding to 35.9 fb⁻¹ of integrated luminosity, [336], combining single top quark FCNC production in association with the Higgs boson $(pp \to tH)$, and top quark pair production with FCNC decay of the top quark $(t \to qH)$. The combined analysis sets an upper limit on the $t \to u/cH$ branching ratios of $B(t \to u/cH) < 0.47\%$ at 95% confidence level. The ATLAS collaboration considers $t \to qH$, q = u, c with 36.1 fb⁻¹ of $t\bar{t}$ events at $\sqrt{s} = 13$ TeV. A combined measurement including $H \to bb$ and $H \to \tau\tau$ modes yields a 95% C.L. upper limit of 0.11% and 0.12% on the branching ratios of $B(t \to cH)$ and $B(t \to uH)$, respectively [337].

60.4 Outlook

Top-quark physics at hadron colliders has developed into precision physics. Various properties of the top quark have been measured with high precision, where the LHC has by now surpassed the Tevatron precision and reach in the majority of relevant observables. Several \sqrt{s} -dependent physics quantities, such as the production cross-section, have been measured at several energies at the Tevatron and the LHC. Up to now, all measurements are consistent with the SM predictions and allow stringent tests of the underlying production mechanisms by strong and weak interactions. Given the very large event samples available at the LHC, top-quark properties will be further determined in $t\bar{t}$ as well as in electroweak single top-quark production. At the Tevatron, the tand s-channels for electroweak single top-quark production have been measured separately. At the LHC, quick progress has been achieved in the last years making all three relevant channels measured with more than 5 sigma significance. Furthermore, $t\bar{t}\gamma$, $t\bar{t}Z$, and $t\bar{t}W$ together with $t\bar{t}H$ associated production have started to provide key information on the top-quark electroweak couplings. At the same time various models of physics beyond the SM involving top-quark production are being constrained. With the first results from LHC Run-II at a higher center-of-mass energy and much higher luminosity starting to be released, top-quark physics has the potential to shed light on open questions and new aspects of physics at the TeV scale.

CDF note references can be retrieved from

https://www-cdf.fnal.gov/physics/new/top/top.html,

and $D\emptyset$ note references from

https://www-d0.fnal.gov/Run2Physics/WWW/documents/Run2Results.htm, and ATLAS note references from

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/TopPublicResults, and CMS note references from

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsTOP.

References

- [1] M. Czakon, P. Fiedler and A. Mitov, Phys. Rev. Lett. **110**, 252004 (2013), [arXiv:1303.6254].
- [2] S. Catani *et al.*, JHEP **07**, 100 (2019), [arXiv:1906.06535].
- [3] ATLAS, CMS, CDF, & D0 Collab, Phys. Rev. Lett., 110, 25204 (2013); [arXive:403,4427].
- [4] S. Cortese and R. Petronzio, Phys. Lett. **B253**, 494 (1991).
- [5] S. S. D. Willenbrock and D. A. Dicus, Phys. Rev. **D34**, 155 (1986).
- [6] N. Kidonakis, Phys. Rev. **D83**, 091503 (2011), [arXiv:1103.2792].
- [7] M. Brucherseifer, F. Caola and K. Melnikov, Phys. Lett. B736, 58 (2014), [arXiv:1404.7116].
- [8] E. L. Berger, J. Gao and H. X. Zhu, JHEP 11, 158 (2017), [arXiv:1708.09405].
- [9] N. Kidonakis, Phys. Rev. **D81**, 054028 (2010), [arXiv:1001.5034].
- [10] N. Kidonakis, Phys. Rev. **D82**, 054018 (2010), [arXiv:1005.4451].
- [11] T. M. P. Tait and C. P. Yuan, Phys. Rev. D63, 014018 (2000), [hep-ph/0007298].
- [12] M. Jezabek and J. H. Kuhn, Nucl. Phys. **B314**, 1 (1989).
- [13] I. I. Y. Bigi *et al.*, Phys. Lett. **B181**, 157 (1986).
- [14] A. H. Hoang et al., Phys. Rev. D65, 014014 (2002), [hep-ph/0107144].
- [15] K. Hagiwara, Y. Sumino and H. Yokoya, Phys. Lett. B666, 71 (2008), [arXiv:0804.1014].
- [16] A. Czarnecki and K. Melnikov, Nucl. Phys. B544, 520 (1999), [hep-ph/9806244]; K. G. Chetyrkin *et al.*, Phys. Rev. D60, 114015 (1999), [hep-ph/9906273].
- [17] S. Frixione, P. Nason and B. R. Webber, JHEP 08, 007 (2003), [hep-ph/0305252]; W. Kim and H. Shin, JHEP 07, 070 (2007), [arXiv:0706.3563]; S. Frixione, P. Nason and G. Ridolfi, JHEP 09, 126 (2007), [arXiv:0707.3088]; J. M. Campbell et al., JHEP 04, 114 (2015), [arXiv:1412.1828]; T. Ježo et al., Eur. Phys. J. C76, 12, 691 (2016), [arXiv:1607.04538].
- [18] S. Frixione et al., JHEP 03, 092 (2006), [hep-ph/0512250]; V. Marotta and A. Naddeo, JHEP 08, 029 (2008), [arXiv:0810.4759]; S. Alioli et al., JHEP 09, 111 (2009), [Erratum: JHEP02,011(2010)], [arXiv:0907.4076]; E. Re, Eur. Phys. J. C71, 1547 (2011), [arXiv:1009.2450]; R. Frederix, E. Re and P. Torrielli, JHEP 09, 130 (2012), [arXiv:1207.5391]; R. Frederix et al., JHEP 06, 027 (2016), [arXiv:1603.01178].
- [19] S. Frixione and B. R. Webber, JHEP 06, 029 (2002), [hep-ph/0204244].

- [20] P. Nason, JHEP **11**, 040 (2004), [hep-ph/0409146].
- [21] E. Todesco and J. Wenninger, Phys. Rev. Accel. Beams 20, 8, 081003 (2017).
- [22] V. M. Abazov et al. (D0), Phys. Rev. D94, 092004 (2016), [arXiv:1605.06168].
- [23] T. Aaltonen et al. (CDF), Phys. Rev. D88, 091103 (2013), [arXiv:1304.7961].
- [24] T. A. Aaltonen et al. (CDF, D0), Phys. Rev. D89, 7, 072001 (2014), [arXiv:1309.7570].
- [25] T. A. Aaltonen et al. (CDF), Phys. Rev. D89, 9, 091101 (2014), [arXiv:1402.6728].
- [26] T. Aaltonen et al. (CDF), Phys. Rev. Lett. 105, 012001 (2010), [arXiv:1004.3224].
- [27] V. M. Abazov et al. (D0), Phys. Rev. D90, 9, 092006 (2014), [arXiv:1401.5785].
- [28] G. Aad et al. (ATLAS), Eur. Phys. J. C74, 10, 3109 (2014), [Addendum: Eur. Phys. J.C76,no.11,642(2016)], [arXiv:1406.5375].
- [29] G. Aad et al. (ATLAS), Phys. Rev. **D91**, 11, 112013 (2015), [arXiv:1504.04251].
- [30] G. Aad et al. (ATLAS), JHEP 05, 059 (2012), [arXiv:1202.4892].
- [31] ATLAS Collab., ATLAS-CONF-2011-140.
- [32] ATLAS Collab., ATLAS-CONF-2012-024.
- [33] ATLAS Collab., ATLAS-CONF-2012-031.
- [34] G. Aad et al. (ATLAS), Eur. Phys. J. C73, 3, 2328 (2013), [arXiv:1211.7205].
- [35] G. Aad et al. (ATLAS), Phys. Lett. B717, 89 (2012), [arXiv:1205.2067].
- [36] G. Aad et al. (ATLAS), Phys. Rev. D91, 5, 052005 (2015), [arXiv:1407.0573].
- [37] S. Chatrchyan et al. (CMS), JHEP 11, 067 (2012), [arXiv:1208.2671].
- [38] S. Chatrchyan et al. (CMS), Phys. Lett. B720, 83 (2013), [arXiv:1212.6682].
- [39] S. Chatrchyan et al. (CMS), JHEP 05, 065 (2013), [arXiv:1302.0508].
- [40] S. Chatrchyan et al. (CMS), Phys. Rev. D85, 112007 (2012), [arXiv:1203.6810].
- [41] S. Chatrchyan et al. (CMS), Eur. Phys. J. C73, 4, 2386 (2013), [arXiv:1301.5755].
- [42] ATLAS & CMS Collab., ATLAS-CONF-2012-134, CMS-PAS-TOP-12-003.
- [43] G. Aad et al. (ATLAS), Eur. Phys. J. C74, 10, 3109 (2014), [Addendum: Eur. Phys. J.C76,no.11,642(2016)], [arXiv:1406.5375].
- [44] M. Aaboud et al. (ATLAS), Eur. Phys. J. C78, 487 (2018), [arXiv:1712.06857].
- [45] M. Aaboud *et al.* (ATLAS), Phys. Rev. **D95**, 7, 072003 (2017), [arXiv:1702.08839].
- [46] V. Khachatryan et al. (CMS), Eur. Phys. J. C77, 1, 15 (2017), [arXiv:1602.09024].
- [47] S. Chatrchyan *et al.* (CMS), JHEP **02**, 024 (2014), [Erratum: JHEP02,102(2014)], [arXiv:1312.7582].
- [48] V. Khachatryan et al. (CMS), JHEP 08, 029 (2016), [arXiv:1603.02303].
- [49] V. Khachatryan et al. (CMS), Phys. Lett. B739, 23 (2014), [arXiv:1407.6643].
- [50] V. Khachatryan et al. (CMS), Eur. Phys. J. C76, 3, 128 (2016), [arXiv:1509.06076].
- [51] ATLAS Collab., ATLAS-CONF-2014-053, CMS Collab., CMS-PAS-TOP-14-016.
- [52] R. Aaij et al. (LHCb), Phys. Rev. Lett. 115, 11, 112001 (2015), [arXiv:1506.00903].
- [53] ATLAS Collab., ATLAS-CONF-2015-033.
- [54] ATLAS collab., ATLAS-CONF-2015-049.
- [55] M. Aaboud *et al.* (ATLAS), Phys. Lett. **B761**, 136 (2016), [Erratum: Phys. Lett.B772,879(2017)], [arXiv:1606.02699].

- [56] ATLAS Collab., ATLAS-CONF-2019-044.
- [57] ATLAS Collab., ATLAS-CONF-2019-041 (2019).
- [58] V. Khachatryan et al. (CMS), Phys. Rev. Lett. 116, 5, 052002 (2016), [arXiv:1510.05302].
- [59] V. Khachatryan et al. (CMS), Eur. Phys. J. C77, 172 (2017), [arXiv:1611.04040].
- [60] CMS Collab., CMS-PAS-TOP-15-005.
- [61] A. M. Sirunyan et al. (CMS), JHEP 09, 051 (2017), [arXiv:1701.06228].
- [62] A. M. Sirunyan et al. (CMS), Eur. Phys. J. C79, 5, 368 (2019), [arXiv:1812.10505].
- [63] CMS Collab., CMS-PAS-TOP-18-005.
- [64] CMS Collab., CMS-PAS-TOP-16-013.
- [65] A. M. Sirunyan et al. (CMS), JHEP 03, 115 (2018), [arXiv:1711.03143].
- [66] A. M. Sirunyan et al. (CMS), Phys. Rev. Lett. 119, 24, 242001 (2017), [arXiv:1709.07411].
- [67] V. M. Abazov et al. (D0), Phys. Rev. D67, 012004 (2003), [hep-ex/0205019].
- [68] T. Affolder *et al.* (CDF), Phys. Rev. **D64**, 032002 (2001), [Erratum: Phys. Rev.D67,119901(2003)], [hep-ex/0101036].
- [69] ATLAS Collab., ATLAS-CONF-2011-108.
- [70] V. M. Abazov *et al.* (D0), Phys. Rev. Lett. **107**, 121802 (2011), [arXiv:1106.5436]; D. Acosta *et al.* (CDF), Phys. Rev. Lett. **95**, 102002 (2005), [hep-ex/0505091].
- [71] V. Khachatryan et al. (CMS), Phys. Lett. **B736**, 33 (2014), [arXiv:1404.2292].
- [72] M. Czakon, D. Heymes and A. Mitov, Phys. Rev. Lett. 116, 8, 082003 (2016), [arXiv:1511.00549].
- [73] T. Aaltonen *et al.* (CDF), Phys. Rev. Lett. **110**, 12, 121802 (2013), [arXiv:1211.5363].
- [74] G. Aad et al. (ATLAS), Eur. Phys. J. C73, 1, 2261 (2013), [arXiv:1207.5644].
- [75] G. Aad et al. (ATLAS), Phys. Rev. D90, 7, 072004 (2014), [arXiv:1407.0371].
- [76] G. Aad et al. (ATLAS), JHEP 06, 100 (2015), [arXiv:1502.05923].
- [77] S. Chatrchyan et al. (CMS), Eur. Phys. J. C73, 3, 2339 (2013), [arXiv:1211.2220].
- [78] M. Aaboud et al. (ATLAS), Phys. Rev. D94, 9, 092003 (2016), [arXiv:1607.07281].
- [79] G. Aad et al. (ATLAS), Eur. Phys. J. C76, 10, 538 (2016), [arXiv:1511.04716].
- [80] G. Aad *et al.* (ATLAS), Phys. Rev. **D93**, 3, 032009 (2016), [arXiv:1510.03818].
- [81] V. Khachatryan et al. (CMS), Phys. Rev. D94, 5, 052006 (2016), [arXiv:1607.00837].
- [82] A. M. Sirunyan et al. (CMS), Eur. Phys. J. C77, 7, 459 (2017), [arXiv:1703.01630].
- [83] V. Khachatryan et al. (CMS), Phys. Rev. D94, 7, 072002 (2016), [arXiv:1605.00116].
- [84] V. Khachatryan et al. (CMS), Eur. Phys. J. C75, 11, 542 (2015), [arXiv:1505.04480].
- [85] V. Khachatryan et al. (CMS), Eur. Phys. J. C76, 3, 128 (2016), [arXiv:1509.06076].
- [86] M. Aaboud et al. (ATLAS), Eur. Phys. J. C77, 5, 292 (2017), [arXiv:1612.05220].
- [87] CMS Collab., CMS-PAS-TOP-15-010.
- [88] M. Aaboud et al. (ATLAS), JHEP 11, 191 (2017), [arXiv:1708.00727].
- [89] ATLAS collab., ATLAS-CONF-2016-100.
- [90] M. Aaboud et al. (ATLAS), Phys. Rev. D98, 1, 012003 (2018), [arXiv:1801.02052].
- [91] G. Aad et al. (ATLAS) (2019), [arXiv:1908.07305].
- [92] A. M. Sirunyan *et al.* (CMS), JHEP **04**, 060 (2018), [arXiv:1708.07638].

- [93] V. Khachatryan *et al.* (CMS), Phys. Rev. **D95**, 9, 092001 (2017), [arXiv:1610.04191].
- [94] A. M. Sirunyan et al. (CMS), JHEP 06, 002 (2018), [arXiv:1803.03991].
- [95] A. M. Sirunyan et al. (CMS), Phys. Rev. D97, 11, 112003 (2018), [arXiv:1803.08856].
- [96] A. M. Sirunyan et al. (CMS), JHEP 02, 149 (2019), [arXiv:1811.06625].
- [97] A. M. Sirunyan et al. (CMS), Submitted to: Eur. Phys. J. (2019), [arXiv:1904.05237].
- [98] G. Aad et al. (ATLAS), Eur. Phys. J. C76, 1, 11 (2016), [arXiv:1508.06868].
- [99] G. Aad *et al.* (ATLAS), JHEP **01**, 020 (2015), [arXiv:1407.0891].
- [100] S. Chatrchyan *et al.* (CMS), Eur. Phys. J. C74, 3014 (2015), [Erratum: Eur. Phys. J.C75,no.5,216(2015)], [arXiv:1404.3171].
- [101] V. Khachatryan *et al.* (CMS), Phys. Lett. **B746**, 132 (2015), [arXiv:1411.5621].
- [102] G. Aad et al. (ATLAS), Phys. Rev. D92, 7, 072005 (2015), [arXiv:1506.05074].
- [103] M. Aaboud *et al.* (ATLAS), JHEP **04**, 046 (2019), [arXiv:1811.12113].
- [104] A. M. Sirunyan et al. (CMS), Phys. Lett. B776, 355 (2018), [arXiv:1705.10141].
- [105] CMS Collab., CMS-PAS-TOP-18-002.
- [106] A. M. Sirunyan et al. (CMS) (2019), [arXiv:1909.05306].
- [107] V. M. Abazov et al. (D0), Phys. Rev. Lett. 103, 092001 (2009), [arXiv:0903.0850]; V. M. Abazov et al. (D0), Phys. Rev. D78, 012005 (2008), [arXiv:0803.0739]; V. M. Abazov et al. (D0), Phys. Rev. Lett. 98, 181802 (2007), [hep-ex/0612052].
- [108] T. Aaltonen *et al.* (CDF), Phys. Rev. Lett. **103**, 092002 (2009), [arXiv:0903.0885]; T. Aaltonen *et al.* (CDF), Phys. Rev. **D81**, 072003 (2010), [arXiv:1001.4577].
- [109] T. Aaltonen et al. (CDF), Phys. Rev. **D82**, 112005 (2010), [arXiv:1004.1181].
- [110] A. Heinson and T. R. Junk, Ann. Rev. Nucl. Part. Sci. 61, 171 (2011), [arXiv:1101.1275].
- [111] Tevatron Electroweak Working Group, (2009), [arXiv:0908.2171].
- [112] CDF Collab., CDF conference note 11113 (2014), DØ Collab., DØ conference note 6448 (2014).
- [113] T. A. Aaltonen et al. (CDF, D0), Phys. Rev. Lett. 115, 15, 152003 (2015), [arXiv:1503.05027].
- [114] T. A. Aaltonen et al. (CDF, D0), Phys. Rev. Lett. 112, 231803 (2014), [arXiv:1402.5126].
- [115] G. Aad et al. (ATLAS), Phys. Rev. D90, 11, 112006 (2014), [arXiv:1406.7844].
- [116] G. Aad et al. (ATLAS), Phys. Lett. **B717**, 330 (2012), [arXiv:1205.3130].
- [117] S. Chatrchyan et al. (CMS), JHEP 12, 035 (2012), [arXiv:1209.4533].
- [118] M. Aaboud et al. (ATLAS), Eur. Phys. J. C77, 8, 531 (2017), [arXiv:1702.02859].
- [119] M. Aaboud et al. (ATLAS), JHEP 04, 124 (2017), [arXiv:1702.08309].
- [120] V. Khachatryan et al. (CMS), JHEP 06, 090 (2014), [arXiv:1403.7366].
- [121] CMS Collab., CMS-PAS-TOP-15-007.
- [122] M. Aaboud et al. (ATLAS), JHEP 04, 086 (2017), [arXiv:1609.03920].
- [123] A. M. Sirunyan et al. (CMS), Phys. Lett. B772, 752 (2017), [arXiv:1610.00678].
- [124] A. M. Sirunyan et al. (CMS) (2018), [arXiv:1812.10514].
- [125] C. D. White *et al.*, JHEP **11**, 074 (2009), [arXiv:0908.0631].
- [126] S. Frixione et al., JHEP 07, 029 (2008), [arXiv:0805.3067].
- [127] G. Aad et al. (ATLAS), Phys. Lett. B716, 142 (2012), [arXiv:1205.5764].

- [128] S. Chatrchyan et al. (CMS), Phys. Rev. Lett. 110, 022003 (2013), [arXiv:1209.3489].
- [129] G. Aad et al. (ATLAS), JHEP 01, 064 (2016), [arXiv:1510.03752].
- [130] S. Chatrchyan et al. (CMS), Phys. Rev. Lett. 112, 23, 231802 (2014), [arXiv:1401.2942].
- [131] ATLAS Collab., ATLAS-CONF-2014-052, CMS Collab., CMS-PAS-TOP-14-009.
- [132] M. Aaboud et al. (ATLAS), JHEP 01, 063 (2018), [arXiv:1612.07231].
- [133] A. M. Sirunyan et al. (CMS), JHEP 10, 117 (2018), [arXiv:1805.07399].
- [134] ATLAS Collab., ATLAS-CONF-2011-118.
- [135] G. Aad et al. (ATLAS), Phys. Lett. B756, 228 (2016), [arXiv:1511.05980].
- [136] V. Khachatryan et al. (CMS), JHEP 09, 027 (2016), [arXiv:1603.02555].
- [137] M. Aaboud et al. (ATLAS, CMS), JHEP 05, 088 (2019), [arXiv:1902.07158].
- [138] CMS Collab., CMS-PAS-TOP-14-004.
- [139] CMS Collab., CMS-PAS-TOP-13-001.
- [140] A. M. Sirunyan et al. (CMS) (2019), [arXiv:1907.08330].
- [141] ATLAS collab., ATLAS-CONF-2016-012.
- [142] A. M. Sirunyan et al. (CMS), Phys. Rev. Lett. 121, 22, 221802 (2018), [arXiv:1808.02913].
- [143] M. Czakon, P. Fiedler and A. Mitov, Phys. Rev. Lett. 115, 5, 052001 (2015), [arXiv:1411.3007].
- [144] W. Hollik and D. Pagani, Phys. Rev. **D84**, 093003 (2011), [arXiv:1107.2606].
- [145] W. Bernreuther and Z.-G. Si, Phys. Rev. **D86**, 034026 (2012), [arXiv:1205.6580].
- [146] S. Jung et al., Phys. Rev. D81, 015004 (2010), [arXiv:0907.4112].
- [147] V. M. Abazov et al. (D0), Phys. Rev. Lett. 100, 142002 (2008), [arXiv:0712.0851].
- [148] T. Aaltonen et al. (CDF), Phys. Rev. Lett. 101, 202001 (2008), [arXiv:0806.2472].
- [149] T. A. Aaltonen et al. (CDF, D0), Phys. Rev. Lett. 120, 4, 042001 (2018), [arXiv:1709.04894].
- [150] G. Aad et al. (ATLAS), JHEP 02, 107 (2014), [arXiv:1311.6724].
- [151] G. Aad *et al.* (ATLAS), Eur. Phys. J. C76, 2, 87 (2016), [Erratum: Eur. Phys. J.C77,564(2017)], [arXiv:1509.02358].
- [152] G. Aad et al. (ATLAS), Phys. Rev. D94, 3, 032006 (2016), [arXiv:1604.05538].
- [153] S. Chatrchyan et al. (CMS), Phys. Lett. **B717**, 129 (2012), [arXiv:1207.0065].
- [154] V. Khachatryan et al. (CMS), Phys. Rev. **D93**, 3, 034014 (2016), [arXiv:1508.03862].
- [155] V. Khachatryan et al. (CMS), Phys. Lett. B760, 365 (2016), [arXiv:1603.06221].
- [156] M. Czakon et al., Phys. Rev. D98, 1, 014003 (2018), [arXiv:1711.03945].
- [157] V. Khachatryan et al. (CMS), Phys. Lett. B757, 154 (2016), [arXiv:1507.03119].
- [158] G. Aad et al. (ATLAS), Phys. Lett. B756, 52 (2016), [arXiv:1512.06092].
- [159] G. Aad et al. (ATLAS), JHEP 05, 061 (2015), [arXiv:1501.07383].
- [160] S. Chatrchyan *et al.* (CMS), JHEP **04**, 191 (2014), [arXiv:1402.3803].
- [161] M. Aaboud et al. (ATLAS, CMS), JHEP 04, 033 (2018), [arXiv:1709.05327].
- [162] C. Collaboration (CMS) (2019).
- [163] F. Abe *et al.* (CDF), Phys. Rev. **D50**, 2966 (1994).
- [164] A. Abulencia et al. (CDF), Phys. Rev. D73, 032003 (2006), [hep-ex/0510048].
- [165] M. Aaboud et al. (ATLAS), Eur. Phys. J. C79, 4, 290 (2019), [arXiv:1810.01772].

- [166] V. Khachatryan et al. (CMS), Phys. Rev. D93, 7, 072004 (2016), [arXiv:1509.04044].
- [167] A. M. Sirunyan et al. (CMS), Eur. Phys. J. C78, 11, 891 (2018), [arXiv:1805.01428].
- [168] S. Argyropoulos and T. Sjöstrand, JHEP 11, 043 (2014), [arXiv:1407.6653].
- [169] J. R. Christiansen and P. Z. Skands, JHEP 08, 003 (2015), [arXiv:1505.01681].
- [170] C. Collaboration (CMS) (2019).
- [171] V. M. Abazov et al. (D0), Nature **429**, 638 (2004), [hep-ex/0406031].
- [172] K. Kondo, T. Chikamatsu and S. H. Kim, J. Phys. Soc. Jap. 62, 1177 (1993).
- [173] R. H. Dalitz and G. R. Goldstein, Phys. Rev. D45, 1531 (1992); R. H. Dalitz and G. R. Goldstein, Phys. Lett. B287, 225 (1992).
- [174] V. M. Abazov et al. (D0), Phys. Rev. Lett. **113**, 032002 (2014), [arXiv:1405.1756].
- [175] L. Sonnenschein, Phys. Rev. D73, 054015 (2006), [Erratum: Phys. Rev.D78,079902(2008)], [hep-ph/0603011].
- [176] G. Aad et al. (ATLAS), Eur. Phys. J. C75, 7, 330 (2015), [arXiv:1503.05427].
- [177] A. M. Sirunyan et al. (CMS), Phys. Rev. D96, 3, 032002 (2017), [arXiv:1704.06142].
- [178] C. G. Lester and D. J. Summers, Phys. Lett. **B463**, 99 (1999), [hep-ph/9906349].
- [179] A. M. Sirunyan et al. (CMS), Eur. Phys. J. C79, 4, 313 (2019), [arXiv:1812.10534].
- [180] M. Aaboud *et al.* (ATLAS), JHEP **09**, 118 (2017), [arXiv:1702.07546].
- [181] The Tevatron Electroweak Working Group and Aaltonen, T., For the CDF and D0 Collab., arXiv:1608.01881, FERMILAB-CONF-16-298-E.
- [182] B. Abbott et al. (D0), Phys. Rev. D60, 052001 (1999), [hep-ex/9808029]; F. Abe et al. (CDF), Phys. Rev. Lett. 82, 271 (1999), [Erratum: Phys. Rev. Lett.82,2808(1999)], [hep-ex/9810029].
- [183] T. Aaltonen *et al.* (CDF), Phys. Rev. **D92**, 3, 032003 (2015), [arXiv:1505.00500].
- [184] T. A. Aaltonen *et al.* (CDF), Phys. Rev. **D90**, 9, 091101 (2014), [arXiv:1409.4906].
- [185] A. M. Sirunyan et al. (CMS), Eur. Phys. J. C77, 5, 354 (2017), [arXiv:1703.02530].
- [186] T. Aaltonen et al. (CDF), Phys. Lett. B698, 371 (2011), [arXiv:1101.4926].
- [187] CMS Collab., CMS-PAS-TOP-12-030.
- [188] T. Aaltonen et al. (CDF), Phys. Rev. D80, 051104 (2009), [arXiv:0906.5371].
- [189] V. Khachatryan et al. (CMS), Phys. Rev. D93, 9, 092006 (2016), [arXiv:1603.06536].
- [190] V. Khachatryan et al. (CMS), JHEP 12, 123 (2016), [arXiv:1608.03560].
- [191] CMS Collab., CMS-PAS-TOP-15-002.
- [192] CMS Collab., CMS-PAS-TOP-16-002.
- [193] V. M. Abazov et al. (D0), Phys. Rev. Lett. 100, 192004 (2008), [arXiv:0803.2779]; S. Chatrchyan et al. (CMS), Phys. Lett. B728, 496 (2014), [Erratum: Phys. Lett.B738,526(2014)], [arXiv:1307.1907]; V. M. Abazov et al. (D0), Phys. Lett. B703, 422 (2011), [arXiv:1104.2887]; ATLAS Collab., ATLAS-CONF-2019-041; U. Langenfeld, S. Moch and P. Uwer, Phys. Rev. D80, 054009 (2009), [arXiv:0906.5273].
- [194] G. Aad *et al.* (ATLAS) (2019), [arXiv:1905.02302].
- [195] CMS Collab., CMS-PAS-TOP-13-006 (2016).
- [196] CDF Collab., CDF conference note 11080 (2014).
- [197] V. M. Abazov et al. (D0), Phys. Rev. D91, 11, 112003 (2015), [arXiv:1501.07912].
- [198] CMS Collab., CMS-PAS-TOP-13-005.

- [199] M. Beneke *et al.*, Phys. Lett. **B775**, 63 (2017), [arXiv:1605.03609].
- [200] A. H. Hoang, C. Lepenik and M. Preisser, JHEP 09, 099 (2017), [arXiv:1706.08526].
- [201] C. Collaboration (CMS) (2019), [arXiv:1909.09193].
- [202] G. Aad et al. (ATLAS), Phys. Lett. B716, 1 (2012), [arXiv:1207.7214].
- [203] S. Chatrchyan et al. (CMS), Phys. Lett. B716, 30 (2012), [arXiv:1207.7235].
- [204] G. Degrassi *et al.*, JHEP **08**, 098 (2012), [arXiv:1205.6497].
- [205] S. Alekhin, A. Djouadi and S. Moch, Phys. Lett. **B716**, 214 (2012), [arXiv:1207.0980].
- [206] T. Aaltonen et al. (CDF), Phys. Rev. D87, 5, 052013 (2013), [arXiv:1210.6131].
- [207] V. M. Abazov et al. (D0), Phys. Rev. D84, 052005 (2011), [arXiv:1106.2063].
- [208] G. Aad et al. (ATLAS), Phys. Lett. **B728**, 363 (2014), [arXiv:1310.6527].
- [209] S. Chatrchyan et al. (CMS), JHEP 06, 109 (2012), [arXiv:1204.2807].
- [210] S. Chatrchyan et al. (CMS), Phys. Lett. B770, 50 (2017), [arXiv:1610.09551].
- [211] G. Mahlon and S. J. Parke, Phys. Rev. D53, 4886 (1996), [hep-ph/9512264]; G. Mahlon and S. J. Parke, Phys. Lett. B411, 173 (1997), [hep-ph/9706304].
- [212] G.R. Goldstein, in Spin 96: Proceedings of the 12th International Symposium on High Energy Spin Physics, Amsterdam, 1996, ed. C.W. Jager (World Scientific, Singapore, 1997), p. 328.
- [213] T. Stelzer and S. Willenbrock, Phys. Lett. **B374**, 169 (1996), [hep-ph/9512292].
- [214] W. Bernreuther *et al.*, Nucl. Phys. **B690**, 81 (2004), [hep-ph/0403035].
- [215] A. Brandenburg, Z. G. Si and P. Uwer, Phys. Lett. **B539**, 235 (2002), [hep-ph/0205023].
- [216] CDF Collab., CDF conference note 10719 (2011).
- [217] CDF Collab., CDF conference note 10211 (2010).
- [218] V. M. Abazov *et al.* (D0), Phys. Lett. **B757**, 199 (2016), [arXiv:1512.08818].
- [219] V. M. Abazov et al. (D0), Phys. Rev. **D95**, 1, 011101 (2017), [arXiv:1607.07627].
- [220] V. M. Abazov *et al.* (D0), Phys. Rev. **D92**, 052007 (2015), [arXiv:1507.05666].
- [221] G. Mahlon and S. J. Parke, Phys. Rev. D81, 074024 (2010), [arXiv:1001.3422].
- [222] G. Aad et al. (ATLAS), Phys. Rev. D90, 11, 112016 (2014), [arXiv:1407.4314].
- [223] G. Aad *et al.* (ATLAS), Phys. Rev. Lett. **114**, 14, 142001 (2015), [arXiv:1412.4742].
- [224] G. Aad *et al.* (ATLAS), Phys. Rev. **D93**, 1, 012002 (2016), [arXiv:1510.07478].
- [225] S. Chatrchyan *et al.* (CMS), Phys. Rev. Lett. **112**, 18, 182001 (2014), [arXiv:1311.3924].
- [226] V. Khachatryan et al. (CMS), Phys. Lett. **B758**, 321 (2016), [arXiv:1511.06170].
- [227] V. Khachatryan et al. (CMS), Phys. Rev. D93, 5, 052007 (2016), [arXiv:1601.01107].
- [228] M. Aaboud et al. (ATLAS), Submitted to: Eur. Phys. J. (2019), [arXiv:1903.07570].
- [229] A. M. Sirunyan et al. (CMS), Phys. Rev. D100, 7, 072002 (2019), [arXiv:1907.03729].
- [230] W. Bernreuther, D. Heisler and Z.-G. Si, JHEP 12, 026 (2015), [arXiv:1508.05271].
- [231] M. Aaboud et al. (ATLAS), JHEP 03, 113 (2017), [arXiv:1612.07004].
- [232] A. F. Falk and M. E. Peskin, Phys. Rev. **D49**, 3320 (1994), [hep-ph/9308241].
- [233] T. A. Aaltonen *et al.* (CDF), Phys. Rev. Lett. **111**, 20, 202001 (2013), [arXiv:1308.4050].
- [234] CMS Collab., CMS-PAS-TOP-16-019.
- [235] M. Aaboud et al. (ATLAS), Eur. Phys. J. C78, 2, 129 (2018), [arXiv:1709.04207].
- [236] ATLAS-CONF-2019-038.

- [237] V. M. Abazov et al. (D0), Phys. Rev. D85, 091104 (2012), [arXiv:1201.4156].
- [238] G. L. Kane, G. A. Ladinsky and C. P. Yuan, Phys. Rev. D45, 124 (1992).
- [239] A. Czarnecki, J. G. Korner and J. H. Piclum, Phys. Rev. D81, 111503 (2010), [arXiv:1005.2625].
- [240] T. Aaltonen et al. (CDF, D0), Phys. Rev. D85, 071106 (2012), [arXiv:1202.5272].
- [241] G. Aad et al. (ATLAS), JHEP 06, 088 (2012), [arXiv:1205.2484].
- [242] S. Chatrchyan et al. (CMS), JHEP 10, 167 (2013), [arXiv:1308.3879].
- [243] ATLAS and CMS Collab., ATLAS-CONF-2013-033, CMS-PAS-TOP-11-025.
- [244] M. Aaboud *et al.* (ATLAS), Eur. Phys. J. C77, 4, 264 (2017), [Erratum: Eur. Phys. J.C79,no.1,19(2019)], [arXiv:1612.02577].
- [245] V. Khachatryan *et al.* (CMS), Phys. Lett. **B762**, 512 (2016), [arXiv:1605.09047].
- [246] CMS Collab., CMS-PAS-TOP-14-017.
- [247] V. Khachatryan et al. (CMS), JHEP 01, 053 (2015), [arXiv:1410.1154].
- [248] T. Aaltonen et al. (CDF), Phys. Rev. D87, 3, 031104 (2013), [arXiv:1211.4523].
- [249] D. Choudhury, T. M. P. Tait and C. E. M. Wagner, Phys. Rev. D65, 053002 (2002), [hep-ph/0109097].
- [250] D. Chang, W.-F. Chang and E. Ma, Phys. Rev. D59, 091503 (1999), [hep-ph/9810531];
 D. Chang, W.-F. Chang and E. Ma, Phys. Rev. D61, 037301 (2000), [hep-ph/9909537].
- [251] T. Aaltonen et al. (CDF), Phys. Rev. D88, 3, 032003 (2013), [arXiv:1304.4141].
- [252] V. M. Abazov *et al.* (D0), Phys. Rev. D90, 5, 051101 (2014), [Erratum: Phys. Rev.D90,no.7,079904(2014)], [arXiv:1407.4837].
- [253] G. Aad *et al.* (ATLAS), JHEP **11**, 031 (2011).
- [254] CMS Collab., CMS-PAS-TOP-11-031.
- [255] T. Aaltonen et al. (CDF), Phys. Rev. D84, 031104 (2011), [arXiv:1106.3970].
- [256] G. Aad et al. (ATLAS), Phys. Rev. D91, 7, 072007 (2015), [arXiv:1502.00586].
- [257] M. Aaboud *et al.* (ATLAS), JHEP **11**, 086 (2017), [arXiv:1706.03046].
- [258] K. Melnikov, M. Schulze and A. Scharf, Phys. Rev. D83, 074013 (2011), [arXiv:1102.1967].
- [259] A. M. Sirunyan et al. (CMS), JHEP 10, 006 (2017), [arXiv:1706.08128].
- [260] M. Aaboud et al. (ATLAS), Eur. Phys. J. C79, 5, 382 (2019), [arXiv:1812.01697].
- [261] ATLAS Collab., ATLAS-CONF-2019-042.
- [262] A. M. Sirunyan et al. (CMS), Phys. Lett. B779, 358 (2018), [arXiv:1712.02825].
- [263] M. Cepeda et al. (HL/HE WG2 group) (2019), [arXiv:1902.00134].
- [264] S. Chatrchyan et al. (CMS), Phys. Rev. Lett. 110, 172002 (2013), [arXiv:1303.3239].
- [265] J. M. Campbell and R. K. Ellis, JHEP 07, 052 (2012), [arXiv:1204.5678].
- [266] M. V. Garzelli *et al.*, JHEP **11**, 056 (2012), [arXiv:1208.2665].
- [267] ATLAS Collab., ATLAS-CONF-2012-126.
- [268] G. Aad et al. (ATLAS), JHEP 11, 172 (2015), [arXiv:1509.05276].
- [269] V. Khachatryan et al. (CMS), JHEP 01, 096 (2016), [arXiv:1510.01131].
- [270] M. Aaboud et al. (ATLAS), Phys. Rev. D99, 7, 072009 (2019), [arXiv:1901.03584].

- [271] A. Broggio *et al.*, JHEP **08**, 039 (2019), [arXiv:1907.04343].
- [272] A. M. Sirunyan et al. (CMS), JHEP 08, 011 (2018), [arXiv:1711.02547].
- [273] (2019), [arXiv:1907.11270].
- [274] A. M. Sirunyan et al. (CMS), JHEP 07, 003 (2017), [arXiv:1702.01404].
- [275] S. P. Martin 1–98 (1997), [Adv. Ser. Direct. High Energy Phys. 18,1(1998)], [hep-ph/9709356].
- [276] C. T. Hill and E. H. Simmons, Phys. Rept. 381, 235 (2003), [Erratum: Phys. Rept.390,553(2004)], [hep-ph/0203079].
- [277] C. T. Hill, Phys. Lett. **B266**, 419 (1991).
- [278] C. T. Hill, Phys. Lett. **B345**, 483 (1995), [hep-ph/9411426].
- [279] A. M. Sirunyan et al. (CMS) (2019), [arXiv:1908.06463].
- [280] M. Aaboud et al. (ATLAS), Phys. Rev. D99, 5, 052009 (2019), [arXiv:1811.02305].
- [281] C. Zhang and S. Willenbrock, Phys. Rev. D83, 034006 (2011), [arXiv:1008.3869].
- [282] J. A. Aguilar-Saavedra, Nucl. Phys. B843, 638 (2011), [Erratum: Nucl. Phys.B851,443(2011)], [arXiv:1008.3562].
- [283] A. Buckley et al., JHEP 04, 015 (2016), [arXiv:1512.03360].
- [284] N. P. Hartland *et al.*, JHEP **04**, 100 (2019), [arXiv:1901.05965].
- [285] I. Brivio et al. (2019), [arXiv:1910.03606].
- [286] V. Barger, T. Han and D. G. E. Walker, Phys. Rev. Lett. 100, 031801 (2008), [hep-ph/0612016].
- [287] R. Frederix and F. Maltoni, JHEP **01**, 047 (2009), [arXiv:0712.2355].
- [288] T. Aaltonen et al. (CDF), Phys. Rev. Lett. 110, 12, 121802 (2013), [arXiv:1211.5363].
- [289] D. Acosta et al. (CDF), Phys. Rev. Lett. 94, 211801 (2005), [hep-ex/0501050].
- [290] T. Aaltonen et al. (CDF), Phys. Rev. D84, 072003 (2011), [arXiv:1108.4755].
- [291] A. Altheimer *et al.*, J. Phys. **G39**, 063001 (2012), [arXiv:1201.0008].
- [292] A. M. Sirunyan *et al.* (CMS), JHEP **04**, 031 (2019), [arXiv:1810.05905].
- [293] A. M. Sirunyan et al. (CMS), JHEP 07, 001 (2017), [arXiv:1704.03366].
- [294] M. Aaboud *et al.* (ATLAS), Eur. Phys. J. C78, 7, 565 (2018), [arXiv:1804.10823].
- [295] M. Aaboud et al. (ATLAS), Phys. Rev. D99, 9, 092004 (2019), [arXiv:1902.10077].
- [296] A. M. Sirunyan et al. (CMS), Phys. Lett. B777, 39 (2018), [arXiv:1708.08539].
- [297] A. M. Sirunyan et al. (CMS), Phys. Lett. B781, 574 (2018), [arXiv:1708.01062].
- [298] A. M. Sirunyan et al. (CMS), JHEP 08, 073 (2017), [arXiv:1705.10967].
- [299] A. M. Sirunyan et al. (CMS), Phys. Lett. B772, 634 (2017), [arXiv:1701.08328].
- [300] V. Khachatryan et al. (CMS), Phys. Lett. B771, 80 (2017), [arXiv:1612.00999].
- [301] A. M. Sirunyan et al. (CMS), JHEP 04, 136 (2017), [arXiv:1612.05336].
- [302] A. M. Sirunyan *et al.* (CMS), JHEP **05**, 029 (2017), [arXiv:1701.07409].
- [303] A. M. Sirunyan et al. (CMS), Eur. Phys. J. C79, 90 (2019), [arXiv:1809.08597].
- [304] A. M. Sirunyan et al. (CMS), Phys. Rev. D100, 7, 072001 (2019), [arXiv:1906.11903].
- [305] M. Aaboud et al. (ATLAS), Phys. Lett. B788, 347 (2019), [arXiv:1807.10473].
- [306] M. Aaboud et al. (ATLAS), Phys. Rev. D98, 11, 112010 (2018), [arXiv:1806.10555].
- [307] M. Aaboud et al. (ATLAS), Phys. Rev. Lett. 121, 21, 211801 (2018), [arXiv:1808.02343].

- [308] CMS Collab. CMS-PAS-TOP-12-042 (2013).
- [309] V. Khachatryan et al. (CMS), JHEP 06, 121 (2015), [arXiv:1504.03198].
- [310] A. M. Sirunyan et al. (CMS), Eur. Phys. J. C77, 12, 845 (2017), [arXiv:1706.02581].
- [311] A. M. Sirunyan et al. (CMS), JHEP 03, 141 (2019), [arXiv:1901.01553].
- [312] M. Aaboud et al. (ATLAS), JHEP 06, 108 (2018), [arXiv:1711.11520].
- [313] J. A. Aguilar-Saavedra, Acta Phys. Polon. **B35**, 2695 (2004), [hep-ph/0409342].
- [314] V. Khachatryan et al. (CMS), JHEP 02, 028 (2017), [arXiv:1610.03545].
- [315] CMS Collab., CMS-PAS-TOP-14-003.
- [316] CMS Collab., CMS-PAS-TOP-17-003.
- [317] V. Khachatryan et al. (CMS), JHEP 02, 079 (2017), [arXiv:1610.04857].
- [318] G. Aad et al. (ATLAS), Eur. Phys. J. C76, 2, 55 (2016), [arXiv:1509.00294].
- [319] G. Aad et al. (ATLAS), Phys. Lett. B800, 135082 (2020), [arXiv:1908.08461].
- [320] A. Heister et al. (ALEPH), Phys. Lett. B543, 173 (2002), [hep-ex/0206070]; J. Abdallah et al. (DELPHI), Phys. Lett. B590, 21 (2004), [hep-ex/0404014]; P. Achard et al. (L3), Phys. Lett. B549, 290 (2002), [hep-ex/0210041]; G. Abbiendi et al. (OPAL), Phys. Lett. B521, 181 (2001), [hep-ex/0110009].
- [321] F. D. Aaron *et al.* (H1), Phys. Lett. **B678**, 450 (2009), [arXiv:0904.3876].
- [322] H. Abramowicz et al. (ZEUS), Phys. Lett. B708, 27 (2012), [arXiv:1111.3901].
- [323] M. Beneke et al., in "1999 CERN Workshop on standard model physics (and more) at the LHC, CERN, Geneva, Switzerland, 25-26 May: Proceedings," 419-529 (2000), [hepph/0003033], URL http://weblib.cern.ch/abstract?CERN-TH-2000-100.
- [324] V. F. Obraztsov, S. R. Slabospitsky and O. P. Yushchenko, Phys. Lett. B426, 393 (1998), [hep-ph/9712394].
- [325] T. Carli, D. Dannheim and L. Bellagamba, Mod. Phys. Lett. A19, 1881 (2004), [hep-ph/0402012].
- [326] V. M. Abazov *et al.* (D0), Phys. Rev. Lett. **102**, 092002 (2009), [arXiv:0901.0151].
- [327] V.M. Abazov et al. (DØ Collab.), DØ conference note 5838 (2009).
- [328] V. M. Abazov *et al.* (D0), Phys. Lett. **B708**, 21 (2012), [arXiv:1110.4592].
- [329] ATLAS Collab., ATLAS-CONF-2013-032.
- [330] T. Aaltonen et al. (CDF), Phys. Rev. Lett. 101, 192002 (2008), [arXiv:0805.2109].
- [331] V. M. Abazov et al. (D0), Phys. Lett. **B701**, 313 (2011), [arXiv:1103.4574].
- [332] V. M. Abazov *et al.* (D0), Phys. Lett. **B693**, 81 (2010), [arXiv:1006.3575].
- [333] S. Chatrchyan et al. (CMS), Phys. Rev. Lett. 112, 17, 171802 (2014), [arXiv:1312.4194].
- [334] A. M. Sirunyan et al. (CMS), JHEP 07, 003 (2017), [arXiv:1702.01404].
- [335] M. Aaboud *et al.* (ATLAS), JHEP **07**, 176 (2018), [arXiv:1803.09923].
- [336] A. M. Sirunyan et al. (CMS), JHEP 06, 102 (2018), [arXiv:1712.02399].
- [337] M. Aaboud *et al.* (ATLAS), JHEP **05**, 123 (2019), [arXiv:1812.11568].