Quark and Lepton Compositeness, Searches for

The latest unpublished results are described in the "Quark and Lepton Compositeness" review.

A REVIEW GOES HERE – Check our WWW List of Reviews

CONTENTS:

```
Scale Limits for Contact Interactions: \Lambda(eeee)
Scale Limits for Contact Interactions: \Lambda(ee\mu\mu)
Scale Limits for Contact Interactions: \Lambda(ee\tau\tau)
Scale Limits for Contact Interactions: \Lambda(\ell\ell\ell\ell)
Scale Limits for Contact Interactions: \Lambda(eeqq)
Scale Limits for Contact Interactions: \Lambda(\mu \mu q q)
Scale Limits for Contact Interactions: \Lambda(\ell\nu\ell\nu)
Scale Limits for Contact Interactions: \Lambda(e\nu qq)
Scale Limits for Contact Interactions: \Lambda(qqqq)
Scale Limits for Contact Interactions: \Lambda(\nu \nu q q)
Mass Limits for Excited e(e^*)

    Limits for Excited e (e*) from Pair Production

    - Limits for Excited e(e^*) from Single Production
    - Limits for Excited e(e^*) from e^+e^- \rightarrow \gamma\gamma

    Indirect Limits for Excited e (e*)

Mass Limits for Excited \mu (\mu^*)
    - Limits for Excited \mu (\mu^*) from Pair Production
    - Limits for Excited \mu (\mu*) from Single Production
    - Indirect Limits for Excited \mu (\mu^*)
Mass Limits for Excited \tau (\tau^*)
    - Limits for Excited \tau (\tau^*) from Pair Production
    - Limits for Excited \tau (\tau^*) from Single Production
Mass Limits for Excited Neutrino (\nu^*)
    - Limits for Excited \nu (\nu^*) from Pair Production
    - Limits for Excited \nu (\nu^*) from Single Production
Mass Limits for Excited q(q^*)
    - Limits for Excited q(q^*) from Pair Production
    - Limits for Excited q(q^*) from Single Production
Mass Limits for Color Sextet Quarks (q_6)
Mass Limits for Color Octet Charged Leptons (\ell_8)
Mass Limits for Color Octet Neutrinos (\nu_8)
```

Mass Limits for W_8 (Color Octet W Boson)

SCALE LIMITS for Contact Interactions: $\Lambda(eeee)$

Limits are for Λ_{II}^{\pm} only. For other cases, see each reference.

Λ_{LL}^+ (TeV)	$\Lambda_{LL}^{-}(\text{TeV})$	CL%	DOCUMENT ID		TECN	COMMENT
>8.3	>10.3	95	¹ BOURILKOV	01	RVUE	E _{cm} = 192–208 GeV
• • • We	e do not use	e the fol	lowing data for ave	rages	, fits, lim	nits, etc. • • •
>4.5	>7.0	95	² SCHAEL	07A	ALEP	$E_{\rm cm} = 189 - 209 \; {\rm GeV}$
>5.3	>6.8	95		06 C	DLPH	$E_{\rm cm}^{-} = 130-207 {\rm GeV}$
>4.7	>6.1	95	³ ABBIENDI	04 G	OPAL	$E_{\rm cm}^{-} = 130-207 {\rm GeV}$
>4.3	>4.9	95	ACCIARRI	00 P	L3	E _{cm} = 130–189 GeV

 $^{^{}m 1}$ A combined analysis of the data from ALEPH, DELPHI, L3, and OPAL.

SCALE LIMITS for Contact Interactions: $\Lambda(ee\mu\mu)$

Limits are for Λ^{\pm}_{LL} only. For other cases, see each reference.

Λ_{LL}^+ (TeV)	$\Lambda_{LL}^-({ m TeV})$	CL%	DOCUMENT ID		TECN	COMMENT
>6.6	>9.5	95	¹ SCHAEL	07A	ALEP	$E_{\rm cm} = 189 - 209 \text{GeV}$
> 8.5	>3.8	95	ACCIARRI	00 P	L3	$E_{\rm cm} = 130 - 189 {\rm GeV}$
• • • We	e do not us	e the fo	ollowing data for ave	rages,	, fits, lim	nits, etc. • • •
>7.3	>7.6	95	ABDALLAH	06 C	DLPH	$E_{cm} = 130-207 \text{ GeV}$
>8.1	>7.3	95				E _{cm} = 130–207 GeV
_			J 1			

 $^{^1}$ SCHAEL 07A limits are from $R_c,~Q_{FB}^{depl}$, and hadronic cross section measurements. 2 ABBIENDI 04G limits are from $e^+\,e^-\to~\mu\mu$ cross section at $\sqrt{s}=$ 130–207 GeV.

SCALE LIMITS for Contact Interactions: $\Lambda(ee\tau\tau)$

Limits are for Λ_{LL}^{\pm} only. For other cases, see each reference.

Λ_{LL}^+ (TeV)	$\Lambda_{LL}^-(\text{TeV})$	CL%	DOCUMENT ID		TECN	COMMENT
>7.9	>5.8	95	¹ SCHAEL	07A	ALEP	$E_{\rm cm} = 189 - 209 \; {\rm GeV}$
>7.9	>4.6	95		06 C	DLPH	$E_{\rm cm} = 130-207 {\rm GeV}$
>4.9	>7.2	95	² ABBIENDI	04 G	OPAL	$E_{\rm cm} = 130-207 {\rm GeV}$
• • • We	e do not us	e the foll	owing data for ave	erages	, fits, lin	nits, etc. • • •
>5.4	>4.7	95	ACCIARRI	00 P	L3	$E_{\rm cm} = 130 - 189 \; {\rm GeV}$

 $^{^{1}}$ SCHAEL 07A limits are from R_c , Q_{FB}^{depl} , and hadronic cross section measurements.

SCALE LIMITS for Contact Interactions: $\Lambda(\ell\ell\ell\ell)$

Lepton universality assumed. Limits are for Λ_{LL}^{\pm} only. For other cases, see each reference.

Λ_{LL}^+ (TeV)	$\Lambda_{LL}^-(\text{TeV})$	CL%	DOCUMENT ID		TECN	COMMENT
>7.9	> 10.3	95	¹ SCHAEL	07A	ALEP	$E_{\rm cm} = 189 - 209 \; {\rm GeV}$
>9.1	>8.2	95	ABDALLAH	06 C	DLPH	$E_{\rm cm} = 130-207 {\rm GeV}$

 $^{^2}$ SCHAEL 07A limits are from $R_c,~Q_{FB}^{depl},$ and hadronic cross section measurements. 3 ABBIENDI 04G limits are from $e^+\,e^-\,\rightarrow\,e^+\,e^-$ cross section at $\sqrt{s}=$ 130–207 GeV.

 $^{^2}$ ABBIENDI 04G limits are from $e^+\,e^- \to ~\tau\tau$ cross section at $\sqrt{s}=$ 130–207 GeV.

• • We do not use the following data for averages, fits, limits, etc. • • •

>7.7	>9.5	95	² ABBIENDI	04 G	OPAL	$E_{\rm cm} = 130-207 \; {\rm GeV}$
			³ BABICH	03	RVUE	5
>9.0	>5.2	95	ACCIARRI	00 P	L3	$E_{cm} = 130-189 \text{ GeV}$

SCALE LIMITS for Contact Interactions: $\Lambda(eeqq)$

Limits are for Λ_{LL}^{\pm} only. For other cases, see each reference.

Λ_{LL}^+ (TeV)	$\Lambda_{LL}^{-}(\text{TeV})$	CL%	DOCUMENT ID		TECN	COMMENT
>16.4	>20.7	95	¹ AAD	14 BE	ATLS	(eeqq)
> 8.4	>10.2	95	² ABDALLAH	09	DLPH	(eebb)
> 9.4	>5.6	95	³ SCHAEL	07A	ALEP	(eecc)
> 9.4	>4.9	95	² SCHAEL	07A	ALEP	(eebb)
>23.3	>12.5	95	⁴ CHEUNG	01 B	RVUE	(eeuu)
>11.1	>26.4	95	⁴ CHEUNG	01 B	RVUE	(eedd)
• • • We	do not use	e the fo	ollowing data for av	erages	s, fits, lin	nits, etc. • • •
>15.5	>19.5	95	⁵ AABOUD	16 U	ATLS	(eeqq)
>13.5	>18.3	95	⁶ KHACHATRY.	15AE	CMS	(eeqq)
> 9.5	>12.1	95	⁷ AAD	13E	ATLS	(eeqq)
>10.1	>9.4	95	⁸ AAD	12 AB	ATLS	(eeqq)
> 4.2	>4.0	95	⁹ AARON	11 C	H1	(eeqq)
> 3.8	>3.8	95	¹⁰ ABDALLAH	11	DLPH	(eetc)
>12.9	>7.2	95	¹¹ SCHAEL	07A	ALEP	(eeqq)
> 3.7	>5.9	95	¹² ABULENCIA	06L	CDF	(eeqq)

 $^{^{1}}$ AAD 14BE limits are from pp collisions at $\sqrt{s}=8$ TeV. The quoted limit uses a uniform positive prior in $1/\Lambda^2$.

SCALE LIMITS for Contact Interactions: $\Lambda(\mu \mu q q)$

HTTP://PDG.LBL.GOV

Page 3

 $^{^1}$ SCHAEL 07A limits are from $R_c,~Q_{FB}^{depl},$ and hadronic cross section measurements. 2 ABBIENDI 04G limits are from $e^+\,e^-\to~\ell^+\ell^-$ cross section at $\sqrt{s}=130$ –207 GeV. 3 BABICH 03 obtain a bound $-0.175~{\rm TeV}^{-2}<1/\Lambda_{LL}^2<0.095~{\rm TeV}^{-2}$ (95%CL) in a model independent analysis allowing all of $\Lambda_{LL},~\Lambda_{LR},~\Lambda_{RL},~\Lambda_{RR}$ to coexist.

 $^{^2}$ ABDALLAH 09 and SCHAEL 07A limits are from R_b , A_{FB}^b

 $^{^3}$ SCHAEL 07A limits are from $R_c,\ Q_{FB}^{depl},$ and hadronic cross section measurements. 4 CHEUNG 01B is an update of BARGER 98E.

 $^{^5\, {\}sf AABOUD}$ 16U limits are from $p\, p$ collisions at $\sqrt{s}=$ 13 TeV. The quoted limit uses a uniform positive prior in $1/\Lambda^2$.

⁶ KHACHATRYAN 15AE limit is from e^+e^- mass distribution in pp collisions at $E_{cm}=$ 8 TeV. 7 AAD 13E limis are from e^+e^- mass distribution in pp collisions at $E_{\rm cm}=7$ TeV. 8 AAD 12AB limis are from e^+e^- mass distribution in pp collisions at $E_{\rm cm}=7$ TeV. e^+e^- mass distribution in e^+e^- and e^+e^- mass distribution in e^+e^- mass distribution in e^+e^- and e^+e^- TeV.

⁹ AARON 11C limits are from Q^2 spectrum measurements of $e^{\pm} p \rightarrow e^{\pm} X$. ¹⁰ ABDALLAH 11 limit is from $e^+ e^- \rightarrow t \overline{c}$ cross section. $\Lambda_{LL} = \Lambda_{LR} = \Lambda_{RL} = \Lambda_{RR}$ is assumed. 11 SCHAEL 07A limit assumes quark flavor universality of the contact interactions. $\sqrt{s} = \frac{1}{2} \frac{1}{2$

 $^{^{12}}$ ABULENCIA 06L limits are from $p\overline{p}$ collisions at $\sqrt{s}=1.96$ TeV.

• • • We do not use the following data for averages, fits, limits, etc. • • •

>12.0	>15.2	95		RY15AE CMS	$(\mu \mu q q)$
>12.5	>16.7	95	³ AAD	14BE ATLS	$(\mu \mu q q)$
> 9.6	>12.9	95	⁴ AAD		$(\mu \mu q q)$ (isosinglet)
> 9.5	>13.1	95	⁵ CHATRCH	YAN 13K CMS	$(\mu \mu q q)$ (isosinglet)
> 8.0	>7.0	95	⁶ AAD	12AB ATLS	$(\mu \mu q q)$ (isosinglet)

 $^{^1}$ AABOUD 160 limits are from $p\,p$ collisions at $\sqrt{s}=$ 13 TeV. The quoted limit uses a uniform positive prior in $1/\Lambda^2$.

SCALE LIMITS for Contact Interactions: $\Lambda(\ell\nu\ell\nu)$

VALUE (TeV)	CL%	DOCUMENT ID	•	TECN	COMMENT
>3.10	90	¹ JODIDIO	86	SPEC	$\Lambda_{LR}^{\pm}(u_{\mu} u_{e}\mue)$

• • We do not use the following data for averages, fits, limits, etc.

>3.8	² DIAZCRUZ	94	RVUE $\Lambda_{II}^+(\tau \nu_{\tau} e \nu_{e})$
>8.1	² DIAZCRUZ	94	RVUE $\Lambda_{LL}^{-}(\tau \nu_{\tau} e \nu_{e})$
>4.1	³ DIAZCRUZ	94	RVUE $\Lambda_{LL}^+(au u_{ au}\mu u_{\mu})$
>6.5	³ DIAZCRUZ	94	RVUE $\Lambda_{LL}^{-}(\tau \nu_{\tau} \mu \nu_{\mu})$

 $^{^1}$ JODIDIO 86 limit is from $\mu^+ \to \overline{\nu}_\mu \, \mathrm{e}^+ \, \nu_e$. Chirality invariant interactions $L = (g^2/\Lambda^2)$ $\left[\eta_{LL} \left(\overline{\nu}_\mu _L \gamma^\alpha \mu_L\right) \left(\overline{e}_L \gamma_\alpha \nu_{eL}\right) + \eta_{LR} \left(\overline{\nu}_\mu _L \gamma^\alpha \nu_{eL} \left(\overline{e}_R \gamma_\alpha \mu_R\right)\right] \right]$ with $g^2/4\pi = 1$ and $(\eta_{LL},\eta_{LR}) = (0,\pm 1)$ are taken. No limits are given for Λ^\pm_{LL} with $(\eta_{LL},\eta_{LR}) = (\pm 1,0)$. For more general constraints with right-handed neutrinos and chirality nonconserving contact interactions, see their text.

SCALE LIMITS for Contact Interactions: $\Lambda(e\nu qq)$

VALUE (TeV)	CL%	DOCUMENT ID	•	TECN
>2.81	95	¹ AFFOLDER	011	CDF

¹ AFFOLDER 001 bound is for a scalar interaction $\overline{q}_R q_L \overline{\nu} e_L$.

SCALE LIMITS for Contact Interactions: $\Lambda(qqqq)$

Λ_{LL}^+ (TeV)	$\Lambda_{LL}^{-}(\text{TeV})$	CL%	DOCUMENT ID		TECN	COMMENT
>12.0	>17.5	95	¹ AAD	16 S	ATLS	pp dijet angl.

HTTP://PDG.LBL.GOV Page 4 Created: 5/30/2017 17:23

 $^{^2}$ KHACHATRYAN 15AE limit is from $\mu^+\mu^-$ mass distribution in pp collisions at $E_{\rm cm}=8$ TeV.

³AAD 14BE limits are from pp collisions at $\sqrt{s}=8$ TeV. The quoted limit uses a uniform positive prior in $1/\Lambda^2$.

⁴AAD 13E limis are from $\mu^+\mu^-$ mass distribution in pp collisions at $E_{\rm cm}=$ 7 TeV.

 $^{^5}$ CHATRCHYAN 13K limis are from $\mu^+\mu^-$ mass distribution in pp collisions at $E_{\rm cm}=7$ TeV.

 $^{^6}$ AAD 12AB limis are from $\mu^+\mu^-$ mass distribution in pp collisions at $E_{\rm cm}=7$ TeV.

² DIAZCRUZ 94 limits are from $\Gamma(\tau \to e \nu \nu)$ and assume flavor-dependent contact interactions with $\Lambda(\tau \nu_{\tau} e \nu_{e}) \ll \Lambda(\mu \nu_{\mu} e \nu_{e})$.

³ DIAZCRUZ 94 limits are from $\Gamma(\tau \to \mu \nu \nu)$ and assume flavor-dependent contact interactions with $\Lambda(\tau \nu_{\tau} \mu \nu_{\mu}) \ll \Lambda(\mu \nu_{\mu} e \nu_{e})$.

• • • We do not use the following data for averages, fits, limits, etc. • • •

			² AAD 15AR ATLS $pp \rightarrow t\overline{t}t\overline{t}$
			³ AAD 15BY ATLS $pp \rightarrow t\overline{t}t\overline{t}$
> 8.1	>12.0	95	⁴ AAD 15L ATLS <i>pp</i> dijet angl.
> 9.0	>11.7	95	5 KHACHATRY15J CMS pp dijet angl.
> 5		95	$\frac{6}{2}$ FABBRICHESI 14 RVUE $q\overline{q}t\overline{t}$
> 7.6		95	⁷ AAD 13D ATLS $pp \rightarrow \text{dijet angl.}$
> 9.9	>14.3	95	⁸ CHATRCHYAN 13AN CMS $pp \rightarrow dijet$.

 $^{^1}$ AAD 16S limit is from dijet angular selections in pp collisions at $E_{\rm cm}=13$ TeV. $u,\,d,$ and s quarks are assumed to be composite.

SCALE LIMITS for Contact Interactions: $\Lambda(\nu\nu qq)$

Limits are for Λ_{II}^{\pm} only. For other cases, see each reference.

MASS LIMITS for Excited $e(e^*)$

Most e^+e^- experiments assume one-photon or Z exchange. The limits from some e^+e^- experiments which depend on λ have assumed transition couplings which are chirality violating $(\eta_L=\eta_R)$. However they can be interpreted as limits for chirality-conserving interactions after multiplying the coupling value λ by $\sqrt{2}$; see Note.

Excited leptons have the same quantum numbers as other ortholeptons. See also the searches for ortholeptons in the "Searches for Heavy Leptons" section.

Limits for Excited e (e*) from Pair Production

These limits are obtained from $e^+e^- \rightarrow e^{*+}e^{*-}$ and thus rely only on the (electroweak) charge of e^* . Form factor effects are ignored unless noted. For the case

and s quarks are assumed to be composite. ² AAD 15AR obtain limit on the t_R compositeness $2\pi/\Lambda_{RR}^2 < 6.6 \text{ TeV}^{-2}$ at 95% CL from the $t\overline{t}$ production in the pp collisions at $E_{\rm cm}=8$ TeV.

 $^{^3}$ AAD 15BY obtain limit on the t_R compositeness $2\pi/\Lambda_{RR}^2 < 15.1~{\rm TeV}^{-2}$ at 95% CL from the $t\overline{t}$ tr production in the pp collisions at $E_{\rm cm}=8~{\rm TeV}$.

⁴ AAD 15L limit is from dijet angular distribution in pp collisions at $E_{\rm cm}=8$ TeV. u,d, and s quarks are assumed to be composite.

⁵ KHACHATRYAN 15J limit is from dijet angular distribution in pp collisions at $E_{\rm cm}=$ 8 TeV. $u,\,d,\,s,\,c$, and b quarks are assumed to be composite.

⁶ FABBRICHESI 14 obtain bounds on chromoelectric and chromomagnetic form factors of the top-quark using $pp \to t\bar{t}$ and $p\bar{p} \to t\bar{t}$ cross sections. The quoted limit on the $q\bar{q}t\bar{t}$ contact interaction is derived from their bound on the chromoelectric form factor.

⁷ AAD 13D limit is from dijet angular distribution in pp collisions at $E_{\rm cm}=7$ TeV. The constant prior in $1/\Lambda^4$ is applied.

 $^{^8}$ CHATRCHYAN 13AN limit is from inclusive jet p_T spectrum in pp collisions at $E_{\rm cm}=7$ TeV.

 $^{^{1}}$ MCFARLAND 98 assumed a flavor universal interaction. Neutrinos were mostly of muon type.

of limits from Z decay, the e^* coupling is assumed to be of sequential type. Possible t channel contribution from transition magnetic coupling is neglected. All limits assume a dominant $e^* \to e \gamma$ decay except the limits from $\Gamma(Z)$.

For limits prior to 1987, see our 1992 edition (Physical Review D45 S1 (1992)).

VALUE (GeV)CL%DOCUMENT IDTECNCOMMENT>103.295 1 ABBIENDI02GOPAL $e^+e^- \rightarrow e^*e^*$ Homodoublet type

ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet

>102.8 95 2 ACHARD 03B L3 $e^+e^ightarrow e^*e^*$ Homodoublet type

Limits for Excited e (e*) from Single Production

These limits are from $e^+e^- \to e^*e$, $W \to e^*\nu$, or $ep \to e^*X$ and depend on transition magnetic coupling between e and e^* . All limits assume $e^* \to e\gamma$ decay except as noted. Limits from LEP, UA2, and H1 are for chiral coupling, whereas all other limits are for nonchiral coupling, $\eta_L = \eta_R = 1$. In most papers, the limit is expressed in the form of an excluded region in the $\lambda - m_{e^*}$ plane. See the original papers.

For limits prior to 1987, see our 1992 edition (Physical Review D45 S1 (1992)).

VALUE (GeV)	CL%	DOCUMENT ID		TECN	COMMEN	IT
>3000	95	¹ AAD	15 AP	ATLS	$pp \rightarrow$	$e^{(*)}e^*X$
• • • We do not use the	following	data for averages,	fits,	limits, e	tc. • • •	•
>2450	95	² KHACHATRY	.16AQ	CMS	$pp \rightarrow$	e e* X
>2200	95	3 AAD	13 _{RR}	ΔΤΙς	$nn \rightarrow$	ee* X

>2200 95 3 AAD 13BB ATLS $pp \rightarrow ee^*X$ >1900 95 4 CHATRCHYAN 13AE CMS $pp \rightarrow ee^*X$ >1870 95 5 AAD 12AZ ATLS $pp \rightarrow e^{(*)}e^*X$

¹ From e^+e^- collisions at $\sqrt{s}=183$ –209 GeV. f=f' is assumed.

² From e⁺e⁻ collisions at $\sqrt{s}=189$ –209 GeV. f=f' is assumed. ACHARD 03B also obtain limit for f=-f': $m_{\alpha^*}>96.6$ GeV.

¹ AAD 15AP search for e^* production in evens with three or more charged leptons in pp collisions at $\sqrt{s}=8$ TeV. The quoted limit assumes $\Lambda=m_{e^*}$, f=f'=1. The contact interaction is included in the e^* production and decay amplitudes.

² KHACHATRYAN 16AQ search for single e^* production in pp collisions at $\sqrt{s}=8$ TeV. The limit above is from the $e^* \to e\gamma$ search channel assuming f=f'=1, $m_{e^*}=\Lambda$. See their Table 7 for limits in other search channels or with different assumptions.

³AAD 13BB search for single e^* production in pp collisions with $e^* \to e\gamma$ decay. f=f'=1, and e^* production via contact interaction with $\Lambda=m_{e^*}$ are assumed.

⁴ CHATRCHYAN 13AE search for single e^* production in pp collisions with $e^* \to e\gamma$ decay. f = f' = 1, and e^* production via contact interaction with $\Lambda = m_{e^*}$ are assumed.

⁵ AAD 12AZ search for e^* production via four-fermion contact interaction in pp collisions with $e^* \to e\gamma$ decay. The quoted limit assumes $\Lambda = m_{e^*}$. See their Fig. 8 for the exclusion plot in the mass-coupling plane.

Limits for Excited $e(e^*)$ from $e^+e^- \rightarrow \gamma\gamma$

These limits are derived from indirect effects due to e^* exchange in the t channel and depend on transition magnetic coupling between e and e^* . All limits are for $\lambda_{\gamma}=1$. All limits except ABE 89J and ACHARD 02D are for nonchiral coupling with $\eta_I = \eta_R$ = 1. We choose the chiral coupling limit as the best limit and list it in the Summary Table.

For limits prior to 1987, see our 1992 edition (Physical Review **D45** S1 (1992)).

VALUE (GeV)	CL%	DOCUMENT ID		TECN	COMMENT
>356	95	$^{ m 1}$ ABDALLAH	04N	DLPH	\sqrt{s} $=$ 161–208 GeV
• • • We do not use th	e following	g data for average	s, fits,	limits, e	etc. • • •
>310	95	ACHARD	02 D	L3	$\sqrt{s} = 192 - 209 \text{ GeV}$

¹ ABDALLAH 04N also obtain a limit on the excited electron mass with ee^* chiral coupling, $m_{o^*} > 295 \text{ GeV at } 95\% \text{ CL}.$

Indirect Limits for Excited $e(e^*)$

These limits make use of loop effects involving e^* and are therefore subject to theoretical uncertainty.

DOCUMENT ID TECN COMMENT VALUE (GeV) • • • We do not use the following data for averages, fits, limits, etc. • • •

 1 DORENBOS... 89 CHRM $\overline{\nu}_{\mu}\,e \to \,\overline{\nu}_{\mu}\,e,\,\nu_{\mu}\,e \to \,\nu_{\mu}\,e$ 2 GRIFOLS 86 THEO $\nu_{\mu}\,e \to \,\nu_{\mu}\,e$ 3 RENARD 82 THEO $g{-}2$ of electron

MASS LIMITS for Excited μ (μ *)

Limits for Excited μ (μ *) from Pair Production

These limits are obtained from $e^+e^- \rightarrow \mu^{*+}\mu^{*-}$ and thus rely only on the (electroweak) charge of μ^* . Form factor effects are ignored unless noted. For the case of limits from Z decay, the μ^* coupling is assumed to be of sequential type. All limits assume a dominant $\mu^* \to \mu \gamma$ decay except the limits from $\Gamma(Z)$.

For limits prior to 1987, see our 1992 edition (Physical Review D45 S1 (1992)).

DOCUMENT ID TECN COMMENT VALUE (GeV) CL% 02G OPAL $e^+e^-
ightarrow \mu^*\mu^*$ Homodoublet type ¹ ABBIENDI • • • We do not use the following data for averages, fits, limits, etc. • •

² ACHARD 03B L3 $e^+e^- \rightarrow \mu^*\mu^*$ Homodoublet type >102.8

¹ From e^+e^- collisions at $\sqrt{s}=$ 183–209 GeV. f=f' is assumed.

 $^{^1}$ DORENBOSCH 89 obtain the limit $\lambda_{\gamma}^2\Lambda_{\rm cut}^2/m_{e^*}^2<2.6$ (95% CL), where $\Lambda_{\rm cut}$ is the cutoff scale, based on the one-loop calculation by GRIFOLS 86. If one assumes that $\Lambda_{\rm cut}$ = 1 TeV and λ_{γ} = 1, one obtains m_{e^*} > 620 GeV. However, one generally expects $\lambda_{\gamma} \approx m_{e^*}/\Lambda_{\rm cut}$ in composite models.

 $^{^2}$ GRIFOLS 86 uses $\nu_{\mu}\,e\,\rightarrow\,\,\nu_{\mu}\,e$ and $\overline{\nu}_{\mu}\,e\,\rightarrow\,\,\overline{\nu}_{\mu}\,e$ data from CHARM Collaboration to derive mass limits which depend on the scale of compositeness.

 $^{^3}$ RENARD 82 derived from g-2 data limits on mass and couplings of e^* and μ^* . See figures 2 and 3 of the paper.

² From e^+e^- collisions at $\sqrt{s}=189$ –209 GeV. f=f' is assumed. ACHARD 03B also obtain limit for f = -f': $m_{\mu^*} > 96.6$ GeV.

Limits for Excited μ (μ *) from Single Production

These limits are from $e^+e^- \to \mu^*\mu$ and depend on transition magnetic coupling between μ and μ^* . All limits assume $\mu^* \to \mu\gamma$ decay. Limits from LEP are for chiral coupling, whereas all other limits are for nonchiral coupling, $\eta_L = \eta_R = 1$. In most papers, the limit is expressed in the form of an excluded region in the $\lambda - m_{\mu^*}$ plane. See the original papers.

For limits prior to 1987, see our 1992 edition (Physical Review D45 S1 (1992)).

VALUE (GeV)	CL%	DOCUMENT ID	TECN	COMMENT
>3000	95	¹ AAD 15	5AP ATLS	$pp \rightarrow \mu^{(*)}\mu^*X$
• • • We do not use the	e following	data for averages, f	its, limits, e	tc. • • •
>2800	95			$pp \rightarrow \mu \mu^* X$
>2470	95	³ KHACHATRY1	6AQ CMS	$pp \rightarrow \mu \mu^* X$
>2200	95			$pp \rightarrow \mu \mu^* X$
>1900	95	⁵ CHATRCHYAN 13	3AE CMS	$pp \rightarrow \mu \mu^* X$
>1750	95	⁶ AAD 13	2AZ ATLS	$pp \rightarrow \mu^{(*)}\mu^*X$

¹ AAD 15AP search for μ^* production in evens with three or more charged leptons in pp collisions at $\sqrt{s}=8$ TeV. The quoted limit assumes $\Lambda=m_{\mu^*}$, f=f'=1. The contact interaction is included in the μ^* production and decay amplitudes.

Indirect Limits for Excited μ (μ *)

These limits make use of loop effects involving μ^* and are therefore subject to theoretical uncertainty.

VALUE (GeV) DOCUMENT ID TECN COMMENT

● We do not use the following data for averages, fits, limits, etc.

¹ RENARD 82 THEO g-2 of muon

² AAD 16BM search for μ^* production in $\mu\mu jj$ events in pp collisions at $\sqrt{s}=8$ TeV. Both the production and decay are assumed to occur via a contact interaction with $\Lambda=m_{\mu^*}$.

³ KHACHATRYAN 16AQ search for single μ^* production in pp collisions at $\sqrt{s}=8$ TeV. The limit above is from the $\mu^*\to\mu\gamma$ search channel assuming $f=f'=1,\ m_{\mu^*}=\Lambda$. See their Table 7 for limits in other search channels or with different assumptions.

⁴ AAD 13BB search for single μ^* production in pp collisions with $\mu^* \to \mu \gamma$ decay. f = f' = 1, and μ^* production via contact interaction with $\Lambda = m_{\mu^*}$ are assumed.

⁵ CHATRCHYAN 13AE search for single μ^* production in pp collisions with $\mu^* \to \mu \gamma$ decay. f = f' = 1, and μ^* production via contact interaction with $\Lambda = m_{\mu^*}$ are assumed.

⁶ AAD 12AZ search for μ^* production via four-fermion contact interaction in pp collisions with $\mu^* \to \mu \gamma$ decay. The quoted limit assumes $\Lambda = m_{\mu^*}$. See their Fig. 8 for the exclusion plot in the mass-coupling plane.

 $^{^1}$ RENARD 82 derived from g-2 data limits on mass and couplings of e^* and μ^* . See figures 2 and 3 of the paper.

MASS LIMITS for Excited τ (τ^*)

Limits for Excited τ (τ^*) from Pair Production

These limits are obtained from $e^+e^- \to \tau^{*+}\tau^{*-}$ and thus rely only on the (electroweak) charge of τ^* . Form factor effects are ignored unless noted. For the case of limits from Z decay, the τ^* coupling is assumed to be of sequential type. All limits assume a dominant $\tau^* \to \tau \gamma$ decay except the limits from $\Gamma(Z)$.

For limits prior to 1987, see our 1992 edition (Physical Review D45 S1 (1992)).

VALUE (GeV)	CL%	DOCUMENT ID		TECN	COMMENT
>103.2	95	$^{ m 1}$ ABBIENDI	02G	OPAL	$e^+e^- ightarrow \ au^* au^*$ Homodoublet type
• • • We d	o not us	e the following data	for a	verages,	fits, limits, etc. • • •

>102.8 95 2 ACHARD 03B L3 $e^+e^ightarrow~ au^* au^*$ Homodoublet type

Limits for Excited au (au^*) from Single Production

These limits are from $e^+e^- \to \tau^*\tau$ and depend on transition magnetic coupling between τ and τ^* . All limits assume $\tau^* \to \tau\gamma$ decay. Limits from LEP are for chiral coupling, whereas all other limits are for nonchiral coupling, $\eta_L = \eta_R = 1$. In most papers, the limit is expressed in the form of an excluded region in the $\lambda - m_{\tau^*}$ plane. See the original papers.

VALUE (GeV)	<u>CL%_</u>	DOCUMENT ID		TECN	COMMEN	Γ	
>2500	95	¹ AAD	15 AP	ATLS	pp ightarrow au	$(*)_{\tau}^* \chi$	
\bullet \bullet We do not use the	following	data for averages,	fits,	limits, e	etc. • • •		
. 100	0.5	2 ACHARR	00-		+ -	*	

$$>$$
 180 95 2 ACHARD 03B L3 $e^+e^- \rightarrow \tau \tau^*$ $>$ 185 95 3 ABBIENDI 02G OPAL $e^+e^- \rightarrow \tau \tau^*$

MASS LIMITS for Excited Neutrino (ν^*)

Limits for Excited ν (ν^*) from Pair Production

These limits are obtained from $e^+e^- \to \nu^*\nu^*$ and thus rely only on the (electroweak) charge of ν^* . Form factor effects are ignored unless noted. The ν^* coupling is assumed to be of sequential type unless otherwise noted. All limits assume a dominant $\nu^* \to \nu \gamma$ decay except the limits from $\Gamma(Z)$.

VALUE (GeV)CL%DOCUMENT IDTECNCOMMENT>160095
1
 AAD15AP ATLS $pp \rightarrow \nu^* \nu^* X$

• • • We do not use the following data for averages, fits, limits, etc. • • •

¹ From e^+e^- collisions at $\sqrt{s}=183-209$ GeV. f=f' is assumed.

 $^{^2}$ From $e^+\,e^-$ collisions at $\sqrt{s}=189$ –209 GeV. f=f' is assumed. ACHARD 03B also obtain limit for $f=-f'\colon\,m_{\tau^*}>96.6$ GeV.

¹ AAD 15AP search for τ^* production in events with three or more charged leptons in pp collisions at $\sqrt{s}=8$ TeV. The quoted limit assumes $\Lambda=m_{\tau^*}$, f=f'=1. The contact interaction is included in the τ^* production and decay amplitudes.

 $^{^2}$ ACHARD 03B result is from $e^+\,e^-$ collisions at $\sqrt{s}=189$ –209 GeV. $f=f'=\Lambda/m_{\tau^*}$ is assumed. See their Fig. 4 for the exclusion plot in the mass-coupling plane. 3 ABBIENDI 02G result is from $e^+\,e^-$ collisions at $\sqrt{s}=183$ –209 GeV. $f=f'=\Lambda/m_{\tau^*}$

³ABBIENDI 02G result is from e^+e^- collisions at $\sqrt{s}=183$ –209 GeV. $f=f'=\Lambda/m_{\tau^*}$ is assumed for τ^* coupling. See their Fig. 4c for the exclusion limit in the mass-coupling plane.

 2 ABBIENDI 04N OPAL > 102.6 95 3 ACHARD 03B L3 $e^+e^-
ightarrow
u^*
u^*$ Homodoublet type

- ¹ AAD 15AP search for ν^* pair production in evens with three or more charged leptons in pp collisions at $\sqrt{s}=8$ TeV. The quoted limit assumes $\Lambda=m_{\nu^*}$, f=f'=1. The contact interaction is included in the ν^* production and decay amplitudes.
- 2 From $\,e^+\,e^-\,$ collisions at $\sqrt{s}=192$ –209 GeV, ABBIENDI 04N obtain limit on $\sigma(e^+\,e^-\to\,\nu^*\nu^*)$ B $^2(\nu^*\to\,\nu\gamma).$ See their Fig.2. The limit ranges from 20 to 45 fb for $m_{\nu^*}\,>$ 45 GeV.
- 3 From e $^+$ e $^-$ collisions at $\sqrt{s}=189$ –209 GeV. f=-f' is assumed. ACHARD 03B also obtain limit for f=f': $m_{\stackrel{}{\nu_e^*}}>101.7$ GeV, $m_{\stackrel{}{\nu_\mu^*}}>101.8$ GeV, and $m_{\stackrel{}{\nu_\tau^*}}>92.9$ GeV. See their Fig. 4 for the exclusion plot in the mass-coupling plane.

Limits for Excited ν (ν^*) from Single Production

These limits are from $e^+e^- \to \nu\nu^*$, $Z \to \nu\nu^*$, or $ep \to \nu^*X$ and depend on transition magnetic coupling between ν/e and ν^* . Assumptions about ν^* decay mode are given in footnotes.

VALUE (GeV)	CL%	DOCUMENT ID		TECN	COMMENT
>213	95	$^{ m 1}$ AARON	80	H1	$e p \rightarrow \nu^* X$
• • • We d	do not us	e the following data	for a	verages,	fits, limits, etc. • • •
>190	95	² ACHARD			
none 50-15	0 95	³ ADLOFF	02	H1	$ep \rightarrow \nu^* X$
>158	95	⁴ CHEKANOV	02 D	ZEUS	$ep \rightarrow \nu^* X$

- ¹ AARON 08 search for single ν^* production in ep collisions with the decays $\nu^* \to \nu \gamma$, νZ , eW. The quoted limit assumes $f = -f' = \Lambda/m_{\nu^*}$. See their Fig. 3 and Fig. 4 for the exclusion plots in the mass-coupling plane.
- ² ACHARD 03B result is from e^+e^- collisions at $\sqrt{s}=189$ –209 GeV. The quoted limit is for ν_e^* . $f=-f'=\Lambda/m_{\nu^*}$ is assumed. See their Fig. 4 for the exclusion plot in the mass-coupling plane.
- ³ ADLOFF 02 search for single ν^* production in ep collisions with the decays $\nu^* \to \nu \gamma$, νZ , eW. The quoted limit assumes $f = -f' = \Lambda/m_{\nu^*}$. See their Fig. 1 for the exclusion plots in the mass-coupling plane.
- ⁴ CHEKANOV 02D search for single ν^* production in ep collisions with the decays $\nu^* \to \nu \gamma$, νZ , eW. $f = -f' = \Lambda/m_{\nu^*}$ is assumed for the e^* coupling. CHEKANOV 02D also obtain limit for $f = f' = \Lambda/m_{\nu^*}$: $m_{\nu^*} > 135$ GeV. See their Fig. 5c and Fig. 5d for the exclusion plot in the mass-coupling plane.

MASS LIMITS for Excited $q(q^*)$

Limits for Excited $q(q^*)$ from Pair Production

These limits are mostly obtained from $e^+e^- \to q^* \overline{q}^*$ and thus rely only on the (electroweak) charge of the q^* . Form factor effects are ignored unless noted. Assumptions about the q^* decay are given in the comments and footnotes.

<i>VALUE</i> (GeV)	CL%	DOCUMENT ID	TECN	COMMENT
>338	95	¹ AALTONEN 10H	CDF	$q^* ightarrow tW^-$

ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet

		² BARATE			$Z \rightarrow q^* q^*$	
> 45.6	95				u or d type, $Z \rightarrow q$	₁* q*
> 41.7	95	⁴ BARDADIN				
> 44.7	95	⁴ BARDADIN				
> 40.6	95	⁵ DECAMP	92	ALEP	<i>u</i> -type, $\Gamma(Z)$	
> 44.2	95	⁵ DECAMP	92	ALEP	d -type, $\Gamma(Z)$	
> 45	95	⁶ DECAMP	92	ALEP	u or d type, $Z \rightarrow q$	q^*q^*
> 45	95	⁵ ABREU	91F	DLPH	<i>u</i> -type, $\Gamma(Z)$	
> 45	95	⁵ ABREU	91F	DLPH	d-type, $\Gamma(Z)$	

¹ AALTONEN 10H obtain limits on the $q^* q^*$ production cross section in $p\overline{p}$ collisions. See their Fig. 3.

Limits for Excited $q(q^*)$ from Single Production

These limits are from $e^+e^- \to q^*\overline{q}$, $p\overline{p} \to q^*X$, or $pp \to q^*X$ and depend on transition magnetic couplings between q and q^* . Assumptions about q^* decay mode are given in the footnotes and comments.

VALUE (GeV)	CL%	DOCUMENT ID TECN COMMENT
>5200	95	$1 \overline{AAD}$ 16s \overline{ATLS} $\overline{pp} \to q^* X$, $q^* \to q g$
● ● We do not	use the	following data for averages, fits, limits, etc. • •
none 1100-2100	95	² AABOUD 16 ATLS $pp \rightarrow b^*X$, $b^* \rightarrow bg$
>1500	95	³ AAD 16AH ATLS $pp \rightarrow b^*X$, $b^* \rightarrow tW$
>4400	95	⁴ AAD 16AI ATLS $pp ightarrow q^* X$, $q^* ightarrow q \gamma$
		5 AAD 16AV ATLS $pp ightarrow q^{*}X, q^{*} ightarrow Wb$
>1390	95	6 KHACHATRY16I CMS $pp ightarrow b^*X$, $b^* ightarrow tW$
>5000	95	7 KHACHATRY16K CMS $pp ightarrow q^{*}X$, $q^{*} ightarrow qg$
none 500-1600	95	8 KHACHATRY16L CMS $pp ightarrow q^{*}X$, $q^{*} ightarrow qg$
>4060	95	9 AAD 15 V ATLS $pp ightarrow q^{*}X$, $q^{*} ightarrow qg$
>3500	95	10 KHACHATRY15V CMS $pp ightarrow q^*X$, $q^* ightarrow qg$
>3500	95	11 AAD 14 ATLS $pp ightarrow q^* X$, $q^* ightarrow q \gamma$
>3200	95	12 KHACHATRY14 CMS $pp ightarrow q^* X$, $q^* ightarrow q W$
>2900	95	13 KHACHATRY14 CMS $pp ightarrow q^* X$, $q^* ightarrow q Z$
none 700-3500	95	14 KHACHATRY14J CMS $pp ightarrowq^*X$, $q^* ightarrowq\gamma$
> 870	95	15 AAD 13 AF ATLS $pp ightarrow b^* X$, $b^* ightarrow t W$
>1940	95	16 CHATRCHYAN 13AI CMS $pp ightarrow q^* X$, $q^* ightarrow q Z$, qW
>2380	95	17 CHATRCHYAN 13AJ CMS $pp ightarrow q^*X, \;\; q^* ightarrow qW$
>2150	95	18 CHATRCHYAN 13AJ CMS $pp ightarrow q^*X, \;\; q^* ightarrow qZ$
		19 ABAZOV 11F D0 $p\overline{p} ightarrow q^*X, q^* ightarrow qZ,qW$

²BARATE 98U obtain limits on the form factor. See their Fig. 16 for limits in mass-form factor plane.

³ ADRIANI 93M limit is valid for B($q^* \rightarrow qg$)> 0.25 (0.17) for up (down) type.

⁴BARDADIN-OTWINOWSKA 92 limit based on $\Delta\Gamma(Z)$ <36 MeV.

⁵ These limits are independent of decay modes.

⁶ Limit is for B($q^* \rightarrow qg$)+B($q^* \rightarrow q\gamma$)=1.

- ¹ AAD 16S assume $\Lambda = m_{q^*}$, $f_S = f = f' = 1$. The contact interactions are not included in q^* production and decay amplitudes.
- ² AABOUD 16 assume $\Lambda=m_{b^*}$, $f_s=f=f'=1$. The contact interactions are not included in the b^* production and decay amplitudes.
- ³ AAD 16AH search for b^* decaying to tW in pp collisions at $\sqrt{s}=8$ TeV. $f_g=f_L=f_R=1$ are assumed. See their Fig. 12b for limits on $\sigma \cdot B$.
- ⁴ AAD 16AI assume $\Lambda = m_{\alpha^*}$, $f_{\mathbf{S}} = f = f' = 1$.
- 5 AAD 16AV search for single production of vector-like quarks decaying to Wb in pp collisions. See their Fig. 8 for the limits on couplings and mixings.
- ⁶ KHACHATRYAN 16I search for b^* decaying to tW in pp collisions at $\sqrt{s}=8$ TeV. $\kappa_L^b=g_L=1,\ \kappa_R^b=g_R=0$ are assumed. See their Fig. 8 for limits on $\sigma\cdot B$.
- 7 KHACHATRYAN 16K assume $\Lambda=m_{q^*}$, $f_s=f=f'=1$. The contact interactions are not included in q^* production and decay amplitudes.
- ⁸ KHACHATRYAN 16L search for resonances decaying to dijets in pp collisions at $\sqrt{s}=8$ TeV using the data scouting technique which increases the sensitivity to the low mass resonances.
- gresonances. 9 AAD 15V assume $\Lambda=m_{q^*}$, $f_s=f=f'=1$. The contact interactions are not included in q^* production and decay amplitudes.
- 10 KHACHATRYAN 15V assume $\Lambda=m_{q^*}$, $f_s=f=f'=1$. The contact interactions are not included in q^* production and decay amplitudes.
- $^{11}\,\mathrm{AAD}$ 14A assume $\Lambda=m_{a^*}$, $f_{\mathrm{S}}=f=f'=1.$
- 12 KHACHATRYAN 14 use the hadronic decay of W, assuming $\Lambda=m_{a^*}$, $f_s=f=f'=1$.
- ¹³ KHACHATRYAN 14 use the hadronic decay of Z, assuming $\Lambda = m_{\alpha^*}$, $f_s = f = f' = 1$.
- $^{14}\,\mathrm{KHACHATRYAN}$ 14J assume $\mathit{f_s} = \mathit{f} = \mathit{f'} = \mathit{\Lambda} \; / \; \mathit{m_{a^*}}.$
- 15 AAD 13AF search for b^* decaying to $t\,W$ in $p\,p$ collisions at $\sqrt{s}=7$ TeV. $\kappa_L^b = g_L = 1$, $\kappa_R^b = g_R = 0$ are assumed. See their Fig.6 for limits on $\sigma \cdot B$.
- ¹⁶ CHATRCHYAN 13AI assume q^* production via qg fusion and $\Lambda = m_{q^*}$, $f_s = f = f' = 1$. For q^* production via qg fusion and via contact interactions, the limit becomes $m_{q^*} > 2220$ GeV
- 17 CHATRCHYAN 13AJ use the hadronic decay of W.
- 18 CHATRCHYAN 13AJ use the hadronic decay of Z.
- ¹⁹ ABAZOV 11F search for vector-like quarks decaying to W+jet and Z+jet in $p\overline{p}$ collisions. See their Fig. 3 and Fig. 4 for the limits on $\sigma \cdot B$.

MASS LIMITS for Color Sextet Quarks (q_6)

<i>VALUE</i> (GeV)	CL%	DOCUMENT ID		TECN	COMMENT
>84	95	¹ ABE	89 D	CDF	$p\overline{p} \rightarrow q_6\overline{q}_6$

¹ ABE 89D look for pair production of unit-charged particles which leave the detector before decaying. In the above limit the color sextet quark is assumed to fragment into a unit-charged or neutral hadron with equal probability and to have long enough lifetime not to decay within the detector. A limit of 121 GeV is obtained for a color decuplet.

MASS LIMITS for Color Octet Charged Leptons (ℓ_8)

 $\lambda \equiv m_{\ell_8}/\Lambda$

VALUE (GeV)CL%DOCUMENT IDTECNCOMMENT>8695 1 ABE89DCDFStable ℓ_8 : $\rho \overline{\rho} \rightarrow \ell_8 \overline{\ell}_8$

ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet

² ABT 93 H1 e_8 : $e_p \rightarrow e_8 X$

 2 ABT 93 search for e_8 production via e-gluon fusion in $e\,p$ collisions with $e_8\to e\,g$. See their Fig. 3 for exclusion plot in the m_{e_8} – Λ plane for $m_{e_8}=35$ –220 GeV.

MASS LIMITS for Color Octet Neutrinos (ν_8)

 $\lambda \equiv m_{\ell_{\rm R}}/\Lambda$

VALUE (GeV)	CL%	DOCUMENT ID		TECN	COMMENT
>110	90	¹ BARGER	89	RVUE	ν_8 : $p\overline{p} \rightarrow \nu_8\overline{\nu}_8$
• • • We do not u	se the follo	wing data for ave	erages	, fits, lim	nits, etc. • • •

none 3.8–29.8 95 2 KIM 90 AMY ν_8 : $e^+e^- \to$ acoplanar jets none 9–21.9 95 3 BARTEL 87B JADE ν_8 : $e^+e^- \to$ acoplanar jets

MASS LIMITS for W₈ (Color Octet W Boson)

VALUE (GeV) DOCUMENT ID TECN COMMENT

ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet ullet ullet ALBAJAR 89 UA1 $p\overline{p} o W_8 X$, $W_8 o Wg$

Created: 5/30/2017 17:23

 $^1\,\mathrm{ALBAJAR}$ 89 give $\sigma(W_8 \rightarrow~W+\mathrm{jet})/\sigma(W) < 0.019$ (90% CL) for $m_{\slash\hspace{-0.4em}W_8}~>220$ GeV.

REFERENCES FOR Searches for Quark and Lepton Compositeness

AABOUD 16U AAD 16AH AAD 16AV AAD 16BM AAD 16S KHACHATRY 16I KHACHATRY 16K KHACHATRY 16L	PL B761 372 JHEP 1602 110 JHEP 1603 041 EPJ C76 442 NJP 18 073021 PL B754 302 JHEP 1603 125 JHEP 1601 166 PRL 116 071801 PRL 117 031802	M. Aaboud et al. M. Aaboud et al. G. Aad et al. G. Aad et al. G. Aad et al. G. Aad et al. V. Khachatryan et al.	(ATLAS (ATLAS (ATLAS (ATLAS (ATLAS (ATLAS (CMS (CMS (CMS (CMS	Collab.)
	JHEP 1508 138	G. Aad <i>et al.</i>	,	Collab.)

HTTP://PDG.LBL.GOV

Page 13

¹ ABE 89D look for pair production of unit-charged particles which leave the detector before decaying. In the above limit the color octet lepton is assumed to fragment into a unit-charged or neutral hadron with equal probability and to have long enough lifetime not to decay within the detector. The limit improves to 99 GeV if it always fragments into a unit-charged hadron.

¹BARGER 89 used ABE 89B limit for events with large missing transverse momentum. Two-body decay $\nu_8 \rightarrow \nu_g$ is assumed.

 $^{^2}$ KIM 90 is at $E_{
m cm}=50$ –60.8 GeV. The same assumptions as in BARTEL 87B are used.

³ BARTEL 87B is at $E_{\rm cm}=46.3$ –46.78 GeV. The limit assumes the ν_8 pair production cross section to be eight times larger than that of the corresponding heavy neutrino pair production. This assumption is not valid in general for the weak couplings, and the limit can be sensitive to its ${\rm SU}(2)_L \times {\rm U}(1)_Y$ quantum numbers.

AAD	15AR	JHEP 1508 105	G. Aad <i>et al.</i>	(ATLAS Co	ollab.)
AAD	15BY	JHEP 1510 150	G. Aad et al.	(ATLAS Co	ollab.)
AAD	15L	PRL 114 221802	G. Aad et al.	(ATLAS Co	ollab.)
AAD	15V	PR D91 052007	G. Aad et al.	(ATLAS Co	ollab.)
KHACHATRY	15AE	JHEP 1504 025	V. Khachatryan et al.	` (CMS Co	
KHACHATRY		PL B746 79	V. Khachatryan et al.	(CMS Co	
KHACHATRY			V. Khachatryan et al.	(CMS Co	,
AAD	14A		G. Aad <i>et al.</i>	(ATLAS Co	
AAD		EPJ C74 3134	G. Aad <i>et al.</i>	(ATLAS Co	
FABBRICHESI		PR D89 074028	M. Fabbrichesi, M. Pinamonti, A	_ `	
KHACHATRY		JHEP 1408 173	V. Khachatryan <i>et al.</i>	(CMS Co	ıllah)
KHACHATRY		PL B738 274	V. Khachatryan <i>et al.</i>	(CMS Co	
AAD	-		G. Aad et al.	. `	
		PL B721 171		(ATLAS Co	
AAD AAD		NJP 15 093011	G. Aad <i>et al.</i> G. Aad <i>et al.</i>	(ATLAS Co	
	13D	JHEP 1301 029		(ATLAS Co	
AAD	13E	PR D87 015010	G. Aad <i>et al.</i>	(ATLAS Co	
CHATRCHYAN			S. Chatrchyan et al.	(CMS Co	
CHATRCHYAN		PL B722 28	S. Chatrchyan et al.	(CMS Co	
CHATRCHYAN			S. Chatrchyan <i>et al.</i>	(CMS Co	
		PR D87 052017	S. Chatrchyan et al.	(CMS Co	
CHATRCHYAN			S. Chatrchyan <i>et al.</i>	(CMS Co	ollab.)
AAD		PL B712 40	G. Aad <i>et al.</i>	(ATLAS Co	
AAD	12AZ	PR D85 072003	G. Aad <i>et al.</i>	(ATLAS Co	ollab.)
AARON	11C	PL B705 52	F. D. Aaron et al.	(H1 Cc	ollab.)
ABAZOV	11F	PRL 106 081801	V.M. Abazov et al.	(D0 Co	ollab.)
ABDALLAH	11	EPJ C71 1555	J. Abdallah <i>et al.</i>	(DELPHI Co	ollab.)
AALTONEN	10H	PRL 104 091801	T. Aaltonen et al.	` (CDF Co	ollab.)
ABDALLAH	09	EPJ C60 1	J. Abdallah <i>et al.</i>	(DELPHI Co	
AARON	80	PL B663 382	F.D. Aaron et al.	` (H1 Co	
SCHAEL	07A	EPJ C49 411	S. Schael et al.	(ALÈPH Co	
ABDALLAH	06C	EPJ C45 589	J. Abdallah <i>et al.</i>	(DELPHI Co	
ABULENCIA	06L	PRL 96 211801	A. Abulencia et al.	(CDF Co	,
ABBIENDI	04G	EPJ C33 173	G. Abbiendi <i>et al.</i>	(OPAL Co	
ABBIENDI	04N	PL B602 167	G. Abbiendi <i>et al.</i>	(OPAL Co	
ABDALLAH	04N	EPJ C37 405	J. Abdallah <i>et al.</i>	(DELPHI Co	
ACHARD	03B	PL B568 23	P. Achard <i>et al.</i>	(L3 Co	
BABICH	03	EPJ C29 103	A.A. Babich <i>et al.</i>	(25 66	mab.)
ABBIENDI	02G	PL B544 57	G. Abbiendi <i>et al.</i>	(OPAL Co	ıllah)
ACHARD	02D	PL B531 28	P. Achard <i>et al.</i>	(L3 Co	(
ADLOFF	02.0	PL B525 9	C. Adloff <i>et al.</i>	(H1 Cc	(
CHEKANOV	02D	PL B549 32	S. Chekanov <i>et al.</i>	(ZEUS Co	
AFFOLDER	02D 01I	PRL 87 231803	T. Affolder <i>et al.</i>	(CDF Co	
BOURILKOV	01	PR D64 071701	D. Bourilkov	(CDI CC	Jilab. j
CHEUNG	01B	PL B517 167	K. Cheung		
ACCIARRI	01B	PL B489 81	M. Acciarri <i>et al.</i>	(12 Ca	allah)
	001		T. Affolder et al.	(L3 Co	
AFFOLDER		PR D62 012004		(CDF Co	
BARATE BARGER	98U 98E	EPJ C4 571	R. Barate <i>et al.</i>	(ALEPH Co	oliab.)
MCFARLAND		PR D57 391	V. Barger et al.	(CCED/NuTa)/ Ca	ا مامال
-	98	EPJ C1 509	K.S. McFarland <i>et al.</i>	(CCFR/NuTeV Co	
DIAZCRUZ	94	PR D49 R2149	J.L. Diaz Cruz, O.A. Sampayo		
ABT	93	NP B396 3	I. Abt et al.	(H1 Cc	
ADRIANI	93M	PRPL 236 1	O. Adriani <i>et al.</i>	(L3 Co	
BARDADIN	92	ZPHY C55 163	M. Bardadin-Otwinowska		LER)
DECAMP	92	PRPL 216 253	D. Decamp <i>et al.</i>	(ALEPH Co	(
PDG	92	PR D45 S1	K. Hikasa <i>et al.</i>	(KEK, LBL, BO	
ABREU	91F	NP B367 511	P. Abreu <i>et al.</i>	(DELPHI Co	ollab.)
KIM	90	PL B240 243	G.N. Kim <i>et al.</i>	(AMY Co	ollab.)
ABE	89B	PRL 62 1825	F. Abe <i>et al.</i>	(CDF Co	
ABE	89D	PRL 63 1447	F. Abe <i>et al.</i>	(CDF Co	ollab.)
ABE	89J	ZPHY C45 175	K. Abe <i>et al.</i>	(VENUS Co	ollab.)
ALBAJAR	89	ZPHY C44 15	C. Albajar <i>et al.</i>	(UA1 Co	
BARGER	89	PL B220 464	V. Barger <i>et al.</i>	(WISC,	
DORENBOS	89	ZPHY C41 567	J. Dorenbosch et al.	(CHÁRM Co	ollab.)
BARTEL	87B	ZPHY C36 15	W. Bartel <i>et al.</i>	(JADE Co	ollab.)
GRIFOLS	86	PL 168B 264	J.A. Grifols, S. Peris		ARC)
JODIDIO	86	PR D34 1967	A. Jodidio et al.	(LBL, NWES, 7	
Also		PR D37 237 (erratum)	A. Jodidio et al.	(LBL, NWES, 7	ΓRIU)
RENARD	82	PL 116B 264	F.M. Renard		ERN)