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16.1 Effective Field Theories
Quantum field theories provide the most precise computational tools for describing physics at

the highest energies. One of their characteristic features is that they almost inevitably involve
multiple length scales. When trying to determine the value of an observable, quantum field theory
demands that all possible virtual states and hence all particles be included in the calculation.
Since these particles have widely different masses, the final prediction is sensitive to many scales.
This fact represents a formidable challenge from a practical point of view. No realistic quantum
field theories can be solved exactly, so that one needs to resort to approximation schemes; these,
however, are typically most straightforward when only a single scale is involved at a time.

Effective field theories (EFTs) provide a general theoretical framework to deal with the multi-
scale problems of realistic quantum field theories. This framework aims at reducing such problems
to a combination of separate and simpler single-scale problems; simultaneously, however, it provides
an organization scheme whereby the other scales are not omitted but allowed to play their role in
a separate step of the computation. The philosophy and basic principles of this approach are very
generic, and correspondingly EFTs represent a widely used method in many different areas of high-
energy physics, from the low-energy scales of atomic and nuclear physics to the high-energy scales
of (partly yet unknown) elementary-particle physics, see [1–3] for some early references. EFTs can
play a role both within analytic perturbative computations and in the context of non-perturbative
numerical simulations; One of the simplest applications of EFTs to particle physics concerns the
description of an underlying theory that is only probed at energy scales E < Λ. Any particle
with mass m > Λ cannot be produced as a real state and therefore only leads to short-distance
virtual effects. Thus, one can construct an effective theory in which the quantum fluctuations of
such heavy particles are “integrated out” from the generating functional for Green functions. This
results in a simpler theory containing only those degrees of freedom that are relevant to the energy
scales under consideration. In fact, the standard model of particle physics itself is widely viewed
as an EFT of some yet unknown, more fundamental theory.

The development of any effective theory starts by identifying the degrees of freedom that are
relevant to describe the physics at a given energy (or length) scale and constructing the Lagrangian
describing the interactions among these fields. Short-distance quantum fluctuations associated
with much smaller length scales are absorbed into the coefficients of the various operators in the
effective theory. These coefficients are determined in a matching procedure, by requiring that the
EFT reproduces the matrix elements of the full theory up to power corrections. In many cases the
effective Lagrangian exhibits enhanced symmetries compared with the fundamental theory, allowing
for simple and sometimes striking predictions relating different observables.

16.2 Heavy-Quark Effective Theory
Heavy-quark systems provide prime examples for applications of the EFT technology, because

the hierarchy mQ � ΛQCD (with Q = b, c) provides a natural separation of scales. Physics at the
scale mQ is of a short-distance nature and can be treated perturbatively, while for heavy-quark
systems there is always also some hadronic physics governed by the confinement scale ΛQCD of the
strong interaction. Being able to separate the short-distance and long-distance effects associated
with these two scales is crucial for any quantitative description. For instance, if the long-distance
hadronic matrix elements are obtained from lattice QCD, then it is necessary to analytically com-
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pute the effects of short-wavelength modes that do not fit on the lattice. In many other instances,
the long-distance physics can be encoded in a small number of hadronic parameters.

16.2.1 General idea and derivation of the effective Lagrangian
The simplest effective theory for heavy-quark systems is the heavy-quark effective theory (HQET)

[4–7] (see [8,9] for detailed discussions). It provides a simplified description of the soft interactions
of a single heavy quark with light partons. This includes the interactions that bind the heavy quark
with other light partons inside heavy mesons and baryons.

A softly interacting heavy quark is nearly on-shell. Its momentum may be decomposed as
pQ = mQv + k, where v is the 4-velocity of the hadron containing the heavy quark. The “residual
momentum” k results from the soft interactions of the heavy quark with its environment and
satisfies v · k ∼ ΛQCD and k2 ∼ Λ2

QCD, which in the rest frame of the heavy hadron reduces to
kµ ∼ ΛQCD. In the limit mQ � ΛQCD, the soft interactions do not change the 4-velocity of the
heavy quark, which is therefore a conserved quantum number that is often used as a label on the
effective heavy-quark fields. A nearly on-shell Dirac spinor has two large and two small components.
We define

Q(x) = e−imQv·x [hv(x) +Hv(x)] , (16.1)

where
hv(x) = eimQv·x 1 + /v

2 Q(x) , Hv(x) = eimQv·x 1− /v
2 Q(x) (16.2)

are the large (“upper”) and small (“lower”) components of the spinor field, respectively. The ex-
traction of the phase factor in (16.1) implies that the fields hv and Hv carry the residual momentum
k. The field Hv is 1/mQ suppressed relative to hv and describes quantum fluctuations far off the
mass shell. Integrating it out using its equations of motion yields the HQET Lagrangian

LHQET = h̄v iv ·Ds hv + 1
2mQ

[
h̄v(iDs)2hv + Cmag(µ) g2 h̄v σµν G

µν
s hv

]
+ . . . . (16.3)

The covariant derivative iDµ
s = i∂µ + gAµs and the field strength Gµνs contain only the soft gluon

field. Hard gluons have been integrated out, and their effects are contained in the Wilson coefficients
of the operators in the effective Lagrangian. From the leading operator one derives the Feynman
rules of HQET. The new operators entering at subleading order are referred to as the “kinetic
energy” and “chromo-magnetic interaction”. The kinetic-energy operator corresponds to the first
correction term in the Taylor expansion of the relativistic energy E = mQ+~p 2/2mQ+ . . . . Lorentz
invariance, which is encoded as a reparametrization invariance of the effective Lagrangian [10],
ensures that its Wilson coefficient is not renormalized (Ckin ≡ 1). The coefficient Cmag of the
chromo-magnetic operator receives corrections starting at one-loop order.

16.2.2 Spin-flavor symmetry
The leading term in the HQET Lagrangian exhibits a global spin-flavor symmetry. Its physical

meaning is that, in the infinite mass limit, the properties of hadronic systems containing a single
heavy quark are insensitive to the spin and flavor of the heavy quark [11, 12]. The spin symmetry
results from the fact that there are no Dirac matrices in the leading term of the effective Lagrangian
in (16.3), implying that the interactions of the heavy quark with soft gluons leave its spin unchanged.
The flavor symmetry arises since the mass of the heavy quark does not appear at leading order.
For nQ heavy quarks moving at the same velocity, one can simply extend (16.3) by summing over
nQ identical terms for heavy-quark fields hiv. The result is invariant under rotations in flavor space.
When combined with the spin symmetry, the symmetry group becomes promoted to SU(2nQ).
These symmetries are broken by the operators at subleading power in the 1/mQ expansion.
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The spin-flavor symmetry leads to many interesting relations between the properties of hadrons
containing a heavy quark. The most direct consequences concern the spectroscopy of such states
[13]. In the heavy-quark limit, the spin of the heavy quark and the total angular momentum j
of the light degrees of freedom are separately conserved by the strong interactions. Because of
heavy-quark symmetry, the dynamics is independent of the spin and mass of the heavy quark.
Hadronic states can thus be classified by the quantum numbers (flavor, spin, parity, etc.) of the
light degrees of freedom. The spin symmetry predicts that, for fixed j 6= 0, there is a doublet of
degenerate states with total spin J = j ± 1

2 . The flavor symmetry relates the properties of states
with different heavy-quark flavor.
16.2.3 Weak decay form factors

Of particular interest are the relations between the weak decay form factors of heavy mesons,
which parametrize hadronic matrix elements of currents between two mesons containing a heavy
quark. These relations have been derived by Isgur and Wise [12], generalizing ideas developed by
Nussinov and Wetzel [14] and Voloshin and Shifman [15]. For the purpose of this discussion, it is
convenient to work with a mass-independent normalization of meson states and use velocity rather
than momentum variables.

Consider the elastic scattering of a pseudoscalar meson, P (v)→ P (v′), induced by an external
vector current coupled to the heavy quark contained in P , which acts as a color source moving with
the meson’s velocity v. The action of the current is to replace instantaneously the color source by
one moving at velocity v′. Soft gluons need to be exchanged in order to rearrange the light degrees
of freedom and build up the final state meson moving at velocity v′. This rearrangement leads
to a form-factor suppression. The important observation is that, in the mQ → ∞ limit, the form
factor can only depend on the Lorentz boost γ = v · v′ connecting the rest frames of the initial
and final-state mesons (as long as γ = O(1)). In the effective theory the hadronic matrix element
describing the scattering process can therefore be written as

〈P (v′)| h̄v′γµhv |P (v)〉 = ξ(v · v′)(v + v′)µ, (16.4)

with a form factor ξ(v ·v′) that is real and independent of mQ. By flavor symmetry, the form factor
remains identical when one replaces the heavy quark Q in one of the meson states by a heavy
quark Q′ of a different flavor, thereby turning P into another pseudoscalar meson P ′. At the same
time, the current becomes a flavor-changing vector current. This universal form factor is called the
Isgur-Wise function [12]. For equal velocities the vector current Jµ = h̄vγ

µhv is conserved in the
effective theory, irrespective of the flavor of the heavy quarks. The corresponding conserved charges
are the generators of the flavor symmetry. It follows that the Isgur-Wise function is normalized
at the point of equal velocities: ξ(1) = 1. Since the recoil energy of the daughter meson P ′ in
the rest frame of the parent meson P is Erecoil = mP ′ (v · v′ − 1), the point v · v′ = 1 is referred
to as the zero-recoil limit. The heavy-quark spin symmetry leads to additional relations among
weak decay form factors. It can be used to relate matrix elements involving vector mesons to
those involving pseudoscalar mesons, which once again can be described completely in terms of the
universal Isgur-Wise function.

The form factor relations imposed by heavy-quark symmetry describe the semileptonic decay
processes B̄ → D ` ν̄ and B̄ → D∗` ν̄ in the limit of infinite heavy-quark masses. They are model-
independent consequences of QCD. The known normalization of the Isgur-Wise function at zero
recoil can be used to obtain a model-independent measurement of the element |Vcb| of the Cabibbo-
Kobayashi-Maskawa (CKM) matrix. The semileptonic decay B̄ → D∗` ν̄ is particularly well suited
for this purpose [16]. Experimentally this is a very clean mode, since the reconstruction of the
D∗ meson mass provides a powerful rejection against background. From the theoretical point of
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view, it is ideal since the decay rate at zero recoil is protected by Luke’s theorem against first-order
power corrections in 1/mQ [17]. This is described in more detail in Section 12. Corrections to
the heavy-quark symmetry relations for the B̄ → D(∗) form factors near zero recoil can also be
constrained using sum rules derived in the small-velocity limit [18,19].
16.2.4 Decoupling transformation

At leading order in 1/mQ, the couplings of soft gluons to heavy quarks in the effective Lagrangian
(16.3) can be removed by the field redefinition hv(x) = Yv(x)h(0)

v (x), where Yv(x) is a soft Wilson
line along the direction of v, extending from minus infinity to the point x. In terms of the new fields
the leading-order HQET Lagrangian becomes LHQET = h̄

(0)
v iv · ∂ h(0)

v . It describes a free theory as
far as the strong interactions of heavy quarks are concerned. However, the theory is nevertheless
non-trivial in the presence of external sources. Consider, e.g., the case of a weak-interaction heavy-
quark current

h̄v′γ
µ(1− γ5)hv = h̄

(0)
v′ γ

µ(1− γ5)Y †v′Yv h
(0)
v , (16.5)

where v and v′ are the velocities of the heavy mesons containing the heavy quarks. Unless the
two velocities are equal, corresponding to the zero-recoil limit discussed above, the object Y †v′Yv is
non-trivial, and hence the soft gluons do not decouple from the heavy quarks inside the current
operator. One may interpret Y †v′Yv as a Wilson loop with a cusp at the point x, where the two
paths parallel to the different velocity vectors intersect. The presence of the cusp leads to non-trivial
ultra-violet behavior (for v 6= v′), which is described by a cusp anomalous dimension Γcusp(v · v′)
that was calculated at two-loop order in [20]. It coincides with the velocity-dependent anomalous
dimension of heavy-quark currents, which was introduced in the context of HQET in [21]. The
interpretation of heavy quarks as Wilson lines is a useful tool, which was put forward in one of the
very first papers on the subject [4]. This technology will be useful in the study of the interactions
of heavy quarks with collinear degrees of freedom discussed later in this review.
16.2.5 Heavy-quark expansion for inclusive decays

The theoretical description of inclusive decays of hadrons containing a heavy quark exploits
two observations [22–26]: bound-state effects related to the initial state can be calculated using
the heavy-quark expansion, and the fact that the final state consists of a sum over many hadronic
channels eliminates the sensitivity to the properties of individual final-state hadrons. The second
feature rests on the hypothesis of quark-hadron duality, i.e. the assumption that decay rates are
calculable in QCD after a smearing procedure has been applied [27]. In semileptonic decays, the
integration over the lepton spectrum provides a smearing over the invariant hadronic mass of the
final state (global duality). For nonleptonic decays, where the total hadronic mass is fixed, the
summation over many hadronic final states provides an averaging (local duality). Since global
duality is a much weaker assumption, the theoretical control of inclusive semileptonic decays is on
firmer footing.

Using the optical theorem, the inclusive decay width of a hadron Hb containing a b quark can
be written in the form

Γ (Hb) = 1
MHb

Im 〈Hb| i
∫

d4xT {Heff(x),Heff(0)} |Hb〉 . (16.6)

The effective weak Hamiltonian for b-quark decays consists of dimension-6 four-fermion operators
and dipole operators [28]. Because of the large mass of the b quark, it follows that the separation
of fields in the time-ordered product in (16.6) is small, of order x ∼ 1/mb. It is thus possible
to construct an operator-product expansion (OPE) for the time-ordered product, in which it is
represented as a series of local operators in HQET. The leading operator h̄vhv has a trivial matrix
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element. The next contributions arise at O(1/m2
b) and give rise to two parameters µ2

π(Hb) and
µ2
G(Hb), which are defined as the matrix elements of the heavy-quark kinetic energy and chromo-

magnetic interaction inside the hadron Hb, respectively [29]. For the ground-state heavy mesons
and baryons, one has µ2

G(B) = 3(m2
B∗ − m2

B)/4 ' 0.36GeV2 and µ2
G(Λb) = 0. Thus, the total

inclusive decay rate of a hadron Hb can be written as [23,24]

Γ (Hb) = G2
Fm

5
b |Vcb|2

192π3

[
c1 + c2

µ2
π(Hb)
2m2

b

+ c3
µ2
G(Hb)
2m2

b

+O
( 1
m3
b

)
+ . . .

]
, (16.7)

where the prefactor arises from the loop integrations and is proportional to the fifth power of the b-
quark mass. The coefficient functions ci are calculable order by order in perturbation theory. While
c1 corresponds to the decay rate of a free heavy quark, the higher-order coefficients systematically
account for bound-state effects. The coefficients of the subleading operators and of the leading
operator at third order in 1/mb have recently been calculated at NLO [30–34], and the heavy-quark
expansion has been pushed to fifth order in 1/mb [35].

From the fully inclusive width in (16.7) one can obtain the lifetime of a heavy hadron via
τ(Hb) = 1/Γ (Hb). Due to the universality of the leading term in the heavy-quark expansion,
lifetime ratios such as τ(B−)/τ(B̄0), τ(B̄0

s )/τ(B̄0) and τ(Λb)/τ(B̄0) are particularly sensitive to
the hadronic parameters determining the power corrections in the expansion. In order to understand
these ratios theoretically, it is necessary to include phase-space enhanced power corrections of order
(ΛQCD/mb)3 [36, 37] as well as short-distance perturbative effects [38] in the calculation (see [39]
for a recent discussion of the status of the corresponding calculations).

A formula analogous to (16.7) can be derived for differential distributions in specific inclusive
decay processes, assuming that these distributions are integrated over a sufficiently large region
of phase space to ensure quark-hadron duality. Important examples are the distributions in the
lepton energy and the lepton invariant mass, as well as moments of the invariant hadronic mass
distribution in the semileptonic processes B̄ → Xu ` ν̄ and B̄ → Xc ` ν̄. A global fit of semileptonic
decay distributions can be used to determine the CKM matrix elements |Vub| and |Vcb| along
with heavy-quark parameters such as the masses mb, mc and the hadronic parameters µ2

π(B),
µ2
G(B). These determinations provide some of the most accurate values for these parameters (see

e.g. [40–42]).
16.2.6 Shape functions and non-local power corrections

In certain regions of phase space, in which the hadronic final state in an inclusive heavy-
hadron decay is made up of light energetic partons, the local OPE for inclusive decays must be
replaced by a more complicated expansion involving hadronic matrix elements of non-local light-ray
operators [43, 44]. Prominent examples are the radiative decay B̄ → Xsγ for large photon energy
Eγ near mB/2, and the semileptonic decay B̄ → Xu ` ν̄ at large lepton energy or small hadronic
invariant mass. In these cases, the differential decay rates at leading order in the heavy-quark
expansion can be written in the factorized form dΓ = H J ⊗ S [45], where the hard function H
and the jet function J are calculable in perturbation theory. The characteristic scales for these
functions are set by mb and (mbΛQCD)1/2, respectively. The soft function

S(ω) =
∫
dt

4π e
−iωt 〈B̄(v)| h̄v(tn)Yn(tn)Y †n (0)hv(0)|B̄(v)〉 (16.8)

is a non-perturbative object called the shape function [43,44]. Here Yn are soft Wilson lines along
a light-like direction n aligned with the momentum of the hadronic final-state jet. The jet function
and the shape function share a common variable ω ∼ ΛQCD, and the symbol⊗ denotes a convolution
in this variable.
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While the hard functions are different for the decays B̄ → Xsγ and B̄ → Xu `ν̄, the jet and soft
functions are identical at leading order in ΛQCD/mQ. This is particularly important for the shape
function, which introduces non-perturbative physics into the theoretical predictions for the decay
rates in the regions of experimental interest. The fact that both processes depend on the same
non-perturbative function makes it possible to use the measured shape of the B̄ → Xsγ photon
spectrum to reduce the theoretical uncertainties in the determination of the CKM element |Vub|
from semileptonic decays. In higher orders of the heavy-quark expansion, an increasing number of
subleading jet and soft functions are required to describe the decay distributions [46]. These have
been analyzed in detail at order 1/mb [47–49]. In the case of B̄ → Xsγ (and also in the related
case of B̄ → Xs`¯̀), some of these non-local effects survive in the total decay rate and give rise to
irreducible hadronic uncertainties [50]. The technology for deriving the corresponding factorization
theorems relies on the soft-collinear effective theory, to which we now turn.

16.3 Soft-Collinear Effective Theory
As discussed in the previous section, soft gluons that bind a heavy quark inside a heavy meson

cannot change the virtuality of that heavy quark by a significant amount. The ratio ΛQCD/mQ

provides the expansion parameter in HQET, which is a small parameter since mQ � ΛQCD. This
obviously does not work when considering light quarks. However, if the energy Q of the quarks is
large, the ratio ΛQCD/Q provides a small parameter, which can be used to construct an effective
theory. One major difference to HQET is that light energetic quarks cannot only emit soft gluons,
but they can also emit collinear gluons (an energetic gluon in the same direction as the original
quark), without parametrically changing their virtuality. Thus, to fully reproduce the long-distance
physics of energetic quarks requires that one includes their interactions with both soft and collinear
particles. The resulting effective theory is therefore called soft-collinear effective theory (SCET)
[51–53] (see [54] for a review).

A single energetic particle can always be boosted to a frame where all momentum components
have similar size, in which case there is no small expansion parameter. Thus the presence of
energetic particles must refer to a reference frame defined by external kinematics. SCET has a
wide range of applications; some examples are the production of energetic, light states in the decay
of a heavy particle in its rest frame, the production of energetic jets in collider environments, and
the scattering of energetic particles off a target at rest. In this brief review we will outline the main
features of this effective theory and mention a few selected applications.
16.3.1 General idea of the expansion

Consider a quark with virtuality much less than its energy Q, moving along the direction ~n. It is
convenient to parameterize the momentum pn of this particle in terms of its light-cone components,
defined by (p−n , p+

n , p
⊥
n ) = (n̄ · pn, n · pn, p⊥n ), where nµ = (1, ~n) and n̄µ = (1,−~n) are light-like

vectors, and n · p⊥n = n̄ · p⊥n = 0. The subscript n on the momentum indicates the direction of the
collinear particle. In terms of these light-cone components, the virtuality satisfies p2

n = p+
n p
−
n +p⊥2

n .
The individual components of the momentum obey

(p−n , p+
n , p

⊥
n ) ∼ Q(1, λ2, λ) , (16.9)

where λ2 = p2/Q2 is the expansion parameter of SCET. The virtuality of such an energetic particle
remains parametrically unchanged if it interacts with energetic particles in the same direction n,
or with soft particles with momentum scaling as

(p−s , p+
s , p

⊥
s ) ∼ Q(λ2, λ2, λ2) . (16.10)

SCET is constructed in such a way as to reproduce the long-distance dynamics arising from the
interactions of collinear and soft degrees of freedom.

1st June, 2020 8:28am



7 16. Heavy-Quark and Soft-Collinear Effective Theory

In the above power counting the transverse momenta of soft degrees of freedom scale as p⊥s ∼
Qλ2, which is much smaller than the transverse momenta p⊥c ∼ Qλ of collinear fields. This theory is
usually called SCETI. If the external kinematics require that the transverse momenta of both soft
and collinear fields are of the same size, p⊥c ∼ p⊥s , then the appropriate degrees of freedom have the
scaling pc ∼ Q(1, λ2, λ) and ps ∼ Q(λ, λ, λ). This theory is usually called SCETII and is required,
e.g., for exclusive hadronic decays such as B̄ → Dπ, where the virtuality of both collinear and soft
degrees of freedom are set by ΛQCD, or for the description of transverse-momentum distributions
at colliders. SCETI power counting is assumed in the following sections, while SCETII is discussed
in more detail in 16.3.6.
16.3.2 Leading-order Lagrangian

The derivation of the SCET Lagrangian follows similar steps as described for HQET in Sec-
tion 16.2.1. One begins by deriving the Lagrangian for a theory containing only a single collinear sec-
tor. Similar to HQET, one separates the full QCD field into two components, qn(x) = ψn(x)+Ξn(x),
where (with n · n̄ = 2)

ψn(x) = /n/̄n
4 qn(x) , Ξn(x) = /̄n/n

4 qn(x) . (16.11)

The degrees of freedom described by the field Ξn are far off shell and can therefore be eliminated
using its equation of motion. This gives

Ln = ψ̄n(x)
[
in ·D + i /D⊥ 1

in̄ ·D
i /D⊥

] /̄n
2 ψn(x) . (16.12)

As a next step, one separates the large and residual momentum components by decomposing the
collinear momentum into a “label” and a residual momentum, pµ = Pµ + kµ with n · P = 0.
One then performs a phase redefinition on the collinear fields, such that ψn(x) = eiP ·x ξn(x).
Derivatives acting on the fields ξn(x) now only pick out the residual momentum. Since unlike in
HQET the label momentum in SCET is not conserved, one defines a label operator Pµ acting as
Pµξn(x) = Pµξn(x) [52], as well as a corresponding covariant label operator iDµn = Pµ + gAµn(x).
Note that at leading order in power counting iDµn does not contain the soft gluon field. This leads
to the final SCET Lagrangian [52,53,55,56]

Ln = ξ̄n(x)
[
in ·Dn + gn ·As + i/D⊥n

1
in̄ · Dn

i/D⊥n
] /̄n

2 ξn(x) + . . . , (16.13)

where we have split in ·D into a collinear piece in ·Dn = in ·∂+gn ·An and a soft piece gn ·As. This
latter term gives rise to the only interaction between a collinear quark and soft gluons at leading
power in λ. The ellipses represent higher-order interactions between soft and collinear particles.

The Lagrangian describing collinear fields in different light-like directions is simply given by
the sum of the Lagrangians for each direction n, i.e. L =

∑
n Ln. The soft gluons are the same in

each individual Lagrangian. An alternative way to understand the separation between large and
small momentum components is to derive the Lagrangian of SCET in position space [56]. In this
case no label operators are required, and the dependence on short-distance effects is contained in
non-localities at short distances. An important difference between SCET and HQET is that the
SCET Lagrangian is not corrected by short distance fluctuations. The physical reason is that in
the construction described above no high-momentum modes have been integrated out [56]. Such
hard modes arise when different collinear sectors are coupled via some external current (e.g. in jet
production at e+e− or hadron colliders), or when collinear particles are produced in the rest frame
of a decaying heavy object (such as in B decays). Short-distance effects are then incorporated in
the Wilson coefficients of the external source operators.
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16.3.3 Collinear gauge invariance and Wilson lines
An important aspect of SCET is the implementation of local gauge invariance. Because the

effective field operators describe modes with certain momentum scalings, the effective Lagrangian
respects only residual gauge symmetries. One of them satisfies the collinear scaling

(n̄ · ∂, n · ∂, ∂⊥)Un(x) ∼ Q(1, λ2, λ)Un(x) , (16.14)

and one the soft scaling

(n̄ · ∂, n · ∂, ∂⊥)Us(x) ∼ Q(λ2, λ2, λ2)Us(x) . (16.15)

While the soft gauge transformation is common for all fields, collinear fields in different directions
each transform under their own collinear gauge transformation, which means that each collinear
sector, containing particles with large momenta along a certain direction, has to be separately
gauge invariant under its collinear gauge transformation. This requires the introduction of collinear
Wilson lines [52]

Wn(x) = P exp
[
− ig

∫ 0

−∞
ds n̄ ·An(sn̄+ x)

]
, (16.16)

which transform under collinear gauge transformations according to Wn → UnWn. Thus, the
combination χn ≡W †n ψn is gauge invariant. In a similar manner, one can define the gauge-invariant
gluon field Bµ

n = g−1W †n iD
µ
nWn [57, 58]. Collinear operators in SCET are typically constructed

from such collinearly gauge-invariant building blocks.
16.3.4 Derivation of factorization theorems

One of the important applications of SCET is to understand how to factorize cross sections
involving energetic particles moving in different directions into simpler pieces that can either be
calculated perturbatively or determined from data. Factorization theorems have been around for
much longer than SCET (see [59] for a review). However, the effective theory allows for a conceptu-
ally simpler understanding of certain classes of factorization theorems [57], since most simplifications
happen already at the level of the Lagrangian. The discussion in this section is valid to leading
order in the power counting of the effective theory.

As discussed in the previous section, the Lagrangian of SCET does not involve any couplings
between collinear particles moving in different directions. Soft gluons couple to collinear quarks
only through the term ξ̄n gn · As (/̄n/2) ξn in the effective Lagrangian in (16.13). This coupling is
similar to the coupling of soft gluons to heavy quarks in HQET, see Section 16.2.4. It can be
removed by means of the field redefinition [53]

ψn(x) = Yn(x)ψ(0)
n (x) , Aan(x) = Y ab

n (x)Ab(0)
n (x) , (16.17)

where Yn and Y ab
n live in the fundamental and adjoint representations of SU(3), respectively. This

fact greatly facilitates proofs of factorization theorems in SCET. A QCD operator O(x) describing
the interactions of collinear partons moving in different directions can thus be written as (omitting
color indices for simplicity)

〈O(x)〉 = CO(µ) 〈
[
C(0)
na
C(0)
nb
C(0)
n1 . . . C

(0)
nN

]
(x)

[
Yna Ynb

Yn1 . . .YnN

]
(x)
〉
µ
. (16.18)

Here C(0)
ni (x) denotes a gauge-invariant combination of collinear fields (either quark or gluon fields)

in the direction ni. The hard matching coefficient CO accounts for short-distance effects at the
scale Q. The soft Wilson lines can either be in a color triplet or color octet representation, and
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9 16. Heavy-Quark and Soft-Collinear Effective Theory

are collectively denoted by Yni . Both the matrix elements and the coefficient CO depend on the
renormalization scale µ.

Having defined the operator mediating a given process, one can calculate the cross section by
squaring the operator, taking the forward matrix element and integrating over the phase space of
all final-state particles. The absence of interactions between collinear degrees of freedom moving
along different directions or soft degrees of freedom implies that the forward matrix element can
be factorized as〈

in
∣∣O(x)O†(0)

∣∣in〉 = |CO(µ)|2
〈
ina
∣∣ Cna(x) C†na

(0)
∣∣ina〉µ 〈inb∣∣ Cnb

(x) C†nb
(0)
∣∣inb〉µ

×
〈
0
∣∣ Cn1(x) C†n1(0)

∣∣0〉
µ
· · ·
〈
0
∣∣ CnN (x) C†nN

(0)
∣∣0〉

µ

×
〈
0
∣∣[Yna . . .YnN

]
(x)

[
Yna . . .YnN

]†(0)
∣∣0〉

µ
.

(16.19)

Thus, the matrix element can be written as a product of simpler structures, each of which can be
evaluated separately.

The vacuum matrix elements of the outgoing collinear fields are determined by jet functions
Ji(µ). As long as the relevant scale (for example the jet mass) is sufficiently large, these func-
tions can be calculated perturbatively. The matrix elements of the incoming collinear fields are
non-perturbative objects Bp/N (µ) called beam functions for parton p in nucleon N [60]. For many
applications they can be related perturbatively to the well-known parton distribution functions. Fi-
nally, the vacuum matrix element of the soft Wilson lines defines a so-called soft function Sab...N (µ).
The shared dependence on x in the above equation implies that in momentum space the various
components of the factorization theorem are convoluted with one another. Deriving this convolution
requires a careful treatment of the phase-space integration and the factorization of the measure-
ment defining the cross section of interest, in particular treating the large and residual components
of each momentum appropriately.

Putting all information together, the differential cross section for a proton-proton collision with
N jet-like objects can schematically be written as

dσ ∼
∑
ab

Hab(µ)
[
Ba/P (µ)Bb/P (µ)

]
⊗
[
J1(µ) . . . JN (µ)

]
⊗ Sab...N (µ) . (16.20)

The hard function is equal to the square of the matching coefficient, Hab(µ) = |CO(µ)|2, and
the beam, jet, and soft functions and their convolution structure depend on the specific N -jet
measurement. It should be mentioned that the most difficult part of traditional factorization proofs
involves showing that so-called Glauber gluons do not spoil the above factorization theorem [61].
Significant progress toward the description of Glauber effects within SCET has been made in [62],
where a closed form for the effective Lagrangian describing these interactions was derived. In this
context, a proof of factorization requires demonstrating that this Lagrangian has no impact on a
particular cross section, and such proofs have not yet been fully derived within SCET.
16.3.5 Resummation of large logarithms

SCET can be used to sum the large logarithms arising in perturbative calculations to all orders
in the strong coupling constant αs. In general, perturbation theory will generate a logarithmic
dependence on any ratio of scales r in a problem. For processes that involve initial or final states
with energy much in excess of their mass, there are two powers of logarithms for every power of αs.
These are referred to as Sudakov logarithms. For widely separated scales these large logarithms
can spoil the convergence of fixed-order perturbation theory. One thus needs to reorganize the
expansion in such a way that αsL = O(1) is kept fixed, with L = ln r. More precisely, a proper
resummation requires summing logarithms of the form αnsL

m with m ≤ (n + 1) in the logarithm
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10 16. Heavy-Quark and Soft-Collinear Effective Theory

of a cross section, by writing ln σ ∼ Lg0(αsL) + g1(αsL) + αs g2(αsL) + . . . , with functions gn(x)
that need to be determined.

The important ingredient in achieving this resummation is the fact that SCET factorizes a
given cross section into simpler pieces, each of which depends on a single physical scale. The only
dependence on that scale can arise through logarithms of its ratio with the renormalization scale
µ. Thus, for each of the components in the factorization theorem one can choose a renormalization
scale µ for which the large logarithmic terms are absent. Of course, the factorization formula
requires a common renormalization scale µ in all its components, and one therefore has to use the
renormalization group (RG) to evolve the various component functions from their preferred scale
to the common scale µ. A novel feature of RG equations in SCET, as opposed to other EFTs, is
that the anomalous dimensions entering the evolution equations of the hard, beam, jet and soft
functions in a factorization formula such as (16.20) contain a single power of the logarithm of the
relevant energy scale. For example, the anomalous dimension γH of the hard function has the form

γH(µ) = cH Γcusp(αs) ln Q
2

µ2 + γ(αs) , (16.21)

where cH is a process-dependent coefficient and Γcusp denotes the so-called cusp anomalous dimen-
sion [20, 63]. Collinear and soft functions have similar anomalous dimensions, which also involve
a cusp and a non-cusp part. The non-cusp part γ of the anomalous dimensions is process (and
observable) dependent. The presence of a logarithm in the anomalous dimension is characteristic
of Sudakov problems and arises since the perturbative series contains double logarithms of scale
ratios.

Solving the RG equations one can systematically resum all large logarithms of scale ratios in
the factorized cross section and express the functions gn(αsL) introduced above in terms of ratios
of running coupling constants. In order to compute the first two terms Lg0(αsL) + g1(αsL) in
ln σ, corresponding to the next-to-leading logarithmic (NLL) approximation, one needs two-loop
expressions for the cusp anomalous dimension and β function, one-loop expressions for the non-cusp
pieces in the anomalous dimensions, and tree-level matching conditions for all component functions
at their characteristic scales. To calculate the next term αsg2(αsL) in the expansion, corresponding
to NNLL order, one needs to go one order higher in the loop expansion, and so on.

16.3.6 Factorization and resummation in SCETII
The effective theory SCETII contains collinear and soft particles with momenta scaling as

(p−n , p+
n , p

⊥
n ) ∼ Q(1, λ2, λ) and (p−s , p+

s , p
⊥
s ) ∼ Q(λ, λ, λ). They have the same small virtuality

(p2
n ∼ p2

s ∼ Q2λ2) but differ in their rapidities. An important class of observables, for which this
scaling is relevant, contains cross sections for processes in which the transverse momenta of particles
are constrained by external kinematics. The prime example are the transverse-momentum distri-
butions of electroweak gauge bosons or Higgs bosons produced at hadron colliders. The parton
transverse momenta are constrained by the fact that their vector sum must be equal and opposite
to the transverse momentum qT of the boson. Standard RG evolution in the effective theory con-
trols the logarithms arising from the fact that the virtualities of the collinear and soft modes are
much smaller than the hard scale Q in the process (the boson mass). However, additional large
logarithms arise since the rapidities of collinear and soft modes are parametrically different, such
that e|yc−ys| ∼ 1/λ. These logarithms can be traced to a new source of divergences and an unusual
failure of dimensional regularization. They need to be factorized in the cross section and resummed
by other means.

Two equivalent approaches exist for how to deal with the additional rapidity logarithms in
SCET. In the approach of [64], they are interpreted as a consequence of a “collinear anomaly”
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of the effective theory SCETII, resulting from the fact that a classical rescaling symmetry of the
effective Lagrangian is broken by quantum effects. The extra large logarithms can be resummed
by means of simple differential equations, which typically state that to all orders in perturbation
theory (and in an appropriate space) the logarithm of the cross section contains only a single
extra logarithm of λ ∼ qT /Q not contained in the hard function. Another approach to resum the
rapidity logarithms uses the “rapidity renormalization group” [65], in which the relevant differential
equations are obtained by considering a new type of scale variation in a parameter ν, which separates
the phase space for collinear and soft particles along a hyperbola in the (p−, p+) plane. In contrast
to the standard RG, there is no running coupling involved in the ν evolution, since the different
contributions live at the same virtuality.

SCETII also plays an important role in the study of factorization for a variety of exclusive B
meson decays, such as B̄ → π`ν̄, B̄ → K∗γ and B̄ → ππ, for which the virtualities of energetic
(collinear) final-state particles are of order ΛQCD, which is also the scale for the soft light degrees
of freedom contained in the initial-state B meson.

16.3.7 Applications
Most of the applications of SCET are either in flavor physics, where the decay of a heavy B

meson can give rise to energetic light partons, or in collider physics, where the presence of jets
naturally leads to collimated sets of energetic particles. For some of these applications alternative
approaches existed before the invention of SCET, but the effective theory has opened up alterna-
tive ways to understand the physics of these processes. For many examples, however, SCET has
allowed new insights and new applications. The investigation of heavy-to-light form factors has
been instrumental for understanding factorization in exclusive semileptonic B decays [66]. SCET
has also provided a field-theoretic basis for the QCD factorization approach to exclusive, non-
leptonic decays of B mesons [67]. Using SCET methods, proofs of factorization were derived for
the color-allowed decay B̄0 → D+π− [68], the color-suppressed decay B̄0 → D0π0 [69], and the
radiative decay B̄ → K∗γ [70]. Further examples are factorization theorems and the resumma-
tion of endpoint logarithms for quarkonia production [71], the resummation of large logarithmic
terms for the thrust [72] and jet broadening [73] distributions in e+e− annihilation beyond NLL
order, the development of new factorizable observables to veto extra jets [60,74], all-orders factor-
ization theorems for processes containing electroweak Sudakov logarithms [75], and the resumma-
tion of threshold (soft gluon) logarithms in momentum space for several important processes at
hadron colliders [76–78]. There has also been a lot of activity describing pT -based resummation at
hadron colliders. Prominent examples are the transverse-momentum distributions of electroweak
bosons [64,65,79]. Finally, SCET has given new insights into the jet substructure methods (see [80]
for a recent review). We now describe a few of these applications in more detail.

Event-shape distributions, in particular the thrust distribution, have been measured to high
accuracy at LEP [81]. They can be used for a determination of the strong coupling constant αs.
SCET has increased the theoretical accuracy in the calculations of the thrust and C-parameter
distributions significantly. First, it has allowed to increase the perturbative accuracy of the thrust
spectrum. The resummation of logarithms of τ , which become important for τ � 1, has been
performed to N3LL [72], two orders beyond what was previously available. Combining this resum-
mation with the known two-loop spectrum [82, 83] gives precise perturbative predictions both at
small and large values of τ . Second, the factorization of the cross section in SCET has made it pos-
sible to include non-perturbative physics through a shape function, in analogy with the B-physics
case discussed in Section 16.2.6. Comparing the theoretical predictions to the measured thrust and
C-parameter distributions yields a precise value of the strong coupling constant αs(mZ), which
however is lower than the average value cited in Section 9 by several standard deviations [84, 85].
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For more discussions on this, see Section 9.
The Higgs-boson production cross section in gluon fusion at the LHC, defined with a jet veto

stating that no jet in the final state has transverse momentum above a threshold pveto
T , can be

factorized in the form [86,87] (see [88] for a corresponding calculation outside the SCET framework)

σ(pveto
T ) = H(mH , µ)

(
νB
νS

)−2Fgg(R,pveto
T ,µ)

Sgg(R, pveto
T , µ,

νS
pveto
T

)

×
∫ 1

τ

dz

z
Bg/P

(
z,R, pveto

T , µ,
νB
mH

)
Bg/P

(
τ

z
,R, pveto

T , µ,
νB
mH

)
,

(16.22)

where τ = m2
H/s, and µ ∼ pveto

T is a common factorization scale. The beam functions Bg/P ,
the soft function Sgg and the exponent Fgg all depend on the jet radius R as well as the jet
clustering algorithm. The scale dependence of the hard function H is controlled by standard RG
evolution in SCET. The beam functions can be factorized further into calculable collinear kernels
convoluted with parton distribution functions. In addition to the renormalization scale µ, the
beam and soft functions depend on two rapidity scales νB ∼ mH and νS ∼ pveto

T , respectively.
In [86] the default values νB = mH and νS = pveto

T are used for these scales, and the soft function
Sgg is absorbed into the beam functions. In [87] the exponent Fgg is called −γgν/2. The second
factor on the right-hand side of the factorization formula (16.22), which resums large rapidity
logarithms, implies that the logarithm of the jet-veto cross section contains a single large logarithm
ln σ = −2Fgg(R, pveto

T , µ) ln(mH/p
veto
T ) + . . . not contained in the hard function. Its coefficient can

be calculated in fixed-order perturbation theory.
Obtaining more precise fixed-order calculations has been an important goal for many years. A

major difficulty in these calculations is the proper handling of the infrared singularities that arise
in both virtual and real contributions. A method based on N -jettiness (TN ) slicing [89, 90] allows
one to obtain the NNLO result from a much easier NLO calculation, combined with information
about the singular dependence of the cross section on the TN resolution variable [74]. This has
been used to compute various processes with final states containing up to one hard, colored particle
[91–95]. While the NLO calculations can be performed using well established techniques, the
singular dependence on TN can be calculated using SCET at NNLO. Calculations of the leading
power corrections in T0/Q [96, 97] have helped to improved the numerical stability for several
processes. The N -jettiness (TN ) slicing method has been used prior to the fixed-order application
in the combination of higher order resummation with parton showers [98,99].

More generally, there is currently a strong effort to push the applications of SCET toward
factorization and resummation at subleading power in the expansion in λ. The subleading SCET
Lagrangian [56,100] and current operators arising in B-meson decays and their anomalous dimen-
sions [55, 56, 101–103] have been studied a long time ago. More recently, the focus has shifted to
subleading operators arising in important collider processes, such as Drell-Yan or Higgs production.
The general set of operators for such processes have been identified [104–106], and several of their
anomalous dimensions have been calculated [106,107]. First resummed results at subleading power
have been presented for event shapes [108] and the Drell-Yan process [109].

16.4 Open issues and perspectives
HQET has successfully passed many experimental tests, and there are not many open questions

that still need to be addressed. One concept that has not been derived from first principles is
the notion of quark-hadron duality, which underlies the application of HQET to the description
of inclusive decays of B mesons. The validity of global duality (at energies even lower than those
relevant in B decays) has been tested experimentally using high-precision data on semileptonic B
decays and on hadronic τ decays. However, assigning a theoretical uncertainty due to possible
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duality violations remains a difficult task. Another known issue is that the measured values of
the CKM element |Vub| extracted from exclusive or inclusive decays of B mesons differ from each
other by several standard deviations (see Section 75). This measurement relies on the heavy-quark
limit, and the uncertainty quoted includes a theoretical estimate of the effect of power corrections
arising from the finite b-quark mass. It remains an open question whether the discrepancy is due to
underestimated theoretical or experimental uncertainties, or whether it may hint to the existence
of new physics.

SCET, on the other hand, is still an active field of research, and new results are being obtained
regularly. An important example concerns the understanding of non-global logarithms arising in
hadron-collider processes with jets [110,111]. For a long time a fully factorized form of non-global
jet cross sections has not been available, despite significant progress towards this goal [112, 113].
A consistent factorization formula for non-global jet observables was developed in [114, 115]. It
requires the introduction of a collinear-soft mode in the SCET Lagrangian. The first application
of this formalism was to the light jet mass distribution [116], and significant steps toward an
extension to NLL accuracy have been taken in [117]. It is believed that the results obtained from
the factorization theorem derived in [114,115] are equivalent to those obtained using the approaches
proposed in [112, 113]. The various methods differ in the way in which they organize the all-order
expansion for the appearing complicated multi-Wilson-line structures.

Another active field concerns the study of Glauber gluons in SCET [118] and their relation to the
BFKL equation familiar from small-x physics [119]. A systematic account of the effects of Glauber
gluons in the context of the SCET Lagrangian has been developed in [62]. The formalism has been
extended to Glauber quarks in [120]. These developments set the basis for a solid understanding of
the impact of Glauber exchanges on factorization theorems. Glauber gluons also play an important
role in SCET-based analysis of jet propagation in dense QCD media [121,122], which gives rise to
the jet-quenching phenomenon in heavy-ion collisions. An important open question facing some
applications of SCET concerns factorized expressions containing endpoint-divergent convolution
integrals.

We close this short review by mentioning a particularly nice application combining the methods
of heavy-particle EFTs such as HQET and non-relativistic QCD with SCET in the context of de-
scribing the interactions of heavy dark matter (with massM � v) with SM particles. In [123] it was
realized that the interactions of heavy, weakly interacting massive particles (WIMPs) with nuclear
targets can be described in a model-independent way using heavy-particle EFTs. The WIMPs are
charged under SU(2)L and can interact with electroweak gauge bosons and the Higgs boson. The
WIMP EFT was later extended by describing the produced, highly energetic electroweak gauge
bosons in terms of soft or collinear fields in SCET [124–126]. This allows one to systematically sep-
arate all relevant mass scales, resum electroweak Sudakov logarithms and disentangle the so-called
Sommerfeld enhancement from the short-distance hard annihilation process.
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