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19. Structure Functions

Updated September 2017 by B. Foster (University of Hamburg/DESY/Oxford),
R.S. Thorne (University College London) and M.G. Vincter (Carleton University).

19.1. Deep inelastic scattering

High-energy lepton-nucleon scattering (deep inelastic scattering) plays a key role in
determining the partonic structure of the proton. The process ℓN → ℓ′X is illustrated in
Fig. 19.1. The filled circle in this figure represents the internal structure of the proton
which can be expressed in terms of structure functions.
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Figure 19.1: Kinematic quantities for the description of deep inelastic scattering.
The quantities k and k′ are the four-momenta of the incoming and outgoing
leptons, P is the four-momentum of a nucleon with mass M , and W is the mass
of the recoiling system X . The exchanged particle is a γ, W±, or Z; it transfers
four-momentum q = k − k′ to the nucleon.

Invariant quantities:

ν =
q · P
M

= E − E′ is the lepton’s energy loss in the nucleon rest frame (in earlier
literature sometimes ν = q · P ). Here, E and E′ are the initial and final
lepton energies in the nucleon rest frame.

Q2 = −q2 = 2(EE′−−→
k · −→k ′)−m2

ℓ −m2
ℓ′

where mℓ(mℓ′) is the initial (final) lepton mass.

If EE′ sin2(θ/2) ≫ m2
ℓ , m2

ℓ′
, then

≈ 4EE′ sin2(θ/2), where θ is the lepton’s scattering angle with respect to the lepton
beam direction.

x =
Q2

2Mν
where, in the parton model, x is the fraction of the nucleon’s momentum

carried by the struck quark.

y =
q · P
k · P =

ν

E
is the fraction of the lepton’s energy lost in the nucleon rest frame.

W 2 = (P + q)2 = M2 + 2Mν − Q2 is the mass squared of the system X recoiling against
the scattered lepton.

s = (k + P )2 =
Q2

xy
+ M2 + m2

ℓ is the center-of-mass energy squared of the lepton-nucleon

system.
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2 19. Structure functions

The process in Fig. 19.1 is called deep (Q2 ≫ M2) inelastic (W 2 ≫ M2) scattering
(DIS). In what follows, the masses of the initial and scattered leptons, mℓ and mℓ′ , are
neglected.

19.1.1. DIS cross sections :

The double-differential cross section for deep inelastic scattering can be expressed in
terms of kinematic variables in several ways.

d2σ

dx dy
= x (s − M2)

d2σ

dx dQ2
=

2π Mν

E′

d2σ

dΩNrest dE′
. (19.1)

In lowest-order perturbation theory, the cross section for the scattering of polarized
leptons on polarized nucleons can be expressed in terms of the products of leptonic and
hadronic tensors associated with the coupling of the exchanged bosons at the upper and
lower vertices in Fig. 19.1 (see Refs. [1–4])

d2σ

dxdy
=

2πyα2

Q4

∑

j

ηj L
µν
j W j

µν . (19.2)

For neutral-current processes, the summation is over j = γ, Z and γZ representing
photon and Z exchange and the interference between them, whereas for charged-current
interactions there is only W exchange, j = W . (For transverse nucleon polarization, there
is a dependence on the azimuthal angle of the scattered lepton.) The lepton tensor Lµν is
associated with the coupling of the exchange boson to the leptons. For incoming leptons
of charge e = ±1 and helicity λ = ±1,

Lγ
µν = 2

(

kµk′ν + k′µkν − (k · k′ − m2
ℓ )gµν − iλεµναβkαk′β

)

,

LγZ
µν =(ge

V + eλge
A) Lγ

µν , LZ
µν = (ge

V + eλge
A)2 Lγ

µν ,

LW
µν =(1 + eλ)2 Lγ

µν , (19.3)

where ge
V = − 1

2
+ 2 sin2 θW , ge

A = − 1

2
.

Although here the helicity formalism is adopted, an alternative approach is to express the
tensors in Eq. (19.3) in terms of the polarization of the lepton.

The factors ηj in Eq. (19.2) denote the ratios of the corresponding propagators and
couplings to the photon propagator and coupling squared

ηγ = 1 ; ηγZ =

(

GF M2
Z

2
√

2πα

) (

Q2

Q2 + M2
Z

)

;

ηZ = η2
γZ ; ηW = 1

2

(

GF M2
W

4πα

Q2

Q2 + M2
W

)2

. (19.4)
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19. Structure functions 3

The hadronic tensor, which describes the interaction of the appropriate electroweak
currents with the target nucleon, is given by

Wµν =
1

4π

∫

d4z eiq·z
〈

P, S
∣

∣

∣

[

J†
µ(z), Jν(0)

]
∣

∣

∣
P, S

〉

, (19.5)

where S denotes the nucleon-spin 4-vector, with S2 = −M2 and S · P = 0.

19.2. Structure functions of the proton

The structure functions are defined in terms of the hadronic tensor (see Refs. [1–3])

Wµν =

(

−gµν +
qµqν

q2

)

F1(x, Q2) +
P̂µP̂ν

P · q F2(x, Q2)

− iεµναβ
qαPβ

2P · q F3(x, Q2)

+ iεµναβ
qα

P · q

[

Sβg1(x, Q2) +

(

Sβ − S · q
P · q Pβ

)

g2(x, Q2)

]

+
1

P · q

[

1

2

(

P̂µŜν + ŜµP̂ν

)

− S · q
P · q P̂µP̂ν

]

g3(x, Q2)

+
S · q
P · q

[

P̂µP̂ν

P · q g4(x, Q2) +

(

−gµν +
qµqν

q2

)

g5(x, Q2)

]

(19.6)

where

P̂µ = Pµ − P · q
q2

qµ, Ŝµ = Sµ − S · q
q2

qµ . (19.7)

In [2], the definition of Wµν with µ ↔ ν is adopted, which changes the sign of the
εµναβ terms in Eq. (19.6), although the formulae given below are unchanged. Ref. [1]
tabulates the relation between the structure functions defined in Eq. (19.6) and other
choices available in the literature.

The cross sections for neutral- and charged-current deep inelastic scattering on
unpolarized nucleons can be written in terms of the structure functions in the generic
form

d2σi

dxdy
=

4πα2

xyQ2
ηi

{(

1 − y − x2y2M2

Q2

)

F i
2

+ y2xF i
1 ∓

(

y − y2

2

)

xF i
3

}

, (19.8)

where i = NC, CC corresponds to neutral-current (eN → eX) or charged-current
(eN → νX or νN → eX) processes, respectively. For incoming neutrinos, LW

µν of
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4 19. Structure functions

Eq. (19.3) is still true, but with e, λ corresponding to the outgoing charged lepton. In the
last term of Eq. (19.8), the − sign is taken for an incoming e+ or ν and the + sign for an
incoming e− or ν. The factor ηNC = 1 for unpolarized e± beams, whereas∗

ηCC = (1 ± λ)2ηW (19.9)

with ± for ℓ±; and where λ is the helicity of the incoming lepton and ηW is defined in
Eq. (19.4); for incoming neutrinos ηCC = 4ηW . The CC structure functions, which derive
exclusively from W exchange, are

FCC
1 = FW

1 , FCC
2 = FW

2 , xFCC
3 = xFW

3 . (19.10)

The NC structure functions F
γ
2

, F
γZ
2

, FZ
2 are, for e±N → e±X , given by [5],

FNC
2 = F

γ
2

− (ge
V ± λge

A)ηγZF
γZ
2

+ (ge 2
V + ge 2

A ± 2λge
V ge

A) ηZFZ
2 (19.11)

and similarly for FNC
1 , whereas

xFNC
3 = −(ge

A ± λge
V )ηγZxF

γZ
3

+ [2ge
V ge

A ± λ(ge 2
V + ge 2

A )]ηZxFZ
3 . (19.12)

The polarized cross-section difference

∆σ = σ(λn = −1, λℓ) − σ(λn = 1, λℓ) , (19.13)

where λℓ, λn are the helicities (±1) of the incoming lepton and nucleon, respectively, may
be expressed in terms of the five structure functions g1,...5(x, Q2) of Eq. (19.6). Thus,

d2∆σi

dxdy
=

8πα2

xyQ2
ηi

{

−λℓy

(

2 − y − 2x2y2 M2

Q2

)

xgi
1 + λℓ4x3y2 M2

Q2
gi
2

+ 2x2y
M2

Q2

(

1 − y − x2y2 M2

Q2

)

gi
3

−
(

1 + 2x2y
M2

Q2

) [(

1 − y − x2y2 M2

Q2

)

gi
4 + xy2gi

5

]}

(19.14)

with i = NC or CC as before. The Eq. (19.13) corresponds to the difference of antiparallel
minus parallel spins of the incoming particles for e− or ν initiated reactions, but the
difference of parallel minus antiparallel for e+ or ν initiated processes. For longitudinal
nucleon polarization, the contributions of g2 and g3 are suppressed by powers of M2/Q2.
These structure functions give an unsuppressed contribution to the cross section for
transverse polarization [1], but in this case the cross-section difference vanishes as
M/Q → 0.

Because the same tensor structure occurs in the spin-dependent and spin-independent
parts of the hadronic tensor of Eq. (19.6) in the M2/Q2 → 0 limit, the differential
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19. Structure functions 5

cross-section difference of Eq. (19.14) may be obtained from the differential cross section
Eq. (19.8) by replacing

F1 → −g5 , F2 → −g4 , F3 → 2g1 , (19.15)

and multiplying by two, since the total cross section is the average over the initial-state
polarizations. In this limit, Eq. (19.8) and Eq. (19.14) may be written in the form

d2σi

dxdy
=

2πα2

xyQ2
ηi

[

Y+F i
2 ∓ Y−xF i

3 − y2F i
L

]

,

d2∆σi

dxdy
=

4πα2

xyQ2
ηi

[

−Y+gi
4 ∓ Y−2xgi

1 + y2gi
L

]

, (19.16)

with i = NC or CC, where Y± = 1 ± (1 − y)2 and

F i
L = F i

2 − 2xF i
1 , gi

L = gi
4 − 2xgi

5 . (19.17)

In the naive quark-parton model, the analogy with the Callan-Gross relations [6] F i
L = 0,

are the Dicus relations [7] gi
L = 0. Therefore, there are only two independent polarized

structure functions: g1 (parity conserving) and g5 (parity violating), in analogy with the
unpolarized structure functions F1 and F3.

19.2.1. Structure functions in the quark-parton model :

In the quark-parton model [8,9], contributions to the structure functions F i and gi can
be expressed in terms of the quark distribution functions q(x, Q2) of the proton, where
q = u, u, d, d etc. The quantity q(x, Q2)dx is the number of quarks (or antiquarks) of
designated flavor that carry a momentum fraction between x and x + dx of the proton’s
momentum in a frame in which the proton momentum is large.

For the neutral-current processes ep → eX ,

[

F
γ
2

, F
γZ
2

, FZ
2

]

= x
∑

q

[

e2
q , 2eqg

q
V , g

q 2

V + g
q 2

A

]

(q + q) ,

[

F
γ
3

, F
γZ
3

, FZ
3

]

=
∑

q

[

0, 2eqg
q
A, 2g

q
V g

q
A

]

(q − q) ,

[

gγ
1
, gγZ

1
, gZ

1

]

= 1

2

∑

q

[

e2
q , 2eqg

q
V , gq 2

V + gq 2

A

]

(∆q + ∆q) ,

[

g
γ
5
, g

γZ
5

, gZ
5

]

=
∑

q

[

0, eqg
q
A, g

q
V g

q
A

]

(∆q − ∆q) , (19.18)

where g
q
V = ± 1

2
− 2eq sin2 θW and g

q
A = ± 1

2
, with ± according to whether q is a u− or

d−type quark respectively. The quantity ∆q is the difference q↑ −q↓ of the distributions
with the quark spin parallel and antiparallel to the proton spin.
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6 19. Structure functions

For the charged-current processes e−p → νX and νp → e+X , the structure functions
are:

FW−

2 = 2x(u + d + s + c . . .) ,

FW−

3 = 2(u − d − s + c . . .) ,

gW−

1 = (∆u + ∆d + ∆s + ∆c . . .) ,

gW−

5 = (−∆u + ∆d + ∆s − ∆c . . .) , (19.19)

where only the active flavors have been kept and where CKM mixing has been neglected.

For e+p → νX and νp → e−X , the structure functions FW+
, gW+

are obtained by

the flavor interchanges d ↔ u, s ↔ c in the expressions for FW−

, gW−

. The structure
functions for scattering on a neutron are obtained from those of the proton by the
interchange u ↔ d. For both the neutral- and charged-current processes, the quark-parton
model predicts 2xF i

1 = F i
2 and gi

4 = 2xgi
5.

Neglecting masses, the structure functions g2 and g3 contribute only to scattering from
transversely polarized nucleons (for which S · q = 0), and have no simple interpretation
in terms of the quark-parton model. They arise from off-diagonal matrix elements

〈P, λ′|[J†
µ(z), Jν(0)]|P, λ〉, where the proton helicities satisfy λ′ 6= λ. In fact, the leading-

twist contributions to both g2 and g3 are both twist-2 and twist-3, which contribute at
the same order of Q2. The Wandzura-Wilczek relation [10] expresses the twist-2 part of
g2 in terms of g1 as

gi
2(x) = −gi

1(x) +

∫ 1

x

dy

y
gi
1(y) . (19.20)

However, the twist-3 component of g2 is unknown. Similarly, there is a relation expressing
the twist-2 part of g3 in terms of g4. A complete set of relations, including M2/Q2

effects, can be found in [11].

19.2.2. Structure functions and QCD :

One of the most striking predictions of the quark-parton model is that the structure
functions Fi, gi scale, i.e., Fi(x, Q2) → Fi(x) in the Bjorken limit that Q2 and ν → ∞ with
x fixed [12]. This property is related to the assumption that the transverse momentum of
the partons in the infinite-momentum frame of the proton is small. In QCD, however, the
radiation of hard gluons from the quarks violates this assumption, leading to logarithmic
scaling violations, which are particularly large at small x, see Fig. 19.2. The radiation
of gluons produces the evolution of the structure functions. As Q2 increases, more and
more gluons are radiated, which in turn split into qq pairs. This process leads both to
the softening of the initial quark momentum distributions and to the growth of the gluon
density and the qq sea as x decreases. For spin-dependent structure functions, data exists
for a more restricted range of Q2 and has lower precision, so that the scaling violations
are not seen so clearly. However, spin-dependent parton distributions have been extracted
by comparison to data; Fig. 19.3 shows several versions (discussed in more detail in
Sec. 19.3 below) at a scale of 2.5 GeV2 compared to the data from semi-inclusive DIS.
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Figure 19.2: The proton structure function F
p
2

given at two Q2 values (6.5 GeV2

and 90 GeV2), which exhibit scaling at the ‘pivot’ point x ∼ 0.14. See the captions
in Fig. 19.8 and Fig. 19.10 for the references of the data. The various data sets have
been renormalized by the factors shown in brackets in the key to the plot, which
were globally determined in a previous HERAPDF analysis [13]. The curves were
obtained using the PDFs from the HERAPDF analysis [14]. In practice, data for
the reduced cross section, F2(x, Q2) − (y2/Y+)FL(x, Q2), were fitted, rather than
F2 and FL separately. The agreement between data and theory at low Q2 and x can
be improved by a positive higher-twist correction to FL(x, Q2) [15,16] (see Fig. 8 of
Ref. [16]).

In QCD, the above processes are described in terms of scale-dependent parton
distributions fa(x, µ2), where a = g or q and, typically, µ is the scale of the probe Q. For
Q2 ≫ M2, the structure functions are of the form

Fi =
∑

a

Ca
i ⊗ fa, (19.21)

where ⊗ denotes the convolution integral

C ⊗ f =

∫ 1

x

dy

y
C(y) f

(

x

y

)

, (19.22)
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8 19. Structure functions

0

0.2

0.4

-0.2

0

-0.1

0

0.1

-0.1

0

0.1

HERMES

SMC

COMPASS

x 
∆u

(x
)

x 
∆d

(x
)

x 
∆u

(x
)

x 
∆d

(x
)

x

x 
∆s

(x
)

0

0.1

10
-2

10
-1

1

Figure 19.3: Distributions of x times the polarized parton distributions ∆q(x)
(where q = u, d, u, d, s) using the NNPDF2014 [15], AAC2008 [16], DSSV2008 [17],
and LSS2010 [18] parameterizations at a scale µ2 = 2.5 GeV2, showing the blue-
shaded error corridor of the NNPDF2014 set. (SMC [21] and COMPASS [22,23])
deep inelastic scattering given at Q2 = 2.5 GeV2. The SMC results were extracted
under the assumption that ∆u(x) = ∆d(x).

and where the coefficient functions Ca
i are given as a power series in αs. The parton

distribution fa corresponds, at a given x, to the density of parton a in the proton
integrated over transverse momentum kt up to µ. Its evolution in µ is described in QCD
by a DGLAP equation (see Refs. [24–27]) which has the schematic form

∂fa

∂ lnµ2
∼ αs(µ

2)

2π

∑

b

(Pab ⊗ fb) , (19.23)
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19. Structure functions 9

where the Pab, which describe the parton splitting b → a, are also given as a power series
in αs. Although perturbative QCD can predict, via Eq. (19.23), the evolution of the
parton distribution functions from a particular scale, µ0, these DGLAP equations cannot
predict them a priori at any particular µ0. Thus they must be measured at a starting
point µ0 before the predictions of QCD can be compared to the data at other scales,
µ. In general, all observables involving a hard hadronic interaction (such as structure
functions) can be expressed as a convolution of calculable, process-dependent coefficient
functions and these universal parton distributions, e.g. Eq. (19.21).

It is often convenient to write the evolution equations in terms of the gluon, non-singlet
(qNS) and singlet (qS) quark distributions, such that

qNS = qi − qi (or qi − qj), qS =
∑

i

(qi + qi) . (19.24)

The non-singlet distributions have non-zero values of flavor quantum numbers, such as
isospin and baryon number. The DGLAP evolution equations then take the form

∂qNS

∂ lnµ2
=

αs(µ
2)

2π
Pqq ⊗ qNS ,

∂

∂ lnµ2

(

qS

g

)

=
αs(µ

2)

2π

(

Pqq 2nf Pqg

Pgq Pgg

)

⊗
(

qS

g

)

, (19.25)

where P are splitting functions that describe the probability of a given parton splitting
into two others, and nf is the number of (active) quark flavors. The leading-order
Altarelli-Parisi [26] splitting functions are

Pqq = 4

3

[

1 + x2

(1 − x)

]

+

= 4

3

[

1 + x2

(1 − x)+

]

+ 2δ(1 − x) , (19.26)

Pqg = 1

2

[

x2 + (1 − x)2
]

, (19.27)

Pgq = 4

3

[

1 + (1 − x)2

x

]

, (19.28)

Pgg = 6

[

1 − x

x
+ x(1 − x) +

x

(1 − x)+

]

+

[

11

2
−

nf

3

]

δ(1 − x), (19.29)

where the notation [F (x)]+ defines a distribution such that for any sufficiently regular
test function, f(x),

∫ 1

0

dxf(x)[F (x)]+ =

∫ 1

0

dx (f(x)− f(1))F (x) . (19.30)
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10 19. Structure functions

In general, the splitting functions can be expressed as a power series in αs. The series
contains both terms proportional to lnµ2 and to ln(1/x) and ln(1−x). The leading-order
DGLAP evolution sums up the (αs lnµ2)n contributions, while at next-to-leading
order (NLO) the sum over the αs(αs lnµ2)n−1 terms is included [28,29]. The NNLO
contributions to the splitting functions and the DIS coefficient functions are also all
known [30–32].

In the kinematic region of very small x, one may also sum leading terms in
ln(1/x), independent of the value of lnµ2. At leading order, LLx, this is done by the
BFKL equation for the unintegrated distributions (see Refs. [33,34]). The leading-order
(αs ln(1/x))n terms result in a power-like growth, x−ω with ω = (12αsln2)/π, at
asymptotic values of ln 1/x. The next-to-leading ln 1/x (NLLx) contributions are also
available [35,36]. They are so large (and negative) that the results initially appeared to
be perturbatively unstable. Methods, based on a combination of collinear and small-x
resummations, have been developed which reorganize the perturbative series into a more
stable hierarchy [37–40]. There are some limited indications that small-x resummations
become necessary for sufficient precision for x . 10−3 at low scales. There is not yet any
very convincing indication for a ‘non-linear’ regime, for Q2 & 2 GeV2, in which the gluon
density would be so high that gluon-gluon recombination effects would become significant.

The precision of the experimental data demands that at least NLO, and preferably
NNLO, DGLAP evolution be used in comparisons between QCD theory and experiment.
Beyond the leading order, it is necessary to specify, and to use consistently, both a
renormalization and a factorization scheme. The renormalization scheme used almost
universally is the modified minimal subtraction (MS) scheme [41,42]. The most popular
choices for the factorization scheme is also MS [43]. However, sometimes the DIS [44]
scheme is adopted, in which there are no higher-order corrections to the F2 structure
function. The two schemes differ in how the non-divergent pieces are assimilated in the
parton distribution functions.

The discussion above relates to the Q2 behavior of leading-twist (twist-2) contributions
to the structure functions. Higher-twist terms, which involve their own non-perturbative
input, exist. These die off as powers of Q; specifically twist-n terms are damped by
1/Qn−2. Provided a cut, say W 2 > 15 GeV2 is imposed, the higher-twist terms appear
to be numerically unimportant for Q2 above a few GeV2, except for x close to 1 [45–47],
though it is important to note that they are likely to be larger in xF3(x, Q2) than in
F2(x, Q2) (see e.g. [48]).

19.3. Determination of parton distributions

The parton distribution functions (PDFs) can be determined from an analysis of
data for deep inelastic lepton-nucleon scattering and for related hard-scattering processes
initiated by nucleons; see Refs. [49–53] for reviews. Table 19.1 highlights some of
the processes, where LHC data are playing an increasing role [54], and their primary
sensitivity to PDFs. Fixed-target and collider experiments have complementary kinematic
reach (as is shown in Fig. 19.4), which enables the determination of PDFs over a wide
range in x and Q2. As more precise LHC data for W±, Z, γ, jet, bb̄, tt̄ and J/ψ
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19. Structure functions 11

Table 19.1: The main processes relevant to global PDF analyses, ordered in three
groups: fixed-target experiments, HERA and the pp̄ Tevatron / pp LHC. For each
process we give an indication of their dominant partonic subprocesses, the primary
partons which are probed and the approximate range of x constrained by the data.

Process Subprocess Partons x range

ℓ± {p, n} → ℓ± X γ∗q → q q, q̄, g x & 0.01

ℓ± n/p → ℓ± X γ∗ d/u → d/u d/u x & 0.01

pp → µ+µ− X uū, dd̄ → γ∗ q̄ 0.015 . x . 0.35

pn/pp → µ+µ− X (ud̄)/(uū) → γ∗ d̄/ū 0.015 . x . 0.35

ν(ν̄) N → µ−(µ+) X W ∗q → q′ q, q̄ 0.01 . x . 0.5

ν N → µ−µ+ X W ∗s → c s 0.01 . x . 0.2

ν̄ N → µ+µ− X W ∗s̄ → c̄ s̄ 0.01 . x . 0.2

e± p → e± X γ∗q → q g, q, q̄ 10−4 . x . 0.1

e+ p → ν̄ X W+ {d, s} → {u, c} d, s x & 0.01

e±p → e± cc̄X, e± bb̄X γ∗c → c, γ∗g → cc̄ c, b, g 10−4 . x . 0.01

e±p → jet+X γ∗g → qq̄ g 0.01 . x . 0.1

pp̄, pp → jet+X gg, qg, qq → 2j g, q 0.00005 . x . 0.5

pp̄ → (W± → ℓ±ν) X ud → W+, ūd̄ → W− u, d, ū, d̄ x & 0.05

pp → (W± → ℓ±ν) X ud̄ → W+, dū → W− u, d, ū, d̄, g x & 0.001

pp̄(pp) → (Z → ℓ+ℓ−)X uu, dd, ..(uū, ..) → Z u, d, ..(g) x & 0.001

pp → W−c, W+c̄ gs → W−c s, s̄ x ∼ 0.01

pp → (γ∗ → ℓ+ℓ−)X uū, dd̄, .. → γ∗ q̄, g x & 10−5

pp → (γ∗ → ℓ+ℓ−)X uγ, dγ, .. → γ∗ γ x & 10−2

pp → bb̄X, tt̄X gg → bb̄, tt̄ g x & 10−5, 10−2

pp → exclusive J/ψ, Υ γ∗(gg) → J/ψ, Υ g x & 10−5, 10−4

pp → γ X gq → γq, gq̄ → γq̄ g x & 0.005

production become available, tighter constraints on the PDFs are expected in a wider
kinematic range.

Recent determinations and releases of the unpolarized PDFs up to NNLO have
been made by six groups: MMHT [55], NNPDF [56], CT(EQ) [57], HERAPDF [14],
ABMP [58] and JR [59]. JR generate ‘dynamical’ PDFs from a valence-like input at
a very low starting scale, Q2

0 = 0.5 GeV2, whereas other groups start evolution at

Q2
0 = 1−4 GeV2. Most groups use input PDFs of the form xf = xa(...)(1 − x)b with

14-28 free parameters in total. In these cases the PDF uncertainties are made available

December 1, 2017 09:35



12 19. Structure functions

Figure 19.4: Kinematic domains in x and Q2 probed by fixed-target and collider
experiments. Some of the final states accessible at the LHC are indicated in
the appropriate regions, where y is the rapidity. The incoming partons have
x1,2 = (M/14 TeV)e±y with Q = M where M is the mass of the state shown in
blue in the figure. For example, exclusive J/ψ and Υ production at high |y| at the
LHC may probe the gluon PDF down to x ∼ 10−5.

using the “Hessian” formulation. The free parameters are expanded around their best
fit values, and orthogonal eigenvector sets of PDFs depending on linear combinations of
the parameter variations are obtained. The uncertainty is then the quadratic sum of the
uncertainties arising from each eigenvector. The NNPDF group combines a Monte Carlo
representation of the probability measure in the space of PDFs with the use of neural
networks. Fits are performed to a number of “replica” data sets obtained by allowing
individual data points to fluctuate randomly by amounts determined by the size of the
data uncertainties. This results in a set of replicas of unbiased PDF sets. In this case
the best prediction is the average obtained using all PDF replicas and the uncertainty
is the standard deviation over all replicas. It is now possible to convert the eigenvectors
of Hessian-based PDFs to Monte Carlo replicas [60] and vice versa [61]. The PDFs are
made available in a common format at LHAPDF [62].

In these analyses, the u, d and s quarks are taken to be massless, but the treatment
of the heavy c and b quark masses, mQ, differs, and has a long history, which may
be traced from Refs. [63–74]. The MSTW, CT, NNPDF and HERAPDF analyses use
different variants of the General-Mass Variable-Flavour-Number Scheme (GM-VFNS).
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19. Structure functions 13

This combines fixed-order contributions to the coefficient functions (or partonic cross
sections) calculated with the full mQ dependence, with the all-order resummation
of contributions via DGLAP evolution in which the heavy quarks are treated as
massless after starting evolution at some transition point. Transition matrix elements are
computed, following [66], which provide the boundary conditions between nf and nf + 1
PDFs. The ABMP and JR analyses use a FFNS where only the three light (massless)
quarks enter the evolution, while the heavy quarks enter the partonic cross sections with
their full mQ dependence. The GM-VFNS and FFNS approaches yield different results:

in particular αs(M
2
Z) and the large-x gluon PDF at large Q2 are both significantly

smaller in the FFNS. It has been argued [46,47,73] that the difference is due to the slow
convergence of the lnn(Q2/m2

Q) terms in certain regions in a FFNS.

The most recent determinations of the groups fitting a variety of data and using a
GM-VFNS (MMHT, NNPDF and CT) have converged, so that now a good agreement
has been achieved between the resulting PDFs. Indeed, the CT [57], MMHT [55], and
NNPDF [56] PDF sets have been combined [75] using the Monte Carlo approach [60]
mentioned above. The single combined set of PDFs is discussed in detail in Ref. [75].

For illustration, we show in Fig. 19.5 the PDFs obtained in the NNLO NNPDF
analysis [56] at scales µ2 = 10 and 104 GeV2. The values of αs found by MMHT [76]
may be taken as representative of those resulting from the GM-VFNS analyses

NLO : αs(M
2
Z) = 0.1201 ± 0.0015,

NNLO : αs(M
2
Z) = 0.1172 ± 0.0012,

where the error (at 68% C.L.) corresponds to the uncertainties resulting from the data
fitted (the uncertainty that might be expected from the neglect of higher orders is at
least as large), see also Ref. [77]. The ABMP analysis [58], which uses a FFNS, finds
αs(M

2
Z) = 0.1147 ± 0.0011 at NNLO.

A recent development has been a vastly increased understanding of the photon content
of the proton. Sets of PDFs with a photon contribution were first considered in Ref. [80]
and then in subsequent PDF sets [81,82]. However, due to weak data constraints,
the uncertainty was extremely large. Susequently, there has been a much improved
understanding of the separation into elastic and inelastic contributions [83–85]. This gives
much more theoretical precision, since the elastic contribution, arising from coherent
emission of a photon from the proton, can be directly related to the well-known proton
electric and magnetic form factors; the model dependence of the inelastic (incoherent)
contribution, related to the quark PDFs, is at the level of tens of percent. A final
development directly relating the entire photon contribution to the proton structure
function [86] resulted in a determination of the photon content of the proton as precise as
that of the light quarks.

Spin-dependent (or polarized) PDFs have been obtained through NLO global analyses
which include measurements of the g1 structure function in inclusive polarized DIS,
‘flavour-tagged’ semi-inclusive DIS data, open–charm production in DIS and results from
polarized pp scattering at RHIC. There are recent results on DIS from JLAB [78] (for
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14 19. Structure functions

gn
1 /Fn

1 ) and COMPASS [88,89]. NLO analyses are given in Refs. [16–18] and [80,91].
Improved parton-to-hadron fragmentation functions, needed to describe the semi-inclusive
DIS data, can be found in Refs. [82–84]. A recent determination [85], using the NNPDF
methodology, concentrates just on the inclusive polarized DIS data, and finds the errors
on the polarized gluon PDF have been underestimated in the earlier analyses. An update
to this [15], where jet and W± data from pp collisions and open–charm DIS data have
been included via reweighting, reduces the uncertainty a little and suggests a positive
polarized gluon PDF. The PDFs obtained in the NLO NNPDF analysis [15] at scales of
µ2 = 10 and 104 GeV2 are shown in Fig. 19.5.
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Figure 19.5: The bands are x times the unpolarized (a,b) parton distributions
f(x) (where f = uv, dv, u, d, s ≃ s̄, c = c̄, b = b̄, g) obtained in NNLO NNPDF3.0
global analysis [56] at scales µ2 = 10 GeV2 (left) and µ2 = 104 GeV2 (right), with
αs(M

2
Z) = 0.118. The analogous results obtained in the NNLO MMHT analysis can

be found in Fig. 1 of Ref [55]. The corresponding polarized parton distributions are
shown (c,d), obtained in NLO with NNPDFpol1.1 [15].
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Comprehensive sets of PDFs are available as program-callable functions from the
HepData website [86], which includes comparison graphics of PDFs, and from the
LHAPDF library [62], which can be linked directly into a user’s programme to provide
access to recent PDFs in a standard format.

19.4. The hadronic structure of the photon

Besides the direct interactions of the photon, it is possible for it to fluctuate into a
hadronic state via the process γ → qq. While in this state, the partonic content of the
photon may be resolved, for example, through the process e+e− → e+e−γ∗γ → e+e−X ,
where the virtual photon emitted by the DIS lepton probes the hadronic structure of
the quasi-real photon emitted by the other lepton. The perturbative LO contributions,
γ → qq followed by γ∗q → q, are subject to QCD corrections due to the coupling of
quarks to gluons.

Often the equivalent-photon approximation is used to express the differential cross
section for deep inelastic electron–photon scattering in terms of the structure functions
of the transverse quasi-real photon times a flux factor NT

γ (for these incoming quasi-real
photons of transverse polarization)

d2σ

dxdQ2
= NT

γ
2πα2

xQ4

[(

1 + (1 − y)2
)

F γ
2

(x, Q2) − y2F γ
L(x, Q2)

]

,

where we have used F γ
2

= 2xF γ
T + F γ

L , not to be confused with F γ
2

of Sec. 19.2. Complete
formulae are given, for example, in the comprehensive review of [88].

The hadronic photon structure function, F
γ
2

, evolves with increasing Q2 from
the ‘hadron-like’ behavior, calculable via the vector-meson-dominance model, to the
dominating ‘point-like’ behaviour, calculable in perturbative QCD. Due to the point-like
coupling, the logarithmic evolution of F γ

2
with Q2 has a positive slope for all values of x,

see Fig. 19.15. The ‘loss’ of quarks at large x due to gluon radiation is over-compensated
by the ‘creation’ of quarks via the point-like γ → qq̄ coupling. The logarithmic evolution
was first predicted in the quark–parton model (γ∗γ → qq̄) [89,90], and then in QCD in
the limit of large Q2 [91]. The evolution is now known to NLO [92–94]. The NLO data
analyses to determine the parton densities of the photon can be found in Refs. [95–97].

19.5. Diffractive DIS (DDIS)

Some 10% of DIS events are diffractive, γ∗p → X + p, in which the slightly deflected
proton and the cluster X of outgoing hadrons are well-separated in rapidity. Besides
x and Q2, two extra variables are needed to describe a DDIS event: the fraction xIP
of the proton’s momentum transferred across the rapidity gap and t, the square of the
4-momentum transfer of the proton. The DDIS data [98,99] are usually analyzed using
two levels of factorization. First, the diffractive structure function FD

2 satisfies collinear

factorization, and can be expressed as the convolution [100]

FD
2 =

∑

a=q,g

Ca
2 ⊗ fD

a/p, (19.31)
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16 19. Structure functions

with the same coefficient functions as in DIS (see Eq. (19.21)), and where the diffractive
parton distributions fD

a/p
(a = q, g) satisfy DGLAP evolution. Second, Regge factorization

is assumed [101],

fD
a/p(xIP , t, z, µ2) = fIP/p(xIP , t) fa/IP (z, µ2), (19.32)

where fa/IP are the parton densities of the Pomeron, which itself is treated like a

hadron, and z ∈ [x/xIP , 1] is the fraction of the Pomeron’s momentum carried by the
parton entering the hard subprocess. The Pomeron flux factor fIP/p(xIP , t) is taken from

Regge phenomenology. There are also secondary Reggeon contributions to Eq. (19.32). A
sample of the t-integrated diffractive parton densities, obtained in this way, is shown in
Fig. 19.6.

Although collinear factorization holds as µ2 → ∞, there are non-negligible corrections
for finite µ2 and small xIP . Besides the resolved interactions of the Pomeron, the
perturbative QCD Pomeron may also interact directly with the hard subprocess, giving
rise to an inhomogeneous evolution equation for the diffractive parton densities analogous
to the photon case. The results of the MRW analysis [104], which includes these
contributions, are also shown in Fig. 19.6. Unlike the inclusive case, the diffractive parton
densities cannot be directly used to calculate diffractive hadron-hadron cross sections,
since account must first be taken of “soft” rescattering effects.
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Figure 19.6: Diffractive parton distributions, xIP zfD
a/p

, obtained from fitting to

the ZEUS data with Q2 > 5 GeV2 [102], H1 data with Q2 > 8.5 GeV2 assuming
Regge factorization [103], and from MRW2006 [104] using a more perturbative QCD
approach [104]. Only the Pomeron contributions are shown and not the secondary
Reggeon contributions, which are negligible at the value of xIP = 0.003 chosen here.
The H1 2007 Jets distribution [105] is similar to H1 2006 Fit B.
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19.6. Generalized parton distributions

The parton distributions of the proton of Sec. 19.3 are given by the diagonal matrix
elements 〈P, λ|Ô|P, λ〉, where P and λ are the 4-momentum and helicity of the proton,
and Ô is a twist-2 quark or gluon operator. However, there is new information in the
so-called generalised parton distributions (GPDs) defined in terms of the off-diagonal
matrix elements 〈P ′, λ′|Ô|P, λ〉; see Refs. [106–110] for reviews. Unlike the diagonal
PDFs, the GPDs cannot be regarded as parton densities, but are to be interpreted as
probability amplitudes.

The physical significance of GPDs is best seen using light-cone coordinates,
z± = (z0 ± z3)/

√
2, and in the light-cone gauge, A+ = 0. It is conventional to define the

generalised quark distributions in terms of quark operators at light-like separation

Fq(x, ξ, t) =
1

2

∫

dz−

2π
eixP̄+z− 〈P ′|ψ̄(−z/2)γ+ψ(z/2)|P 〉

∣

∣

∣

∣

z+=z1=z2=0

(19.33)

=
1

2P̄+

(

Hq(x, ξ, t) ū(P ′)γ+u(P ) + Eq(x, ξ, t) ū(P ′)
iσ+α∆α

2m
u(P )

)

(19.34)

with P̄ = (P + P ′)/2 and ∆ = P ′ − P , and where we have suppressed the helicity labels
of the protons and spinors. We now have two extra kinematic variables:

t = ∆2, ξ = −∆+/(P + P ′)+. (19.35)

We see that −1 ≤ ξ ≤ 1. Similarly, we may define GPDs H̃q and Ẽq with an additional
γ5 between the quark operators in Eq. (19.33); and also an analogous set of gluon
GPDs, Hg, Eg, H̃g and Ẽg. After a Fourier transform with respect to the transverse
components of ∆, we are able to describe the spatial distribution of partons in the impact
parameter plane in terms of GPDs [111,112].

For P ′ = P, λ′ = λ the matrix elements reduce to the ordinary PDFs of Sec. 19.2.1

Hq(x, 0, 0) = q(x), Hq(−x, 0, 0) = −q̄(x), Hg(x, 0, 0) = xg(x), (19.36)

H̃q(x, 0, 0) = ∆q(x), H̃q(−x, 0, 0) = ∆q̄(x), H̃g(x, 0, 0) = x∆g(x), (19.37)

where ∆q = q ↑ −q ↓ as in Eq. (19.18). No corresponding relations exist for E, Ẽ as they
decouple in the forward limit, ∆ = 0.

The functions Hg, Eg are even in x, and H̃g, Ẽg are odd functions of x. We can
introduce valence and ‘singlet’ quark distributions which are even and odd functions of x
respectively. For example

HV
q (x, ξ, t) ≡ Hq(x, ξ, t) + Hq(−x, ξ, t) = HV

q (−x, ξ, t), (19.38)

HS
q (x, ξ, t) ≡ Hq(x, ξ, t)− Hq(−x, ξ, t) = −HS

q (−x, ξ, t). (19.39)
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All the GPDs satisfy relations of the form

H(x,−ξ, t) = H(x, ξ, t) and H(x,−ξ, t)∗ = H(x, ξ, t), (19.40)

and so are real-valued functions. Moreover, the moments of GPDs, that is the x integrals
of xnHq etc., are polynomials in ξ of order n + 1. Another important property of GPDs
are Ji’s sum rules [106]

1

2

∫ 1

−1

dx x
(

Hq(x, ξ, t) + Eq(x, ξ, t)
)

= Jq(t), (19.41)

where Jq(0) is the total angular momentum carried by quarks and antiquarks of flavour
q, with a similar relation for gluons.

Figure 19.7: Schematic diagrams of the three distinct kinematic regions of the
imaginary part of Hq. The proton and quark momentum fractions refer to P̄+, and
x covers the interval (-1,1). In the ERBL domain the GPDs are generalisations of
distribution amplitudes which occur in processes such as pp̄ → J/ψ.

To visualize the physical content of Hq, we Fourier expand ψ and ψ̄ in terms of

quark, antiquark creation (b, d) and annihilation (b†, d†) operators, and sketch the result
in Fig. 19.7. There are two types of domain: (i) the time-like or ‘annihilation’ domain,
with |x| < |ξ|, where the GPDs describe the wave functions of a t-channel qq̄ (or gluon)
pair and evolve according to modified ERBL equations [113,114]; (ii) the space-like
or ‘scattering’ domain, with |x| > |ξ|, where the GPDs generalise the familiar q̄, q
(and gluon) PDFs and describe processes such as ‘deeply virtual Compton scattering’
(γ∗p → γp), γp → J/ψp, etc., and evolve according to modified DGLAP equations. The
splitting functions for the evolution of GPDs are known to NLO [115].

GPDs describe new aspects of proton structure and must be determined from
experiment. We can parametrise them in terms of ‘double distributions’ [116,117], which
reduce to diagonal PDFs as ξ → 0. With an additional physically reasonable ‘Regge’
assumption of no extra singularity at ξ = 0, GPDs at low ξ are uniquely given in terms
of diagonal PDFs to O(ξ), and have been used [118] to describe γp → J/ψp data.
Alternatively, flexible SO(3)-based parametrisations have been used to determine GPDs
from DVCS data [119]; a more recent summary may be found in Ref. [120].

∗ The value of ηCC deduced from [1] is found to be a factor of two too small; ηCC of
Eq. (19.9) agrees with Refs. [2,3].
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1. J. Blümlein and N. Kochelev, Nucl. Phys. B498, 285 (1997).
2. S. Forte et al., Nucl. Phys. B602, 585 (2001).
3. M. Anselmino et al., Z. Phys. C64, 267 (1994).
4. M. Anselmino et al., Phys. Rep. 261, 1 (1995).
5. M. Klein and T. Riemann, Z. Phys. C24, 151 (1984).
6. C.G. Callan and D.J. Gross, Phys. Rev. Lett. 22, 156 (1969).
7. D.A. Dicus, Phys. Rev. D5, 1367 (1972).
8. J.D. Bjorken and E.A. Paschos, Phys. Rev. 185, 1975 (1969).
9. R.P. Feynman, Photon Hadron Interactions (Benjamin, New York, 1972).

10. S. Wandzura and F. Wilczek, Phys. Rev. B72, 195 (1977).
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