Neutral Higgs Bosons, Searches for

CONTENTS:

Mass Limits for Neutral Higgs Bosons in Supersymmetric Models

- Mass Limits for H_1^0 (Higgs Boson) in Supersymmetric Models
- Mass Limits for A⁰ (Pseudoscalar Higgs Boson) in Supersymmetric Models

Mass Limits for Neutral Higgs Bosons in Extended Higgs Models

- Mass Limits in General two-Higgs-doublet Models
- Mass Limits for H_{2}^{0} with Vanishing Yukawa Couplings
- Mass Limits for H^0 Decaying to Invisible Final States
- Mass Limits for Light A^0
- Other Mass Limits

Searches for a Higgs Boson with Standard Model Couplings

- Direct Mass Limits for H^0
- Indirect Mass Limits for H^0 from Electroweak Analysis

MASS LIMITS FOR NEUTRAL HIGGS BOSONS IN SUPERSYMMETRIC MODELS

The minimal supersymmetric model has two complex doublets of Higgs bosons. The resulting physical states are two scalars $[H_1^0 \text{ and } H_2^0$, where we define $m_{H_1^0} < m_{H_2^0}]$, a pseudoscalar (A^0) , and a charged Higgs pair (H^{\pm}) . H_1^0 and H_2^0 are also called h and H in the literature. There are two free parameters in the Higgs sector which can be chosen to be m_{A^0} and $\tan\beta = v_2/v_1$, the ratio of vacuum expectation values of the two Higgs doublets. Tree-level Higgs masses are constrained by the model to be $m_{H_1^0} \leq m_Z$, $m_{H_2^0} \geq m_Z$, $m_{A^0} \geq m_{H_1^0}$, and $m_{H^{\pm}} \geq m_W$. However, as described in the review on "Status of Higgs Boson Physics" in this Volume these relations are violated by radiative corrections.

Unless otherwise noted, the experiments in $e^+\,e^-$ collisions search for the processes $e^+\,e^ \rightarrow$ $~H^0_1\,Z^0$ in the channels used for the Standard Model Higgs searches and $e^+e^-
ightarrow H^0_1 A^0$ in the final states $b \overline{b} b \overline{b}$ and $b \overline{b} \tau^+ \tau^-$. In $p \overline{p}$ and p p collisions the experiments search for a variety of processes, as explicitly specified for each entry. Limits on the A^0 mass arise from these direct searches, as well as from the relations valid in the minimal supersymmetric model between m_{A^0} and m_{H^0} . As discussed in the review on "Status of Higgs Boson Physics" in this Volume, these relations depend, via potentially large radiative corrections, on the mass of the t quark and on the supersymmetric parameters, in particular those of the stop sector. These indirect limits are weaker for larger t and \tilde{t} masses. To include the radiative corrections to the Higgs masses, unless otherwise stated, the listed papers use theoretical predictions incorporating two-loop corrections, and the results are given for the m_h^{\max} benchmark scenario, which gives rise to the most conservative upper bound on the mass of H_1^0 for given values of $m_{\Delta 0}$ and tan β , see CARENA 99B, CARENA 03, and CARENA 13.

Limits in the low-mass region of H_1^0 , as well as other by now obsolete limits from different techniques, have been removed from this compilation, and can be found in earlier editions of this Review. Unless otherwise stated, the following results assume no invisible H_1^0 or A^0 decays.

The observed signal at about 125 GeV, see section " H^{0} ", can be interpreted as one of the neutral Higgs bosons of supersymmetric models.

Mass Limits for H_1^0 (Higgs Boson) in Supersymmetric Models

VALUE (GeV)	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
>89.7		¹ ABDALLAH	08 B	DLPH	$E_{ m cm} \leq$ 209 GeV
>92.8	95	² SCHAEL	06 B	LEP	$E_{\rm cm} \leq 209 {\rm GeV}$
>84.5	95	^{3,4} ABBIENDI	04M	OPAL	$E_{\rm cm} \leq 209 { m GeV}$
>86.0	95	^{3,5} ACHARD	02H	L3	${\it E_{cm}} \le$ 209 GeV, tan $eta >$ 0.4
• • • We do n	ot use tl	he following data fo	r aver	ages, fits	s, limits, etc. ● ●
		⁶ AABOUD	16AA	ATLS	$H_2^0 \rightarrow \tau^+ \tau^-$
		⁷ KHACHATRY.	16 A	CMS	$H^0_{1,2}/A^0 \to \mu^+\mu^-$
		⁸ AAD	15CE	ATLS	$H_2^0 \rightarrow H^0 H^0$
		⁹ KHACHATRY.	15AY	CMS	$p \overline{p} \rightarrow H_{1,2}^0 / A^0 + b + X,$
		10			$H_{1,2}/A^{\circ} \rightarrow BB$
		10 AAD	14AV	AILS	$pp \rightarrow H_{1,2}^0/A^0 + X,$
		11 κηας ματργ	14м	CMS	$H_{1,2}^{0}/A^{0} \rightarrow \gamma\gamma$ $h_{1,2}^{0}/A^{0} + X$
				cino	$H_{1,2}^{0} \rightarrow \tau \tau$
		¹² AAD	130	ATLS	$pp \to H_{1,2}^{0}/A^{0} + X,$
					$H^0_{1,2}/A^0 ightarrow au^+ au^-$, $\mu^+ \mu^-$
		¹³ AAIJ	13⊤	LHCB	$pp \rightarrow H^0_{1,2}/A^0 + X,$
		14			$H_{1,2}^0/A^0 \rightarrow \tau^+ \tau^-$
		¹⁴ CHATRCHYAN	N 13AG	G CMS	$pp \rightarrow H_{1,2}^0 / A^0 + b + X,$ $H_{1,2}^0 / A^0 \rightarrow b\overline{b}$
		¹⁵ AALTONEN	12AG	TEVA	$p\overline{p} \rightarrow H_{1,2}^{0}/A^{0} + b + X,$
					$H^0_{1,2}/A^0 \rightarrow b\overline{b}$
		¹⁶ AALTONEN	12X	CDF	$p\overline{p} \rightarrow H^0_{1,2}/A^0 + b + X,$
		17			$H_{1,2}^{0}/A^{0} \rightarrow bb$
		17 ABAZOV	12G	D0	$p\overline{p} \rightarrow H_{1,2}^0/A^0 + X,$
		¹⁸ CHATRCHYAN	1 12k	CMS	$H_{1,2}^{o} / A^{o} \rightarrow \tau + \tau$ $pp \rightarrow H_{1,2}^{0} / A^{0} + X,$
					$H_{1,2}^{0}/A^{0} \rightarrow \tau^{+}\tau^{-}$
		¹⁹ ABAZOV	11ĸ	D0	$p\overline{p} \rightarrow H^0_{1,2}/A^0 + b + X,$
					$H^0_{1,2}/A^0 \rightarrow b \overline{b}$

HTTP://PDG.LBL.GOV

		²⁰ ABAZOV	11W D0	$p\overline{p} \rightarrow H^0_{1,2}/A^0 + b + X$
				$H^{0}_{1,2}/\dot{A^{0}} \to \tau^{+}\tau^{-}$
		²¹ AALTONEN	09AR CDF	$p\overline{p} \rightarrow H^0_{1,2}/A^0 + X,$
				$H_{1,2}^0/A^0 \to \tau^+ \tau^-$
		²² ABBIENDI	03G OPAL	$H_1^0 \rightarrow A^0 A^0$
>89.8	95	^{3,23} HEISTER	02 ALEP	$E_{\rm cm}$ < 209 GeV, tan β > 0.5

¹ABDALLAH 08B give limits in eight CP-conserving benchmark scenarios and some CPviolating scenarios. See paper for excluded regions for each scenario. Supersedes AB-DALLAH 04.

 2 SCHAEL 06B make a combined analysis of the LEP data. The quoted limit is for the m_h^{\max} scenario with $m_t = 174.3$ GeV. In the *CP*-violating CPX scenario no lower bound on m_{μ^0} can be set at 95% CL. See paper for excluded regions in various scenarios. See

Figs. 2–6 and Tabs. 14–21 for limits on $\sigma(ZH^0)$ · B($H^0 \rightarrow b\overline{b}, \tau^+\tau^-$) and $\sigma(H_1^0H_2^0)$ · $\mathsf{B}(H_1^0, H_2^0 \to b\overline{b}, \tau^+ \tau^-).$

³Search for $e^+e^- \rightarrow H^0_1 A^0$ in the final states $b\overline{b}b\overline{b}$ and $b\overline{b}\tau^+\tau^-$, and $e^+e^- \rightarrow$ H_1^0 Z. Universal scalar mass of 1 TeV, SU(2) gaugino mass of 200 GeV, and $\mu = -200$ GeV are assumed, and two-loop radiative corrections incorporated. The limits hold for m_t =175 GeV, and for the m_h^{max} scenario.

 $^4\,{\sf ABBIENDI}$ 04M exclude 0.7 $< {\sf tan}\beta~<$ 1.9, assuming $m_t=$ 174.3 GeV. Limits for other

- MSSM benchmark scenarios, as well as for *CP* violating cases, are also given. ⁵ ACHARD 02H also search for the final state $H_1^0 Z \rightarrow 2A^0 q \overline{q}$, $A^0 \rightarrow q \overline{q}$. In addition, the MSSM parameter set in the "large- μ " and "no-mixing" scenarios are examined.
- $^{6}\operatorname{AABOUD}$ 16AA search for production of a Higgs boson in gluon fusion and in association with a $b\overline{b}$ pair followed by the decay $H_2^0 \rightarrow \tau^+ \tau^-$ in 3.2 fb⁻¹ of pp collisions at $E_{\rm cm}$ = 13 TeV. See their Fig. 5(a, b) for limits on cross section times branching ratio for $m_{H_{0}^{0}} = 200-1200 \text{ GeV}$, and Fig. 5(c, d) for the excluded region in the MSSM parameter

space in the m_h^{mod+} and hMSSM scenarios.

- ⁷KHACHATRYAN 16A search for production of a Higgs boson in gluon fusion and in association with a $b \overline{b}$ pair followed by the decay $H_{1,2}^0 / A^0 \rightarrow \mu^+ \mu^-$ in 5.1 fb⁻¹ of pp collisions at $E_{\rm cm} =$ 7 TeV and 19.3 fb⁻¹ at $E_{\rm cm} =$ 8 TeV. See their Fig. 7 for the excluded region in the MSSM parameter space in the $\mathit{m}_h^{\mathsf{mod}+}$ benchmark scenario and Fig. 9 for limits on cross section times branching ratio.
- ⁸AAD 15CE search for production of H^0_2 decaying to $H^0 H^0$ in the final states $b \overline{b} \tau^+ \tau^$ and $\gamma \gamma W W^*$ in 20.3 fb⁻¹ of pp collisions at $E_{\rm cm}$ = 8 TeV and combine with data from AAD 15H ($\gamma \gamma b \overline{b}$) and AAD 15BK ($b \overline{b} b \overline{b}$). See their Fig. 7 for excluded regions in the parameter space in several scenarios.
- 9 KHACHATRYAN 15AY search for production of a Higgs boson in association with a bquark in the decay $H_{1,2}^0/A^0 \rightarrow b\overline{b}$ in 19.7 fb⁻¹ of pp collisions at $E_{cm} = 8$ TeV and combine with CHATRCHYAN 13AG 7 TeV data. See their Fig. 6 for the limits on cross section times branching ratio for $m_{A^0} = 100-900$ GeV and Figs. 7–9 for the excluded region in the MSSM parameter space in various benchmark scenarios.

 10 AAD 14AW search for production of a Higgs boson followed by the decay $H^0_{1,2}/A^0
ightarrow$

 $\tau^+ \tau^-$ in 19.5–20.3 fb⁻¹ of *pp* collisions at $E_{\rm cm} = 8$ TeV. See their Fig. 11 for the limits on cross section times branching ratio and their Figs. 9 and 10 for the excluded region in the MSSM parameter space. For m_{A0} = 140 GeV, the region taneta > 5.4 is excluded at 95% CL in the m_h^{max} scenario.

¹¹ KHACHATRYAN 14M search for production of a Higgs boson in gluon fusion and in association with a *b* quark followed by the decay $H_{1,2}^0 / A^0 \rightarrow \tau^+ \tau^-$ in 4.9 fb⁻¹ of

pp collisions at $E_{\rm cm} = 7$ TeV and 19.7 fb⁻¹ at $E_{\rm cm} = 8$ TeV. See their Figs. 7 and 8 for one- and two-dimensional limits on cross section times branching ratio and their Figs. 5 and 6 for the excluded region in the MSSM parameter space. For $m_{A^0} = 140$

GeV, the region ${\rm tan}\beta>$ 3.8 is excluded at 95% CL in the $m_h^{\rm max}$ scenario.

 12 AAD 130 search for production of a Higgs boson in the decay ${\it H}^0_{1.2}/{\it A}^0 \rightarrow ~\tau^+ \tau^-$ and

 $\mu^+\mu^-$ with 4.7–4.8 fb⁻¹ of pp collisions at $E_{\rm cm} = 7$ TeV. See their Fig. 6 for the excluded region in the MSSM parameter space and their Fig. 7 for the limits on cross section times branching ratio. For $m_{A^0} = 110-170$ GeV, $\tan\beta \gtrsim 10$ is excluded, and for the $\beta \approx 50$ mm a hole 470 GeV/ is excluded at 05% Cl in the m^{MAX} second.

for tan $\beta = 50$, m_{A^0} below 470 GeV is excluded at 95% CL in the m_h^{max} scenario.

- ¹³ AAIJ 13T search for production of a Higgs boson in the forward region in the decay $H_{1,2}^0/A^0 \rightarrow \tau^+ \tau^-$ in 1.0 fb⁻¹ of *pp* collisions at $E_{\rm cm} = 7$ TeV. See their Fig. 2 for the limits on cross section times branching ratio and the excluded region in the MSSM parameter space.
- ¹⁴ CHATRCHYAN 13AG search for production of a Higgs boson in association with a *b* quark in the decay $H_{1,2}^0/A^0 \rightarrow b\overline{b}$ in 2.7–4.8 fb⁻¹ of *pp* collisions at $E_{\rm cm} = 7$ TeV. See their Fig. 6 for the excluded region in the MSSM parameter space and Fig. 5 for the limits on cross section times branching ratio. For $m_{A^0} = 90-350$ GeV, upper bounds on tan β of 18–42 at 95% CL are obtained in the $m_h^{\rm max}$ scenario with $\mu = +200$ GeV.
- ¹⁵ AALTONEN 12AQ combine AALTONEN 12X and ABAZOV 11K. See their Table I and Fig. 1 for the limit on cross section times branching ratio and Fig. 2 for the excluded region in the MSSM parameter space.
- ¹⁶ AALTONEN 12X search for associated production of a Higgs boson and a *b* quark in the decay $H_{1,2}^0/A^0 \rightarrow b\overline{b}$, with 2.6 fb⁻¹ of $p\overline{p}$ collisions at $E_{\rm cm} = 1.96$ TeV. See their Table III and Fig. 15 for the limit on cross section times branching ratio and Figs. 17, 18 for the excluded region in the MSSM parameter space.

 17 ABAZOV 12G search for production of a Higgs boson in the decay $H^0_{1,2}/A^0 o ~ au^+ au^-$

with 7.3 fb⁻¹ of $p\overline{p}$ collisions at $E_{\rm cm} = 1.96$ TeV and combine with ABAZOV 11W and ABAZOV 11K. See their Figs. 4, 5, and 6 for the excluded region in the MSSM parameter space. For $m_{A^0} = 90\text{--}180$ GeV, $\tan\beta \gtrsim 30$ is excluded at 95% CL. in the $m_h^{\rm max}$ scenario.

- ¹⁸ CHATRCHYAN 12K search for production of a Higgs boson in the decay $H_{1,2}^0 / A^0 \rightarrow \tau^+ \tau^-$ with 4.6 fb⁻¹ of pp collisions at $E_{\rm cm} = 7$ TeV. See their Fig. 3 and Table 4 for the excluded region in the MSSM parameter space. For $m_{A^0} = 160$ GeV, the region tan $\beta > 7.1$ is excluded at 95% CL in the $m_h^{\rm max}$ scenario. Superseded by KHACHATRYAN 14M.
- ¹⁹ ABAZOV 11K search for associated production of a Higgs boson and a *b* quark, followed by the decay $H_{1,2}^0/A^0 \rightarrow b\overline{b}$, in 5.2 fb⁻¹ of $p\overline{p}$ collisions at $E_{\rm cm} = 1.96$ TeV. See their Fig. 5/Table 2 for the limit on cross section times branching ratio and Fig. 6 for the excluded region in the MSSM parameter space for $\mu = -200$ GeV.
- ²⁰ ABAZOV 11W search for associated production of a Higgs boson and a *b* quark, followed by the decay $H_{1,2}^0/A^0 \rightarrow \tau \tau$, in 7.3 fb⁻¹ of $p\overline{p}$ collisions at $E_{\rm cm} = 1.96$ TeV. See their Fig. 2 for the limit on cross section times branching ratio and for the excluded region in the MSSM parameter space.
- ²¹AALTONEN 09AR search for Higgs bosons decaying to $\tau^+ \tau^-$ in two doublet models in 1.8 fb⁻¹ of $p\overline{p}$ collisions at $E_{\rm cm} = 1.96$ TeV. See their Fig. 2 for the limit on

 $\sigma \cdot B(H_{1,2}^0/A^0 \rightarrow \tau^+ \tau^-)$ for different Higgs masses, and see their Fig. 3 for the excluded region in the MSSM parameter space.

excluded region in the MSSM parameter space. ²² ABBIENDI 03G search for $e^+e^- \rightarrow H_1^0 Z$ followed by $H_1^0 \rightarrow A^0 A^0$, $A^0 \rightarrow c\overline{c}$, gg, or $\tau^+\tau^-$. In the no-mixing scenario, the region $m_{H_1^0} = 45-85$ GeV and $m_{A^0} = 2-9.5$ GeV is excluded at 95% CL

GeV is excluded at 95% CL. ²³ HEISTER 02 excludes the range 0.7 <tan β < 2.3. A wider range is excluded with different stop mixing assumptions. Updates BARATE 01c.

Mass Limits for A^0 (Pseudoscalar Higgs Boson) in Supersymmetric Models

VALUE (GeV)	CL%	DOCUMENT ID		TECN	COMMENT
>90.4		¹ ABDALLAH	08 B	DLPH	$E_{\rm cm} \leq 209 \; {\rm GeV}$
>93.4	95	² SCHAEL	06 B	LEP	$E_{\rm cm} \leq 209 \; {\rm GeV}$
>85.0	95	^{3,4} ABBIENDI	0 4M	OPAL	$E_{\rm cm}^{\rm orm} \leq 209 \; {\rm GeV}$
>86.5	95	^{3,5} ACHARD	02н	L3	$E_{ m cm}^{ m odd} \leq$ 209 GeV, tan $eta > 0.4$
>90.1	95	^{3,6} HEISTER	02	ALEP	${\it E_{cm}} \le$ 209 GeV, tan $eta > 0.5$
• • • We do r	not use t	he following data for	avera	ages, fits	s, limits, etc. ● ● ●
		⁷ AABOUD	16AA	ATLS	$A^0 \rightarrow \tau^+ \tau^-$
		⁸ KHACHATRY.	.16A	CMS	$H_{12}^0 / A^0 \to \mu^+ \mu^-$
		⁹ KHACHATRY.	. 16 P	CMS	$H_0^{1,2} \rightarrow H^0 H^0, A^0 \rightarrow Z H^0$
		¹⁰ KHACHATRY.	.15AY	CMS	$p p \to H_{1,2}^0 / A^0 + b + X,$
					$H_{1,2}^{0} \rightarrow b\overline{b}$
		¹¹ AAD	14AW	ATLS	$pp \rightarrow H_{1,2}^{0}/A^{0} + X,$
					$H_{1,2}^0/A^0 \rightarrow \tau \tau$
		¹² KHACHATRY.	.14M	CMS	$pp \rightarrow H_{1,2}^0/A^0 + X,$
					$H_{1,2}^0 / A^0 \rightarrow \tau \tau$
		¹³ AAD	130	ATLS	$pp \rightarrow H_{1,2}^{0}/A^{0} + X,$
					$H_{12}^{0}/A^{0} \rightarrow \tau^{+}\tau^{-}, \mu^{+}\mu^{-}$
		¹⁴ AAIJ	13⊤	LHCB	$pp \to H_{12}^0 / A^0 + X,$
					$H_{12}^{0}/A^{0} \to \tau^{+}\tau^{-}$
		¹⁵ CHATRCHYAN	1 3 AG	CMS	$pp \to H_{1,2}^0 / A^0 + b + X,$
					$H_{12}^0/\overline{A^0} \rightarrow b\overline{b}$
		¹⁶ AALTONEN	12AQ	TEVA	$p\overline{p} \to H_{1,2}^0/A^0 + b + X,$
					$H_{12}^{0}/A^{0} \rightarrow b\overline{b}$
		¹⁷ AALTONEN	12X	CDF	$p\overline{p} \rightarrow H_{1,2}^0/A^0 + b + X,$
					$H_{1,2}^0/\overline{A^0} \rightarrow b\overline{b}$
		¹⁸ ABAZOV	12G	D0	$p\overline{p} \rightarrow H_{1,2}^0/A^0 + X,$
					$H_{12}^{0}/A^{0} \to \tau^{+}\tau^{-}$
		¹⁹ CHATRCHYAN	12K	CMS	$pp \rightarrow H_{1,2}^0/A^0 + X,$
					$H_{1,2}^{0}/\dot{A^{0}} \to \tau^{+}\tau^{-}$
		²⁰ ABAZOV	11K	D0	$p\overline{p} \rightarrow H^0_{1,2}/A^0 + b + X,$
					$H_{12}^{0}/\overline{A^{0}} \rightarrow b\overline{b}$
					±,~

²¹ ABAZOV	11W D0	$p\overline{p} \rightarrow H^0_{1,2}/A^0 + b + X_{,2}$
²² AALTONEN	09ar CDF	$ \begin{array}{ccc} H^0_{1,2}/A^0 \rightarrow \tau^+ \tau^- \\ p \overline{p} \rightarrow H^0_{1,2}/A^0 + X, \end{array} $
		$H_{1.2}^0/A^0 \to \tau^+ \tau^-$
²³ ACOSTA	05Q CDF	$p\overline{p} \rightarrow H_{12}^0 / A^0 + X$
²⁴ ABBIENDI	03G OPAL	$H_1^0 \rightarrow A^{\bar{0},\bar{A}^0}$
²⁵ AKEROYD	02 RVUE	Ŧ

- ¹ABDALLAH 08B give limits in eight *CP*-conserving benchmark scenarios and some *CP*violating scenarios. See paper for excluded regions for each scenario. Supersedes AB-DALLAH 04.
- ²SCHAEL 06B make a combined analysis of the LEP data. The quoted limit is for the m_h^{max} scenario with $m_t = 174.3$ GeV. In the CP-violating CPX scenario no lower bound on $m_{H_1^0}$ can be set at 95% CL. See paper for excluded regions in various scenarios. See

Figs. 2–6 and Tabs. 14–21 for limits on $\sigma(ZH^0)$ · B($H^0 \rightarrow b \overline{b}, \tau^+ \tau^-$) and $\sigma(H_1^0 H_2^0)$ ·

- $\begin{array}{ccc} \mathsf{B}(H_1^0, H_2^0 \to b\overline{b}, \tau^+ \tau^-). \\ ^3 \text{Search for } e^+ e^- \to H_1^0 A^0 \text{ in the final states } b\overline{b}b\overline{b} \text{ and } b\overline{b}\tau^+ \tau^-, \text{ and } e^+ e^- \to H_1^0 A^0 \\ \end{array}$ $H_1^0 Z$. Universal scalar mass of 1 TeV, SU(2) gaugino mass of 200 GeV, and $\mu = -200$ $G\bar{e}V$ are assumed, and two-loop radiative corrections incorporated. The limits hold for $m_t = 175$ GeV, and for the m_h^{max} scenario.
- ⁴ ABBIENDI 04M exclude 0.7 < taneta~< 1.9, assuming $m_t=$ 174.3 GeV. Limits for other MSSM benchmark scenarios, as well as for CP violating cases, are also given.
- ⁵ ACHARD 02H also search for the final state $H_1^0 Z \rightarrow 2A^0 q \overline{q}, A^0 \rightarrow q \overline{q}$. In addition, the MSSM parameter set in the "large- μ " and "no-mixing" scenarios are examined.
- 6 HEISTER 02 excludes the range 0.7 <taneta < 2.3. A wider range is excluded with different stop mixing assumptions. Updates BARATE 01C.
- 7 AABOUD 16AA search for production of a Higgs boson in gluon fusion and in association with a $b\overline{b}$ pair followed by the decay $A^0 \rightarrow \tau^+ \tau^-$ in 3.2 fb⁻¹ of pp collisions at $E_{\rm cm} = 13$ TeV. See their Fig. 5(a, b) for limits on cross section times branching ratio for $m_{\Lambda0}$ = 200–1200 GeV, and Fig. 5(c, d) for the excluded region in the MSSM parameter space in the m_h^{mod+} and hMSSM scenarios.
- 8 KHACHATRYAN 16A search for production of a Higgs boson in gluon fusion and in association with a $b\overline{b}$ pair followed by the decay $H_{1,2}^0/A^0 \rightarrow \mu^+\mu^-$ in 5.1 fb⁻¹ of pp collisions at $E_{\rm cm} =$ 7 TeV and 19.3 fb⁻¹ at $E_{\rm cm} =$ 8 TeV. See their Fig. 7 for the excluded region in the MSSM parameter space in the m_h^{mod+} benchmark scenario and
- Fig. 9 for limits on cross section times branching ratio. 9 KHACHATRYAN 16P search for gluon fusion production of an H^0_2 decaying to $H^0 H^0 o$ $b\overline{b}\tau^+\tau^-$ and an A^0 decaying to $ZH^0 \rightarrow \ell^+\ell^-\tau^+\tau^-$ in 19.7 fb⁻¹ of pp collisions at $E_{\rm cm} = 8$ TeV. See their Fig. 12 for excluded region in the tan $\beta - \cos(\beta - \alpha)$ plane for $m_{H_0^0}^0 = m_{A^0}^0 = 300$ GeV.
- 10 KHACHATRYAN 15AY search for production of a Higgs boson in association with a bquark in the decay $H_{1,2}^0/A^0 \rightarrow b\overline{b}$ in 19.7 fb⁻¹ of pp collisions at $E_{cm} = 8$ TeV and combine with CHATRCHYAN 13AG 7 TeV data. See their Fig. 6 for the limits on cross section times branching ratio for $m_{A^0} = 100-900$ GeV and Figs. 7–9 for the excluded region in the MSSM parameter space in various benchmark scenarios.

 $^{11}{\rm AAD}$ 14AW search for production of a Higgs boson followed by the decay $H^0_{1.2}/{\rm A}^0$ \rightarrow $\tau^+ \tau^-$ in 19.5–20.3 fb $^{-1}$ of pp collisions at $E_{\rm cm}$ = 8 TeV. See their Fig. 11 for the

limits on cross section times branching ratio and their Figs. 9 and 10 for the excluded region in the MSSM parameter space. For $m_{A^0} = 140$ GeV, the region tan $\beta > 5.4$ is excluded at 95% CL in the m_h^{max} scenario.

¹² KHACHATRYAN 14M search for production of a Higgs boson in gluon fusion and in association with a *b* quark followed by the decay $H_{1,2}^0 / A^0 \rightarrow \tau^+ \tau^-$ in 4.9 fb⁻¹ of *pp* collisions at $E_{\rm cm} = 7$ TeV and 19.7 fb⁻¹ at $E_{\rm cm} = 8$ TeV. See their Figs. 7 and 8 for one- and two-dimensional limits on cross section times branching ratio and their Figs. 5 and 6 for the excluded region in the MSSM parameter space. For $m_{A0} = 140$

GeV, the region ${\rm tan}\beta>$ 3.8 is excluded at 95% CL in the $m_h^{\rm max}$ scenario.

¹³ AAD 130 search for production of a Higgs boson in the decay $H_{1,2}^0/A^0 \rightarrow \tau^+ \tau^-$ and $\mu^+\mu^-$ with 4.7-4.8 fb⁻¹ of pp collisions at $E_{\rm cm} = 7$ TeV. See their Fig. 6 for the excluded region in the MSSM parameter space and their Fig. 7 for the limits on cross section times branching ratio. For $m_{A^0} = 110-170$ GeV, $\tan\beta \gtrsim 10$ is excluded, and

for tan β = 50, m_{A^0} below 470 GeV is excluded at 95% CL in the m_h^{max} scenario.

- ¹⁴ AAIJ 13T search for production of a Higgs boson in the forward region in the decay $H_{1,2}^0/A^0 \rightarrow \tau^+ \tau^-$ in 1.0 fb⁻¹ of pp collisions at $E_{\rm cm} = 7$ TeV. See their Fig. 2 for the limits on cross section times branching ratio and the excluded region in the MSSM parameter space.
- ¹⁵ CHATRCHYAN 13AG search for production of a Higgs boson in association with a *b* quark in the decay $H_{1,2}^0/A^0 \rightarrow b\overline{b}$ in 2.7–4.8 fb⁻¹ of *pp* collisions at $E_{\rm cm} = 7$ TeV. See their Fig. 6 for the excluded region in the MSSM parameter space and Fig. 5 for the limits on cross section times branching ratio. For $m_{A0} = 90-350$ GeV, upper bounds on ten 0 of 10, 42 of 05% CL are obtained in the m^{MAX} exercise with m = 1200 GeV.

taneta of 18–42 at 95% CL are obtained in the $m_h^{\sf max}$ scenario with $\mu=+200$ GeV.

- ¹⁶ AALTONEN 12AQ combine AALTONEN 12X and ABAZOV 11K. See their Table I and Fig. 1 for the limit on cross section times branching ratio and Fig. 2 for the excluded region in the MSSM parameter space.
- ¹⁷ AALTONEN 12X search for associated production of a Higgs boson and a *b* quark in the decay $H_{1,2}^0/A^0 \rightarrow b\overline{b}$, with 2.6 fb⁻¹ of $p\overline{p}$ collisions at $E_{\rm cm} = 1.96$ TeV. See their Table III and Fig. 15 for the limit on cross section times branching ratio and Figs. 17, 18 for the excluded region in the MSSM parameter space.

 18 ABAZOV 12G search for production of a Higgs boson in the decay $H^0_{1,2}/A^0 o ~ au^+ au^-$

with 7.3 fb⁻¹ of $p\overline{p}$ collisions at $E_{\rm cm} = 1.96$ TeV and combine with ABAZOV 11W and ABAZOV 11K. See their Figs. 4, 5, and 6 for the excluded region in the MSSM parameter space. For $m_{A^0} = 90\text{--}180$ GeV, $\tan\beta \gtrsim 30$ is excluded at 95% CL. in the $m_h^{\rm max}$ scenario.

- ¹⁹ CHATRCHYAN 12K search for production of a Higgs boson in the decay $H_{1,2}^0 / A^0 \rightarrow \tau^+ \tau^-$ with 4.6 fb⁻¹ of pp collisions at $E_{\rm cm} = 7$ TeV. See their Fig. 3 and Table 4 for the excluded region in the MSSM parameter space. For $m_{A^0} = 160$ GeV, the region tan $\beta > 7.1$ is excluded at 95% CL in the $m_h^{\rm max}$ scenario. Superseded by
- KHACHATRYAN 14M. ²⁰ ABAZOV 11K search for associated production of a Higgs boson and a *b* quark, followed by the decay $H_{1,2}^0/A^0 \rightarrow b\overline{b}$, in 5.2 fb⁻¹ of $p\overline{p}$ collisions at $E_{\rm cm} = 1.96$ TeV. See their Fig. 5/Table 2 for the limit on cross section times branching ratio and Fig. 6 for the excluded region in the MSSM parameter space for $\mu = -200$ GeV.
- ²¹ABAZOV 11W search for associated production of a Higgs boson and a *b* quark, followed by the decay $H_{1,2}^0/A^0 \rightarrow \tau \tau$, in 7.3 fb⁻¹ of $p\overline{p}$ collisions at $E_{cm} = 1.96$ TeV. See their

Fig. 2 for the limit on cross section times branching ratio and for the excluded region in the MSSM parameter space.

 22 AALTONEN 09AR search for Higgs bosons decaying to $\tau^+ \tau^-$ in two doublet models in 1.8 fb⁻¹ of $p\overline{p}$ collisions at $E_{\rm cm}$ = 1.96 TeV. See their Fig. 2 for the limit on $\sigma \cdot {\sf B}(H^0_{1.2}/{\sf A}^0 \to \tau^+ \tau^-)$ for different Higgs masses, and see their Fig. 3 for the excluded region in the MSSM parameter space. ²³ ACOSTA 05Q search for $H_{1,2}^0/A^0$ production in $p\overline{p}$ collisions at $E_{\rm cm} = 1.8$ TeV with

 $H^0_{1,2}/A^0 \rightarrow \tau^+ \tau^-$. At $m_{A^0} =$ 100 GeV, the obtained cross section upper limit is above theoretical expectation.

²⁴ ABBIENDI 03G search for $e^+e^- \rightarrow H_1^0 Z$ followed by $H_1^0 \rightarrow A^0 A^0$, $A^0 \rightarrow c \overline{c}$, gg, or $\tau^+ \tau^-$. In the no-mixing scenario, the region $m_{H_1^0} = 45-85$ GeV and $m_{A^0} = 2-9.5$

GeV is excluded at 95% CL.

²⁵ AKEROYD 02 examine the possibility of a light A^0 with $\tan\beta < 1$. Electroweak measurements are found to be inconsistent with such a scenario.

MASS LIMITS FOR NEUTRAL HIGGS BOSONS IN EXTENDED HIGGS MODELS

This Section covers models which do not fit into either the Standard Model or its simplest minimal Supersymmetric extension (MSSM), leading to anomalous production rates, or nonstandard final states and branching ratios. In particular, this Section covers limits which may apply to generic two-Higgs-doublet models (2HDM), or to special regions of the MSSM parameter space where decays to invisible particles or to photon pairs are dominant (see the review on "Status of Higgs Boson Physics"). Concerning the mass limits for H^0 and A^0 listed below, see the footnotes or the comment lines for details on the nature of the models to which the limits apply.

The observed signal at about 125 GeV, see section " H^{0} ", can be interpreted as one of the neutral Higgs bosons of an extended Higgs sector.

Mass Limits in	General	two-Higgs-doublet	Models
$\lambda (A \cup U \subseteq (C \cdot \lambda))$	CL 0/	DOCUMENT ID	TECN

VALUE (GeV)	<u>CL%</u>	DOCUMENT ID	TECN	COMMENT
• • • We do no	ot use the foll	owing data for a	verages, fits, li	mits, etc. • • •
		¹ AAD	16AX ATLS	$H_2^0 \rightarrow ZZ$
		² KHACHATRY	16P CMS	$H^{igodold{0}}_{2} ightarrow H^{0} H^{0}$, $A^{0} ightarrow Z H^{0}$
		³ KHACHATRY	16w CMS	$A^{igle 0} b \overline{b}, A^0 ightarrow au^+ au^-$
		⁴ KHACHATRY	16z CMS	$H^0_2 ightarrow ~Z A^0 { m or} A^0 ightarrow ~Z H^0_2$
		⁵ AAD	15bk ATLS	$H_2^{\overline{0}} \rightarrow H^0 H^0$
		⁶ AAD	15s ATLS	$A^{\overline{0}} \rightarrow Z H^{0}$
		⁷ KHACHATRY	15вв СМЅ	H^0_2 , $A^0 \rightarrow \gamma \gamma$
		⁸ KHACHATRY	15N CMS	$A^{\overline{0}} \rightarrow Z H^{0}$
		⁹ AAD	14M ATLS	$H_2^0 \rightarrow H^{\pm} W^{\mp} \rightarrow$
		10		$\begin{bmatrix} H^0 W^{\pm} W^{\mp}, H^0 \rightarrow b\overline{b} \end{bmatrix}$
		^{LU} KHACHATRY	14Q CMS	$H_2^0 \rightarrow H^0 H^0, A^0 \rightarrow Z H^0$
		¹¹ AALTONEN	09AR CDF	$p\overline{p} \rightarrow H^0_{1,2}/A^0 + X,$
				$H_{1.2}^0/A^0 \to \tau^+ \tau^-$
)

HTTP://PDG.LBL.GOV

none 1–55	95	¹² ABBIENDI	05A	OPAL	H ⁰ , Type II model
>110.6	95	¹³ ABDALLAH	05 D	DLPH	$H^{ar{0}} ightarrow 2$ jets
		¹⁴ ABDALLAH	040	DLPH	$Z \rightarrow f \overline{f} H$
		¹⁵ ABDALLAH	040	DLPH	$e^+e^- \rightarrow H^0 Z, H^0 A^0$
		¹⁶ ABBIENDI	0 2D	OPAL	$e^+e^- \rightarrow b \overline{b} H$
none 1–44	95	¹⁷ ABBIENDI	01E	OPAL	H ⁰ 1, Type-II model
> 68.0	95	¹⁸ ABBIENDI	99E	OPAL	aneta > 1
		¹⁹ ABREU	95H	DLPH	$Z \rightarrow H^0 Z^*$, $H^0 A^0$
		²⁰ PICH	92	RVUE	Very light Higgs

- ¹AAD 16AX search for production of a heavy H^0 state decaying to ZZ in the final states $\ell^+ \ell^- \ell^+ \ell^-$, $\ell^+ \ell^- \nu \overline{\nu}$, $\ell^+ \ell^- q \overline{q}$, and $\nu \overline{\nu} q \overline{q}$ in 20.3 fb⁻¹ of p p collisions at $E_{cm} = 8$ TeV. See their Figs. 13 and 14 for excluded parameter regions in Type I and II models. 2 KHACHATRYAN 16P search for gluon fusion production of an H^0_2 decaying to $H^0\,H^0$ \rightarrow $b\overline{b}\tau^+\tau^-$ and an A^0 decaying to $ZH^0 \rightarrow \ell^+\ell^-\tau^+\tau^-$ in 19.7 fb⁻¹ of pp collisions at $E_{\rm cm} = 8$ TeV. See their Fig. 11 for limits on tan β for $m_{A^0} = 230-350$ GeV.
- 3 KHACHATRYAN 16W search for $A^0 \, b \, \overline{b}$ production followed by the decay $A^0 o \ au^+ \, au^$ in 19.7 fb⁻¹ of pp collisions at $E_{cm} = 8$ TeV. See their Fig. 3 for upper limits on $\sigma(A^0 b \overline{b}) \cdot B(A^0 \rightarrow \tau^+ \tau^-).$
- ⁴KHACHATRYAN 16Z search for $H_2^0 \rightarrow ZA^0$ followed by $A^0 \rightarrow b\overline{b}$ or $\tau^+\tau^-$, and $A^0 \rightarrow ZH_2^0$ followed by $H_2^0 \rightarrow b\overline{b}$ or $\tau^+\tau^-$, in 19.8 fb⁻¹ of pp collisions at $E_{\rm cm} = 8$ TeV. See their Fig. 4 for cross section limits and Fig. 5 for excluded region in the parameter space.
- ⁵AAD 15BK search for production of a heavy H_2^0 decaying to $H^0 H^0$ in the final state $b \overline{b} b \overline{b}$ in 19.5 fb⁻¹ of pp collisions at $E_{cm} = 8$ TeV. See their Figs. 15–18 for excluded regions in the parameter space.
- ⁶AAD 15S search for production of A^0 decaying to $ZH^0 \rightarrow \ell^+ \ell^- b\overline{b}, \nu \overline{\nu} b\overline{b}$ and
- $\ell^+\ell^-\tau^+\tau^-$ in 20.3 fb⁻¹ of pp collisions at $E_{\rm cm} = 8$ TeV. See their Figs. 4 and 5 for excluded regions in the parameter space. ⁷ KHACHATRYAN 15BB search for H_2^0 , $A^0 \rightarrow \gamma\gamma$ in 19.7 fb⁻¹ of pp collisions at $E_{\rm cm} = 8$ TeV. See their Fig. 10 for excluded regions in the two-Higgs-doublet model parameter space.
- ⁸KHACHATRYAN 15N search for production of A^0 decaying to $ZH^0 \rightarrow \ell^+ \ell^- b\overline{b}$ in 19.7 fb⁻¹ of pp collisions at $E_{\rm cm} = 8$ TeV. See their Fig. 5 for excluded regions in the tan $\beta - \cos(\beta - \alpha)$ plane for $m_{A^0} = 300$ GeV.

⁹ AAD 14M search for the decay cascade $H^0_2 \rightarrow H^{\pm} W^{\mp} \rightarrow H^0 W^{\pm} W^{\mp}$, H^0 decaying to $b\overline{b}$ in 20.3 fb⁻¹ of pp collisions at $\overline{E_{cm}} = 8$ TeV. See their Table IV for limits in a two-Higgs-doublet model for $m_{H_0^0} = 325-1025$ GeV and $m_{H^+} = 225-825$ GeV.

- ¹⁰KHACHATRYAN 14Q search for $H_2^0 \rightarrow H^0 H^0$ and $A^0 \rightarrow Z H^0$ in 19.5 fb⁻¹ of ppcollisions at $E_{\rm cm} = 8$ TeV. See their Figs. 4 and 5 for limits on cross section times branching ratio for $m_{H_2,A^0} = 260-360$ GeV and their Figs. 7–9 for limits in two-Higgsdoublet models.
- $^{11}\,{\sf AALTONEN}$ 09AR search for Higgs bosons decaying to $\tau^+\,\tau^-$ in two doublet models in 1.8 fb $^{-1}$ of $p\overline{p}$ collisions at $E_{\rm cm}$ = 1.96 TeV. See their Fig. 2 for the limit on $\sigma \cdot B(H_{1,2}^0/A^0 \rightarrow \tau^+ \tau^-)$ for different Higgs masses, and see their Fig. 3 for the excluded region in the MSSM parameter space.
- 12 ABBIENDI 05A search for $e^+e^-
 ightarrow ~H^0_1 A^0$ in general Type-II two-doublet models, with decays H_1^0 , $A^0 \rightarrow q \overline{q}$, g g, $\tau^+ \tau^-$, and $H_1^0 \rightarrow A^0 A^0$.

- ¹³ABDALLAH 05D search for $e^+e^- \rightarrow H^0 Z$ and $H^0 A^0$ with H^0 , A^0 decaying to two jets of any flavor including gg. The limit is for SM $H^0 Z$ production cross section with $B(H^0 \rightarrow jj) = 1$.
- ¹⁴ ABDALLAH 040 search for $Z \rightarrow b\overline{b}H^0$, $b\overline{b}A^0$, $\tau^+\tau^-H^0$ and $\tau^+\tau^-A^0$ in the final states 4b, $b\overline{b}\tau^+\tau^-$, and 4τ . See paper for limits on Yukawa couplings.
- ¹⁵ ABDALLAH 040 search for $e^+e^- \rightarrow H^0 Z$ and $H^0 A^0$, with H^0 , $A^{\breve{0}}$ decaying to $b\overline{b}$, $\tau^+\tau^-$, or $H^0 \rightarrow A^0 A^0$ at $E_{\rm cm} = 189$ –208 GeV. See paper for limits on couplings.
- ¹⁶ ABBIENDI 02D search for $Z \rightarrow b\overline{b}H_1^0$ and $b\overline{b}A^0$ with $H_1^0/A^0 \rightarrow \tau^+\tau^-$, in the range $4 < m_H < 12$ GeV. See their Fig. 8 for limits on the Yukawa coupling.
- ¹⁷ ABBIENDI 01E search for neutral Higgs bosons in general Type-II two-doublet models, at $E_{\rm cm} \leq 189$ GeV. In addition to usual final states, the decays H_1^0 , $A^0 \rightarrow q \overline{q}$, g g are searched for. See their Figs. 15,16 for excluded regions.
- searched for. See their Figs. 15,16 for excluded regions. ¹⁸ ABBIENDI 99E search for $e^+e^- \rightarrow H^0 A^0$ and $H^0 Z$ at $E_{\rm cm} = 183$ GeV. The limit is with $m_H = m_A$ in general two Higgs-doublet models. See their Fig. 18 for the exclusion limit in the $m_H - m_A$ plane. Updates the results of ACKERSTAFF 98S.
- ¹⁹ See Fig. 4 of ABREU 95H for the excluded region in the $m_{H^0} m_{A^0}$ plane for general two-doublet models. For tan $\beta > 1$, the region $m_{H^0} + m_{A^0} \lesssim 87$ GeV, $m_{H^0} < 47$ GeV is a excluded at 95% CL.

excluded at 95% CL. 20 PICH 92 analyse H^0 with $m_{H^0} < 2m_{\mu}$ in general two-doublet models. Excluded regions in the space of mass-mixing angles from LEP, beam dump, and π^{\pm} , η rare decays are shown in Figs. 3,4. The considered mass region is not totally excluded.

Mass Limits for H^0 with Vanishing Yukawa Couplings

These limits assume that H^0 couples to gauge bosons with the same strength as the Standard Model Higgs boson, but has no coupling to quarks and leptons (this is often referred to as "fermiophobic").

VALUE (GeV)	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
• • • We do not	t use t	the following data for	avera	ges, fits,	limits, etc. • • •
	95	¹ AALTONEN	13K	CDF	$H^0 \rightarrow WW^{(*)}$
none 100–113	95	² AALTONEN	13L	CDF	${\cal H}^{m 0} ightarrow ~\gamma \gamma$, ${\cal W} {\cal W}^{st}$, ${\cal Z} {\cal Z}^{st}$
none 100–116	95	³ AALTONEN	13M	TEVA	${\cal H}^{0} ightarrow ~\gamma \gamma$, ${\cal W} {\cal W}^{st}$, ${\cal Z} {\cal Z}^{st}$
		⁴ ABAZOV	13 G	D0	$H^0 \rightarrow WW^{(*)}$
none 100–113	95	⁵ ABAZOV	13H	D0	$H^0 \rightarrow \gamma \gamma$
		⁶ ABAZOV	131	D0	$H^0 \rightarrow WW^{(*)}$
		⁷ ABAZOV	13J	D0	$H^0 \rightarrow WW^{(*)}, ZZ^{(*)}$
none 100–114	95	⁸ ABAZOV	13L	D0	$H^0 ightarrow \gamma \gamma$, $W W^*$, $Z Z^*$
none 110–147	95	⁹ CHATRCHYAN	13AL	CMS	$H^0 \rightarrow \gamma \gamma$
none 110–118,	95	¹⁰ AAD	12N	ATLS	$H^0 \rightarrow \gamma \gamma$
119.5-121 none 100-114	05	11 δαι τονεν	12an	CDF	$H^0 \rightarrow \gamma \gamma$
none 110–194	95	¹² CHATRCHYAN	1240	CMS	$H^0 \rightarrow \gamma \gamma WW(*) ZZ(*)$
none 70–106	95	¹³ AAI TONEN	09AB	CDF	$H^0 \rightarrow \gamma \gamma$
none 70–100	95	¹⁴ ABAZOV	08U	D0	$H^0 \rightarrow \gamma \gamma$
>105.8	95	¹⁵ SCHAEL	07	ALEP	$e^+e^- \rightarrow H^0 Z. H^0 \rightarrow WW^*$
>104.1	95	^{16,17} ABDALLAH	04L	DLPH	$e^+e^- \rightarrow H^0 Z, H^0 \rightarrow \gamma \gamma$
>107	95	¹⁸ ACHARD	03 C	L3	$H^0 \rightarrow WW^*, ZZ^*, \gamma\gamma$
>105.5	95	^{16,19} ABBIENDI	02F	OPAL	$H^0 \rightarrow \gamma \gamma$
>105.4	95	²⁰ ACHARD	02C	L3	$H^0 \rightarrow \gamma \gamma$

none 60–82	95	²¹ AFFOLDER	01H CDF	$p\overline{p} \rightarrow H^0 W/Z, H^0 \rightarrow \gamma\gamma$
> 94.9	95	²² ACCIARRI	00s L3	$e^+e^- ightarrow H^0 Z$, $H^0 ightarrow \gamma \gamma$
>100.7	95	²³ BARATE	00L ALEP	$e^+e^- ightarrow H^0 Z$, $H^0 ightarrow \gamma \gamma$
> 96.2	95	²⁴ ABBIENDI	990 OPAL	$e^+e^- \rightarrow H^0 Z, H^0 \rightarrow \gamma \gamma$
> 78.5	95	²⁵ АВВОТТ	99B D0	$p\overline{p} \rightarrow H^0 W/Z, H^0 \rightarrow \gamma \gamma$
		²⁶ ABREU	99P DLPH	$e^+e^- ightarrow H^0\gamma$ and/or $H^0 ightarrow$
				$\gamma \gamma$

- ¹ AALTONEN 13K search for $H^0 \rightarrow WW^{(*)}$ in 9.7 fb⁻¹ of $p\overline{p}$ collisions at $E_{\rm cm} = 1.96$ TeV. A limit on cross section times branching ratio which corresponds to (1.3–6.6) times the expected cross section is given in the range $m_{H^0} = 110-200$ GeV at 95% CL.
- ²AALTONEN 13L combine all CDF searches with 9.45–10.0 fb⁻¹ of $p\overline{p}$ collisions at $E_{cm} = 1.96$ TeV.
- ³ AALTONEN 13M combine all Tevatron data from the CDF and D0 Collaborations of $p\overline{p}$ collisions at $E_{\rm cm} = 1.96$ TeV.
- ⁴ABAZOV 13G search for $H^0 \rightarrow WW^{(*)}$ in 9.7 fb⁻¹ of $p\overline{p}$ collisions at $E_{\rm cm} = 1.96$ TeV. A limit on cross section times branching ratio which corresponds to (2–9) times the expected cross section is given for $m_{H^0} = 100-200$ GeV at 95% CL.
- ⁵ ABAZOV 13H search for $H^0 \rightarrow \gamma \gamma$ in 9.6 fb⁻¹ of $p \overline{p}$ collisions at $E_{cm} = 1.96$ TeV.
- ⁶ABAZOV 13I search for H^0 production in the final state with one lepton and two or more jets plus missing E_T in 9.7 fb⁻¹ of $p\overline{p}$ collisions at $E_{\rm cm} = 1.96$ TeV. The search is sensitive to WH^0 , ZH^0 and vector-boson fusion Higgs production with $H^0 \rightarrow WW^{(*)}$. A limit on cross section times branching ratio which corresponds to (8–30) times the expected cross section is given in the range $m_{H^0} = 100-200$ GeV at 95% CL.
- ⁷ABAZOV 13J search for H^0 production in the final states $ee\mu$, $e\mu\mu$, $\mu\tau\tau$, and $e^{\pm}\mu^{\pm}$ in 8.6–9.7 fb⁻¹ of $p\overline{p}$ collisions at $E_{\rm cm} = 1.96$ TeV. The search is sensitive to WH^0 , ZH^0 production with $H^0 \rightarrow WW^{(*)}$, $ZZ^{(*)}$, decaying to leptonic final states. A limit on cross section times branching ratio which corresponds to (2.4–13.0) times the expected cross section is given in the range $m_{H^0} = 100-200$ GeV at 95% CL.
- ⁸ABAZOV 13L combine all D0 results with up to 9.7 fb⁻¹ of $p\overline{p}$ collisions at $E_{\rm cm} =$ 1.96 TeV.
- ⁹CHATRCHYAN 13AL search for $H^0 \rightarrow \gamma \gamma$ in 5.1 fb⁻¹ and 5.3 fb⁻¹ of pp collisions at $E_{\rm cm} = 7$ and 8 TeV.
- 10 AAD 12N search for $H^0 \rightarrow \gamma \gamma$ with 4.9 fb $^{-1}$ of pp collisions at $E_{\rm cm}=$ 7 TeV in the mass range $m_{H^0}=$ 110–150 GeV.
- ¹¹ AALTONEN 12AN search for $H^0 \rightarrow \gamma \gamma$ with 10 fb⁻¹ of $p\overline{p}$ collisions at $E_{\rm cm} = 1.96$ TeV in the mass range $m_{H^0} = 100-150$ GeV.
- ¹² CHATRCHYAN 12AO use data from CHATRCHYAN 12G, CHATRCHYAN 12E, CHA-TRCHYAN 12H, CHATRCHYAN 12I, CHATRCHYAN 12D, and CHATRCHYAN 12C.
- ¹³ AALTONEN 09AB search for $H^0 \rightarrow \gamma \gamma$ in 3.0 fb⁻¹ of $p \overline{p}$ collisions at $E_{\rm cm} = 1.96$ TeV in the mass range $m_{H^0} = 70-150$ GeV. Associated $H^0 W$, $H^0 Z$ production and W W, Z Z fusion are considered.
- ¹⁴ ABAZOV 08U search for $H^0 \rightarrow \gamma \gamma$ in $p \overline{p}$ collisions at $E_{\rm cm} = 1.96$ TeV in the mass range $m_{H^0} = 70-150$ GeV. Associated $H^0 W$, $H^0 Z$ production and W W, Z Z fusion are considered. See their Tab. 1 for the limit on $\sigma \cdot B(H^0 \rightarrow \gamma \gamma)$, and see their Fig. 3 for the excluded region in the $m_{H^0} - B(H^0 \rightarrow \gamma \gamma)$ plane.
- ¹⁵SCHAEL 07 search for Higgs bosons in association with a fermion pair and decaying to WW^* . The limit is from this search and HEISTER 02L for a H^0 with SM production cross section.

- 16 Search for associated production of a $\gamma\gamma$ resonance with a Z boson, followed by Z ightarrow $q \overline{q}, \ell^+ \ell^-$, or $\nu \overline{\nu}$, at $E_{cm} \leq 209$ GeV. The limit is for a H^0 with SM production cross section. 17 Updates ABREU 01F.
- ¹⁸ ACHARD 03C search for $e^+e^- \rightarrow ZH^0$ followed by $H^0 \rightarrow WW^*$ or ZZ^* at $E_{cm}=$ 200-209 GeV and combine with the ACHARD 02C result. The limit is for a H^0 with SM production cross section. For B($H^0 \rightarrow WW^*$) + B($H^0 \rightarrow ZZ^*$) = 1, m_{H⁰} > 108.1 GeV is obtained. See fig. 6 for the limits under different BR assumptions.
- ¹⁹ For B($H^0 \rightarrow \gamma \gamma$)=1, $m_{H^0} > 117$ GeV is obtained.
- ²⁰ACHARD 02C search for associated production of a $\gamma\gamma$ resonance with a Z boson, followed by $Z \rightarrow q \overline{q}$, $\ell^+ \ell^-$, or $\nu \overline{\nu}$, at $E_{\rm cm} \leq 209$ GeV. The limit is for a H^0 with SM production cross section. For B($H^0 \rightarrow \gamma \gamma$)=1, $m_{H^0} > 114$ GeV is obtained.
- $^{21}\,{\rm AFFOLDER}$ 01H search for associated production of a $\gamma\gamma$ resonance and a W or Z(tagged by two jets, an isolated lepton, or missing E_T). The limit assumes Standard Model values for the production cross section and for the couplings of the H^0 to W and Z bosons. See their Fig. 11 for limits with $B(H^0 \rightarrow \gamma \gamma) < 1$.
- ²²ACCIARRI 00S search for associated production of a $\gamma\gamma$ resonance with a $q\overline{q}$, $\nu\overline{\nu}$, or $\ell^+\ell^-$ pair in e^+e^- collisions at $E_{\rm cm}=$ 189 GeV. The limit is for a H^0 with SM production cross section. For B($H^0 \rightarrow \gamma \gamma$)=1, $m_{H^0} > 98$ GeV is obtained. See their Fig. 5 for limits on B($H \rightarrow \gamma \gamma$)· $\sigma(e^+e^- \rightarrow Hf\overline{f})/\sigma(e^+e^- \rightarrow Hf\overline{f})$ (SM).
- ²³BARATE 00L search for associated production of a $\gamma\gamma$ resonance with a $q \overline{q}$, $\nu \overline{\nu}$, or $\ell^+\ell^-$ pair in e^+e^- collisions at $E_{\rm cm}=$ 88–202 GeV. The limit is for a H^0 with SM production cross section. For B($H^0 \rightarrow \gamma \gamma$)=1, $m_{H^0} > 109$ GeV is obtained. See their Fig. 3 for limits on B($H \rightarrow \gamma \gamma$) $\cdot \sigma(e^+e^- \rightarrow Hf\overline{f})/\sigma(e^+e^- \rightarrow Hf\overline{f})$ (SM).
- ²⁴ABBIENDI 990 search for associated production of a $\gamma\gamma$ resonance with a $q\overline{q}$, $\nu\overline{\nu}$, or $\ell^+\ell^-$ pair in e^+e^- collisions at 189 GeV. The limit is for a H^0 with SM production cross section. See their Fig. 4 for limits on $\sigma(e^+e^- \rightarrow H^0 Z^0) \times B(H^0 \rightarrow \gamma \gamma) \times B(X^0 \rightarrow \chi \gamma) \times B($ $f\overline{f}$) for various masses. Updates the results of ACKERSTAFF 98Y.
- $^{25}\,{\rm ABBOTT}$ 99B search for associated production of a $\gamma\gamma$ resonance and a dijet pair. The limit assumes Standard Model values for the production cross section and for the couplings of the H^0 to W and Z bosons. Limits in the range of $\sigma(H^0 + Z/W) \cdot B(H^0 \rightarrow \gamma \gamma) = 0.80-0.34 \text{ pb}$ are obtained in the mass range $m_{H^0} = 65-150 \text{ GeV}$.
- ²⁶ ABREU 99P search for $e^+e^- \rightarrow H^0\gamma$ with $H^0 \rightarrow b \overline{b}$ or $\gamma\gamma$, and $e^+e^- \rightarrow H^0q \overline{q}$ with $H^0 \rightarrow \gamma \gamma$. See their Fig. 4 for limits on $\sigma \times B$. Explicit limits within an effective interaction framework are also given.

Mass Limits for H^0 Decaying to Invisible Final States

These limits are for a neutral scalar H^0 which predominantly decays to invisible final states. Standard Model values are assumed for the couplings of H^0 to ordinary particles unless otherwise stated.

VALUE (GeV)	<u>CL%</u>	DOCUMENTID	TECN	COMMENT
• • • We do not	use the follo	owing data for ave	erages, fits,	limits, etc. • • •
		¹ AAD	15BD ATLS	$\delta pp \rightarrow H^0 WX, H^0 ZX$
		² AAD	15BH ATLS	5 jet + missing E_T
		³ AAD	14BA ATLS	secondary vertex
		⁴ AAD	140 ATLS	$5 pp \rightarrow H^0 Z X$
		⁵ CHATRCHYAN	14B CMS	$pp \rightarrow H^0 Z X, qq H^0 X$
		⁶ AAD	13AG ATLS	secondary vertex
		⁷ AAD	13AT ATLS	electron jets
		⁸ CHATRCHYAN	13bj CMS	

		⁹ AAD	12AQ ATLS	secondary vertex
		¹⁰ AALTONEN	12AB CDF	secondary vertex
		¹¹ AALTONEN	120 CDF	secondary vertex
>108.2	95	¹² ABBIENDI	10 OPAL	
		¹³ ABBIENDI	07 OPAL	large width
>112.3	95	¹⁴ ACHARD	05 L3	
>112.1	95	¹⁴ ABDALLAH	04B DLPH	
>114.1	95	¹⁴ HEISTER	02 ALEP	$E_{ m cm} \le 209 { m GeV}$
>106.4	95	¹⁴ BARATE	01C ALEP	$E_{\rm cm} \le 202 \; {\rm GeV}$
> 89.2	95	¹⁵ ACCIARRI	00M L3	

¹ AAD 15BD search for $pp \rightarrow H^0 WX$ and $pp \rightarrow H^0 ZX$ with W or Z decaying hadronically and H^0 decaying to invisible final states in 20.3 fb⁻¹ at $E_{\rm cm} = 8$ TeV. See their Fig. 6 for a limit on the cross section times branching ratio for $m_{H^0} = 115$ -300 GeV.

- ² AAD 15BH search for events with a jet and missing E_T in 20.3 fb⁻¹ of pp collisions at $E_{\rm cm} = 8$ TeV. Limits on $\sigma(H'^0)$ B($H'^0 \rightarrow$ invisible) < (44–10) pb (95%CL) is given for $m_{H'^0} = 115$ -300 GeV.
- ³ AAD 14BA search for H^0 production in the decay mode $H^0 \rightarrow X^0 X^0$, where X^0 is a long-lived particle which decays to collimated pairs of e^+e^- , $\mu^+\mu^-$, or $\pi^+\pi^-$ plus invisible particles, in 20.3 fb⁻¹ of pp collisions at $E_{\rm cm} = 8$ TeV. See their Figs. 15 and 16 for limits on cross section times branching ratio.
- ⁴ AAD 140 search for $pp \rightarrow H^0 ZX$, $Z \rightarrow \ell \ell$, with H^0 decaying to invisible final states in 4.5 fb⁻¹ at $E_{\rm cm} = 7$ TeV and 20.3 fb⁻¹ at $E_{\rm cm} = 8$ TeV. See their Fig. 3 for a limit on the cross section times branching ratio for $m_{H^0} = 110$ –400 GeV.
- ⁵ CHATRCHYAN 14B search for $pp \rightarrow H^0 ZX$, $Z \rightarrow \ell \ell$ and $Z \rightarrow b\overline{b}$, and also $pp \rightarrow qqH^0 X$ with H^0 decaying to invisible final states using data at $E_{\rm cm} = 7$ and 8 TeV. See their Figs. 10, 11 for limits on the cross section times branching ratio for $m_{H^0} = 100-400$ GeV.
- ⁶ AAD 13AG search for H^0 production in the decay mode $H^0 \rightarrow X^0 X^0$, where X^0 is a long-lived particle which decays to $\mu^+ \mu^- X'^0$, in 1.9 fb⁻¹ of *pp* collisions at $E_{cm} = 7$ TeV. See their Fig. 7 for limits on cross section times branching ratio.
- ⁷ AAD 13AT search for H^0 production in the decay $H^0 \rightarrow X^0 X^0$, where X^0 eventually decays to clusters of collimated e^+e^- pairs, in 2.04 fb⁻¹ of pp collisions at $E_{\rm cm} = 7$ TeV. See their Fig. 3 for limits on cross section times branching ratio.
- ⁸ CHATRCHYAN 13BJ search for H^0 production in the decay chain $H^0 \rightarrow X^0 X^0$, $X^0 \rightarrow \mu^+ \mu^- X'^0$ in 5.3 fb⁻¹ of pp collisions at $E_{\rm cm} = 7$ TeV. See their Fig. 2 for limits on cross section times branching ratio.
- ⁹ AAD 12AQ search for H^0 production in the decay mode $H^0 \rightarrow X^0 X^0$, where X^0 is a long-lived particle which decays mainly to $b\overline{b}$ in the muon detector, in 1.94 fb⁻¹ of pp collisions at $E_{\rm cm} = 7$ TeV. See their Fig. 3 for limits on cross section times branching ratio for $m_{H^0} = 120$, 140 GeV, $m_{X^0} = 20$, 40 GeV in the $c\tau$ range of 0.5–35 m.
- ¹⁰ AALTONEN 12AB search for H^0 production in the decay $H^0 \rightarrow X^0 X^0$, where X^0 eventually decays to clusters of collimated $\ell^+ \ell^-$ pairs, in 5.1 fb⁻¹ of $p\overline{p}$ collisions at $E_{\rm cm} = 1.96$ TeV. Cross section limits are provided for a benchmark MSSM model incorporating the parameters given in Table VI.
- ¹¹ AALTONEN 12U search for H^0 production in the decay mode $H^0 \rightarrow X^0 X^0$, where X^0 is a long-lived particle with $c\tau \approx 1$ cm which decays mainly to $b\overline{b}$, in 3.2 fb⁻¹ of $p\overline{p}$ collisions at $E_{\rm cm} = 1.96$ TeV. See their Figs. 9 and 10 for limits on cross section times branching ratio for $m_{H^0} = (130-170)$ GeV, $m_{X^0} = 20$, 40 GeV.
- ¹² ABBIENDI 10 search for $e^+e^- \rightarrow H^0 Z$ with H^0 decaying invisibly. The limit assumes SM production cross section and B($H^0 \rightarrow$ invisible) = 1.

- ¹³ ABBIENDI 07 search for $e^+ e^- \rightarrow H^0 Z$ with $Z \rightarrow q \overline{q}$ and H^0 decaying to invisible final states. The H^0 width is varied between 1 GeV and 3 TeV. A limit $\sigma \cdot B(H^0 \rightarrow \text{ invisible}) < (0.07-0.57)$ pb (95%CL) is obtained at $E_{cm} = 206$ GeV for $m_{H^0} = 60-114$ GeV.
- ¹⁴ Search for $e^+e^- \rightarrow H^0 Z$ with H^0 decaying invisibly. The limit assumes SM production cross section and $B(H^0 \rightarrow \text{ invisible}) = 1$.

¹⁵ ACCIARRI 00M search for $e^+e^- \rightarrow ZH^0$ with H^0 decaying invisibly at $E_{\rm cm}$ =183–189 GeV. The limit assumes SM production cross section and B($H^0 \rightarrow$ invisible)=1. See their Fig. 6 for limits for smaller branching ratios.

Mass Limits for Light A^0

These limits are for a pseudoscalar A^0 in the mass range below O(10) GeV. VALUE (GeV) DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, fits, limits, etc. • • •

					-,,
	1	ABLIKIM	16E	BES3	$J/\psi \rightarrow A^0 \gamma$
	2	KHACHATRY	.16F	CMS	$H^0 \rightarrow A^0 A^0$
	3	LEES	15H	BABR	$\Upsilon(1S) ightarrow A^0 \gamma$
	4	LEES	13C	BABR	$\Upsilon(1S) \rightarrow A^0 \gamma$
	5	LEES	13L	BABR	$\Upsilon(1S) \rightarrow A^0 \gamma$
	6	LEES	13R	BABR	$\Upsilon(1S) ightarrow A^0 \gamma$
	7	ABLIKIM	12	BES3	$J/\psi ightarrow A^0 \gamma$
	8	CHATRCHYAN	12V	CMS	$A^0 \rightarrow \mu^+ \mu^-$
	9	AALTONEN	11P	CDF	$t \rightarrow b H^+$, $H^+ \rightarrow W^+ A^0$
10,	11	ABOUZAID	11A	KTEV	$K_L \rightarrow \pi^0 \pi^0 A^0$, $A^0 \rightarrow \mu^+ \mu^-$
	12	DEL-AMO-SA	.11J	BABR	$\Upsilon(1S) ightarrow A^0 \gamma$
	13	LEES	11H	BABR	$\Upsilon(2S,3S) \rightarrow A^0 \gamma$
	14	ANDREAS	10	RVUE	
11,	15	HYUN	10	BELL	$B^0 \rightarrow K^{*0} A^0$, $A^0 \rightarrow \mu^+ \mu^-$
11,	16	HYUN	10	BELL	$B^0 \rightarrow \rho^0 A^0$, $A^0 \rightarrow \mu^+ \mu^-$
	17	AUBERT	09 P	BABR	$\Upsilon(3S) \rightarrow A^0 \gamma$
	18	AUBERT	09z	BABR	$\Upsilon(2S) \rightarrow A^0 \gamma$
	19	AUBERT	09z	BABR	$\Upsilon(3S) \rightarrow A^0 \gamma$
11,	20	TUNG	09	K391	$K_L \rightarrow \pi^0 \pi^0 A^0$, $A^0 \rightarrow \gamma \gamma$
	21	LOVE	80	CLEO	$\Upsilon(1S) ightarrow A^0 \gamma$
	22	BESSON	07	CLEO	$\Upsilon(1S) \rightarrow \eta_{b} \gamma$
	23	PARK	05	HYCP	$\Sigma^+ \rightarrow p A^0, A^0 \rightarrow \mu^+ \mu^-$
	24	BALEST	95	CLE2	$\Upsilon(1S) ightarrow ~{\cal A}^{m 0} \gamma$
	25	ANTREASYAN	90 C	CBAL	$\Upsilon(1S) \rightarrow A^0 \gamma$

¹ ABLIKIM 16E search for the process $J/\psi \rightarrow A^0 \gamma$ with A^0 decaying to $\mu^+ \mu^-$ and give limits on B($J/\psi \rightarrow A^0 \gamma$)·B($A^0 \rightarrow \mu^+ \mu^-$) in the range 2.8×10^{-8} -5.0 × 10⁻⁶ (90% CL) for 0.212 $\leq m_{A^0} \leq 3.0$ GeV. See their Fig. 5.

² KHACHATRYAN 16F search for the decay $H^0 \rightarrow A^0 A^0 \rightarrow \tau^+ \tau^- \tau^+ \tau^-$ in 19.7 fb⁻¹ of pp collisions at $E_{\rm cm} = 8$ TeV. See their Fig. 8 for cross section limits for $m_{A^0} = 4-8$ GeV.

³LEES 15H search for the process $\Upsilon(2S) \rightarrow \Upsilon(1S)\pi^{+}\pi^{-} \rightarrow A^{0}\gamma\pi^{+}\pi^{-}$ with A^{0} decaying to $c\overline{c}$ and give limits on B($\Upsilon(1S) \rightarrow A^{0}\gamma$)·B($A^{0} \rightarrow c\overline{c}$) in the range 7.4 × 10^{-5} -2.4 × 10^{-3} (90% CL) for 4.00 $\leq m_{A^{0}} \leq 8.95$ and 9.10 $\leq m_{A^{0}} \leq 9.25$ GeV. See their Fig. 6.

⁴ LEES 13C search for the process $\Upsilon(2S, 3S) \rightarrow \Upsilon(1S)\pi^+\pi^- \rightarrow A^0\gamma\pi^+\pi^-$ with A^0 decaying to $\mu^+\mu^-$ and give limits on B($\Upsilon(1S) \rightarrow A^0\gamma)\cdot$ B($A^0 \rightarrow \mu^+\mu^-$) in the range

 $(0.3-9.7) \times 10^{-6}$ (90% CL) for 0.212 $\leq m_{A^0} \leq 9.20$ GeV. See their Fig. 5(e) for limits on the $b-A^0$ Yukawa coupling derived by combining this result with AUBERT 092.

- ⁵LEES 13L search for the process $\Upsilon(2S) \rightarrow \Upsilon(1S)\pi^{+}\pi^{-} \rightarrow A^{0}\gamma\pi^{+}\pi^{-}$ with A^{0} decaying to gg or $s\overline{s}$ and give limits on $B(\Upsilon(1S) \rightarrow A^{0}\gamma) \cdot B(A^{0} \rightarrow gg)$ between 1×10^{-6} and 2×10^{-2} (90% CL) for $0.5 \leq m_{A^{0}} \leq 9.0$ GeV, and $B(\Upsilon(1S) \rightarrow A^{0}\gamma) \cdot B(A^{0} \rightarrow s\overline{s})$ between 4×10^{-6} and 1×10^{-3} (90% CL) for $1.5 \leq m_{A^{0}} \leq 9.0$ GeV. See their Fig. 4.
- ⁶LEES 13R search for the process $\Upsilon(2S) \rightarrow \Upsilon(1S)\pi^{+}\pi^{-} \rightarrow A^{0}\gamma\pi^{+}\pi^{-}$ with A^{0} decaying to $\tau^{+}\tau^{-}$ and give limits on B($\Upsilon(1S) \rightarrow A^{0}\gamma$)·B($A^{0} \rightarrow \tau^{+}\tau^{-}$) in the range 0.9–13 × 10⁻⁵ (90% CL) for 3.6 $\leq m_{A^{0}} \leq$ 9.2 GeV. See their Fig. 4 for limits on the $b A^{0}$ Yukawa coupling derived by combining this result with AUBERT 09P.
- ⁷ ABLIKIM 12 searches for the process $\psi(3686) \rightarrow \pi \pi J/\psi$, $J/\psi \rightarrow A^0 \gamma$ with A^0 decaying to $\mu^+ \mu^-$. It gives mass dependent limits on $B(J/\psi \rightarrow A^0 \gamma) \cdot B(A^0 \rightarrow \mu^+ \mu^-)$ in the range 4×10^{-7} –2.1 × 10⁻⁵ (90% C.L.) for 0.212 $\leq m_{A^0} \leq 3.0$ GeV. See their Fig. 2.
- ⁸ CHATRCHYAN 12v search for A^0 production in the decay $A^0 \rightarrow \mu^+ \mu^-$ with 1.3 fb⁻¹ of pp collisions at $E_{\rm cm} = 7$ TeV. A limit on $\sigma(A^0) \cdot B(A^0 \rightarrow \mu^+ \mu^-)$ in the range (1.5–7.5) pb is given for $m_{A^0} = (5.5–8.7)$ and (11.5–14) GeV at 95% CL.
- ⁹AALTONEN 11P search in 2.7 fb⁻¹ of $p\overline{p}$ collisions at $E_{\rm cm} = 1.96$ TeV for the decay chain $t \rightarrow bH^+$, $H^+ \rightarrow W^+ A^0$, $A^0 \rightarrow \tau^+ \tau^-$ with m_{A^0} between 4 and 9 GeV. See their Fig. 4 for limits on B($t \rightarrow bH^+$) for 90 $< m_{H^+} < 160$ GeV.
- ¹⁰ ABOUZAID 11A search for the decay chain $K_L \rightarrow \pi^0 \pi^0 A^0$, $A^0 \rightarrow \mu^+ \mu^-$ and give a limit $B(K_L \rightarrow \pi^0 \pi^0 A^0) \cdot B(A^0 \rightarrow \mu^+ \mu^-) < 1.0 \times 10^{-10}$ at 90% CL for $m_{A^0} = 1214.3$ MeV.
- 11 The search was motivated by PARK 05.
- ¹² DEL-AMO-SANCHEZ 11J search for the process $\Upsilon(2S) \rightarrow \Upsilon(1S)\pi^+\pi^- \rightarrow A^0\gamma\pi^+\pi^-$ with A^0 decaying to invisible final states. They give limits on B($\Upsilon(1S) \rightarrow A^0\gamma$)·B($A^0 \rightarrow$ invisible) in the range (1.9–4.5) × 10⁻⁶ (90% CL) for $0 \leq m_{A^0} \leq 8.0$ GeV, and (2.7–37) × 10⁻⁶ for 8.0 $\leq m_{A^0} \leq 9.2$ GeV.
- ¹³ LEES 11H search for the process $\Upsilon(2S, 3S) \rightarrow A^0 \gamma$ with A^0 decaying hadronically and give limits on B($\Upsilon(2S, 3S) \rightarrow A^0 \gamma$)·B($A^0 \rightarrow$ hadrons) in the range 1×10^{-6} - 8×10^{-5} (90% CL) for 0.3 $< m_{A^0} < 7$ GeV. The decay rates for $\Upsilon(2S)$ and $\Upsilon(3S)$ are assumed to be equal up to the phase space factor. See their Fig. 5.
- ¹⁴ ANDREAS 10 analyze constraints from rare decays and other processes on a light A^0 with $m_{A^0} < 2m_{\mu}$ and give limits on its coupling to fermions at the level of 10^{-4} times the Standard Model value.
- ¹⁵ HYUN 10 search for the decay chain $B^0 \rightarrow K^{*0}A^0$, $A^0 \rightarrow \mu^+\mu^-$ and give a limit on $B(B^0 \rightarrow K^{*0}A^0) \cdot B(A^0 \rightarrow \mu^+\mu^-)$ in the range (2.26–5.53) × 10⁻⁸ at 90%CL for $m_{A^0} = 212$ -300 MeV. The limit for $m_{A^0} = 214.3$ MeV is 2.26 × 10⁻⁸.
- ¹⁶ HYUN 10 search for the decay chain $B^0 \rightarrow \rho^0 A^0$, $A^0 \rightarrow \mu^+ \mu^-$ and give a limit on $B(B^0 \rightarrow \rho^0 A^0) \cdot B(A^0 \rightarrow \mu^+ \mu^-)$ in the range $(1.73-4.51) \times 10^{-8}$ at 90%CL for $m_{\Delta 0} = 212-300$ MeV. The limit for $m_{\Delta 0} = 214.3$ MeV is 1.73×10^{-8} .
- ¹⁷ AUBERT 09P search for the process $\Upsilon(3S) \rightarrow A^0 \gamma$ with $A^0 \rightarrow \tau^+ \tau^-$ for 4.03 $< m_{A^0} < 9.52$ and 9.61 $< m_{A^0} < 10.10$ GeV, and give limits on B($\Upsilon(3S) \rightarrow A^0 \gamma$)·B($A^0 \rightarrow \tau^+ \tau^-$) in the range (1.5–16) $\times 10^{-5}$ (90% CL).

- ¹⁸ AUBERT 09Z search for the process $\Upsilon(2S) \rightarrow A^0 \gamma$ with $A^0 \rightarrow \mu^+ \mu^-$ for 0.212 $< m_{A^0} < 9.3$ GeV and give limits on B($\Upsilon(2S) \rightarrow A^0 \gamma$)·B($A^0 \rightarrow \mu^+ \mu^-$) in the range (0.3–8) × 10⁻⁶ (90% CL).
- ¹⁹ AUBERT 09Z search for the process $\Upsilon(3S) \rightarrow A^0 \gamma$ with $A^0 \rightarrow \mu^+ \mu^-$ for 0.212 $< m_{A^0} < 9.3$ GeV and give limits on B($\Upsilon(3S) \rightarrow A^0 \gamma$)·B($A^0 \rightarrow \mu^+ \mu^-$) in the range (0.3–5) × 10⁻⁶ (90% CL).
- ²⁰ TUNG 09 search for the decay chain $K_L \rightarrow \pi^0 \pi^0 A^0$, $A^0 \rightarrow \gamma \gamma$ and give a limit on $B(K_L \rightarrow \pi^0 \pi^0 A^0) \cdot B(A^0 \rightarrow \gamma \gamma)$ in the range (2.4–10.7) × 10⁻⁷ at 90%CL for m_{A^0} = 194.3–219.3 MeV. The limit for m_{A^0} = 214.3 MeV is 2.4 × 10⁻⁷.
- ²¹ LOVE 08 search for the process $\Upsilon(1S) \to A^0 \gamma$ with $A^0 \to \mu^+ \mu^-$ (for $m_{A^0} < 2m_{\tau}$) and $A^0 \to \tau^+ \tau^-$. Limits on B($\Upsilon(1S) \to A^0 \gamma$) \cdot B($A^0 \to \ell^+ \ell^-$) in the range $10^{-6} - 10^{-4}$ (90% CL) are given.
- ²² BESSON 07 give a limit B($\Upsilon(1S) \rightarrow \eta_b \gamma$) · B($\eta_b \rightarrow \tau^+ \tau^-$) < 0.27% (95% CL), which constrains a possible A^0 exchange contribution to the η_b decay.
- ²³ PARK 05 found three candidate events for $\Sigma^+ \rightarrow p \mu^+ \mu^-$ in the HyperCP experiment. Due to a narrow spread in dimuon mass, they hypothesize the events as a possible signal of a new boson. It can be interpreted as a neutral particle with $m_{A^0} = 214.3 \pm 0.5$ MeV and the branching fraction B($\Sigma^+ \rightarrow p A^0$)·B($A^0 \rightarrow \mu^+ \mu^-$) = $(3.1^{+2.4}_{-1.9} \pm 1.5) \times 10^{-8}$. ²⁴ BALEST 95 give limits B($\Upsilon(1S) \rightarrow A^0 \gamma$) i 1.5×10^{-5} at 90% CL for $m_{A^0} < 5$ GeV. The limit becomes $< 10^{-4}$ for $m_{A^0} < 7.7$ GeV.

 25 ANTREASYAN 90C give limits B($\Upsilon(1S) \rightarrow A^0 \gamma)$; 5.6 $\times 10^{-5}$ at 90% CL for $m_{A^0} <$ 7.2 GeV. A^0 is assumed not to decay in the detector.

Other Mass Limits

We use a symbol H_1^0 if mass < 125 GeV or H_2^0 if mass > 125 GeV. The notation H^0 is reserved for the 125 GeV particle.

VALUE (GeV)	<u>CL%</u> <u>DOC</u>	UMENT ID	TECN	COMMENT
• • • We do not	use the following	data for average	es, fits, lin	nits, etc. • • •
	¹ AAE	30UD 17	ATLS	$H^0 \rightarrow Z\gamma$
	² AAE	BOUD 16A	B ATLS	$H^0 \rightarrow A^0 A^0$
	³ AAE	BOUD 16A	e ATLS	$H_2^0 \rightarrow W^+ W^-, ZZ$
	⁴ AAE	BOUD 16H	ATLS	$H_2^{\overline{0}} \rightarrow \gamma \gamma$
	⁵ AAE	30UD 161	ATLS	$H_2^{\overline{0}} \rightarrow H^0 H^0$
	⁶ AA[D 16A	x ATLS	$H^{\overline{0}} \rightarrow ZZ$
	⁷ AA[0 160	ATLS	$H^0 \rightarrow W^+ W^-$
	⁸ AA[D 16L	ATLS	$H^0 \rightarrow A^0 A^0$
	⁹ AAI	D 16L	ATLS	$H_2^0 \rightarrow A^0 A^0$
	¹⁰ AAL	TONEN 160	CDF	$H_1^{\overline{0}}H^{\pm} \rightarrow H_1^0H_1^0W^*$,
				$H_1^0 \rightarrow \gamma \gamma$
	¹¹ KH/	ACHATRY16B	G CMS	$H_2^0 \rightarrow H^0 H^0$
	¹² KH/	ACHATRY16F	CMS	$H^{\bar{0}} \rightarrow H^0_1 H^0_1$
	¹³ KH/	ACHATRY16M	1 CMS	$H_2^0 \rightarrow \gamma \gamma$
	¹⁴ KH/	ACHATRY16P	CMS	$H_2^{\bar{0}} \rightarrow H^0 H^0$

¹AABOUD 17 search for production of a scalar resonance decaying to $Z\gamma$ in 3.2 fb⁻¹ of pp collisions at $E_{\rm cm} = 13$ TeV. See their Fig. 4 for the limits on cross section times branching ratio for $m_{H_2^0} = 0.25$ -3 TeV.

²AABOUD 16AB search for associated production of WH^0 with the decay $H^0 \rightarrow A^0 A^0 \rightarrow b \overline{b} b \overline{b}$ in 3.2 fb⁻¹ of pp collisions at $E_{\rm cm} = 13$ TeV. See their Fig. 8 for limits on cross section times branching ratios for $m_{A^0} = 20-60$ GeV.

- ³AABOUD 16AE search for production of a narrow scalar resonance decaying to $W^+W^$ and ZZ in 3.2 fb⁻¹ of pp collisions at $E_{\rm cm} = 13$ TeV. See their Fig. 4 for limits on cross section times branching ratio for $m_{H_0^0}^0 = 0.5-3$ TeV.
- ⁴ AABOUD 16H search for production of a scalar resonance decaying to $\gamma\gamma$ in 3.2 fb⁻¹ of *pp* collisions at $E_{\rm cm} = 13$ TeV. See their Fig. 12 for limits on cross section times branching ratio for $m_{H_0^0} = 0.2$ -2 TeV with different assumptions on the width.
- ⁵ AABOUD 16I search for a narrow scalar resonance decaying to $H^0 H^0 \rightarrow b\overline{b}b\overline{b}$ in 3.2 fb⁻¹ of *pp* collisions at $E_{\rm cm} = 13$ TeV. See their Fig. 10(c) for limits on cross section times branching ratios for $m_{H_0^0} = 0.5$ -3 TeV.
- ⁶ AAD 16AX search for production of a heavy H^0 state decaying to ZZ in the final states $\ell^+ \ell^- \ell^+ \ell^-$, $\ell^+ \ell^- \nu \overline{\nu}$, $\ell^+ \ell^- q \overline{q}$, and $\nu \overline{\nu} q \overline{q}$ in 20.3 fb⁻¹ of pp collisions at $E_{\rm cm} = 8$ TeV. See their Fig.12 for upper limits on $\sigma(H^0) \ {\rm B}(H^0 \to ZZ)$ for m_{H^0} ranging from _140 GeV to 1000 GeV.
- ⁷ AAD 16C search for production of a heavy H^0 state decaying to W^+W^- in the final states $\ell\nu\ell\nu$ and $\ell\nu q q$ in 20.3 fb⁻¹ of pp collisions at $E_{\rm cm} = 8$ TeV. See their Figs. 12, 13, and 16 for upper limits on $\sigma(H^0) \ {\rm B}(H^0 \to W^+W^-)$ for m_{H^0} ranging from 300 GeV to 1000 or 1500 GeV with various assumptions on the total width of H^0 .
- ⁸ AAD 16L search for the decay $H^0 \rightarrow A^0 A^0 \rightarrow \gamma \gamma \gamma \gamma$ in 20.3 fb⁻¹ of pp collisions at $E_{\rm cm} = 8$ TeV. See their Fig. 4 (upper right) for limits on cross section times branching ratios (normalized to the SM H^0 cross section) for $m_{A^0} = 10$ -60 GeV.
- ⁹ AAD 16L search for the decay $H_2^0 \rightarrow A^0 A^0 \rightarrow \gamma \gamma \gamma \gamma$ in 20.3 fb⁻¹ of *pp* collisions at $E_{\rm cm} = 8$ TeV. See their Fig. 4 (lower right) for limits on cross section times branching ratios for $m_{H_2^0} = 600$ GeV and $m_{A^0} = 10-245$ GeV, and Table 5 for limits for $m_{H_2^0} = 300$ and 900 GeV.
- ¹⁰ AALTONEN 16C search for electroweak associated production of $H_1^0 H^{\pm}$ followed by the decays $H^{\pm} \rightarrow H_1^0 W^*$, $H_1^0 \rightarrow \gamma \gamma$ for $m_{H_1^0} = 10-105$ GeV and $m_{H^{\pm}} = 30-300$ GeV.

See their Fig. 3 for excluded parameter region in a two-doublet model in which H_1^0 has no direct decay to fermions.

- ¹¹ KHACHATRYAN 16BG search for a narrow scalar resonance decaying to $H^0 H^0 \rightarrow b \overline{b} b \overline{b}$ in 19.7 fb⁻¹ of pp collisions at $E_{\rm cm} = 8$ TeV. See their Fig. 6 for limits on the cross section times branching ratios for $m_{H_0^0}^0 = 1.15-3$ TeV.
- ¹² KHACHATRYAN 16F search for the decay $H^0 \rightarrow H_1^0 H_1^0 \rightarrow \tau^+ \tau^- \tau^+ \tau^-$ in 19.7 fb⁻¹ of *pp* collisions at $E_{\rm cm} = 8$ TeV. See their Fig. 8 for cross section limits for $m_{H_1^0} = 4-8$ GeV.
- ¹³ KHACHATRYAN 16M search for production of a narrow resonance decaying to $\gamma\gamma$ in 19.7 fb⁻¹ of *pp* collisions at $E_{\rm cm} = 8$ TeV and 3.3 fb⁻¹ at $E_{\rm cm} = 13$ TeV. See their Fig. 3 (top) for limits on cross section times branching ratio for $m_{H_2^0} = 0.5$ -4 TeV.
- ¹⁴ KHACHATRYAN 16P search for gluon fusion production of an H_2^0 decaying to $H^0 H^0 \rightarrow b \overline{b} \tau^+ \tau^-$ in 19.7 fb⁻¹ of pp collisions at $E_{\rm cm} = 8$ TeV. See their Fig. 8 (lower right) for cross section limits for $m_{H_2^0} = 260-350$ GeV.
- ¹⁵ KHACHATRYAN 16P search for gluon fusion production of an A^0 decaying to $ZH^0 \rightarrow \ell^+ \ell^- \tau^+ \tau^-$ in 19.7 fb⁻¹ of pp collisions at $E_{\rm cm} = 8$ TeV. See their Fig. 10 for cross section limits for $m_{H_0^0} = 220-350$ GeV.

- ¹⁶ AAD 15BK search for production of a heavy H_2^0 decaying to $H^0 H^0$ in the final state $b \overline{b} b \overline{b}$ in 19.5 fb⁻¹ of p p collisions at $E_{\rm cm} = 8$ TeV. See their Fig. 14(c) for $\sigma(H_2^0)$ B($H_2^0 \rightarrow H^0 H^0$) for $m_{H_2^0} = 500-1500$ GeV with $\Gamma_{H_2^0} = 1$ GeV.
- ¹⁷ AAD 15BZ search for the decay $H^0 \rightarrow A^0 A^0 \rightarrow \mu^+ \mu^- \tau^+ \tau^-$ ($m_{H^0} = 125 \text{ GeV}$) in 20.3 fb⁻¹ of pp collisions at $E_{\rm cm} = 8$ TeV. See their Fig. 6 for limits on cross section times branching ratio for $m_{A^0} = 3.7-50$ GeV.
- ¹⁸ AAD 15BZ search for a state H_2^0 via the decay $H_2^0 \rightarrow A^0 A^0 \rightarrow \mu^+ \mu^- \tau^+ \tau^-$ in 20.3 fb⁻¹ of pp collisions at $E_{\rm cm} = 8$ TeV. See their Fig. 6 for limits on cross section times branching ratio for $m_{H_2^0}^0 = 100-500$ GeV and $m_{A^0} = 5$ GeV.
- ¹⁹ AAD 15CE search for production of a heavy H_2^0 decaying to $H^0 H^0$ in the final states $b \overline{b} \tau^+ \tau^-$ and $\gamma \gamma W W^*$ in 20.3 fb⁻¹ of pp collisions at $E_{\rm cm} = 8$ TeV and combine with data from AAD 15H and AAD 15BK. A limit $\sigma(H_2^0) B(H_2^0 \rightarrow H^0 H^0) < 2.1-0.011$ pb (95% CL) is given for $m_{H_2^0} = 260-1000$ GeV. See their Fig. 6.
- ²⁰ AAD 15H search for production of a heavy H_2^0 decaying to $H^0 H^0$ in the finalstate $\gamma \gamma b \overline{b}$ in 20.3 fb⁻¹ of pp collisions at $E_{\rm cm} = 8$ TeV.A limit of $\sigma(H_2^0) \ B(H_2^0 \rightarrow H^0 H^0)$ < 3.5-0.7 pb is given for $m_{H_2^0} = 260-500$ GeV at 95% CL. See their Fig. 3.
- ²¹AAD 15S search for production of A^0 decaying to $ZH^0 \rightarrow \ell^+ \ell^- b\overline{b}, \nu \overline{\nu} b\overline{b}$ and $\ell^+ \ell^- \tau^+ \tau^-$ in 20.3 fb⁻¹ of pp collisions at $E_{\rm cm} = 8$ TeV. See their Fig. 3 for cross section limits for $m_{A^0} = 200\text{--}1000$ GeV.
- ²² KHACHATRYAN 15AW search for production of a heavy state H_2^0 of an electroweak singlet extension of the Standard Model via the decays of H_2^0 to $W^+ W^-$ and ZZ in up to 5.1 fb⁻¹ of pp collisions at $E_{\rm cm} = 7$ TeV and up to 19.7 fb⁻¹ at $E_{\rm cm} = 8$ TeV in the range $m_{H_2^0} = 145-1000$ GeV. See their Figs. 8 and 9 for limits in the parameter space of the model.
- ²³ KHACHATRYAN 15BB search for production of a resonance H^0 decaying to $\gamma\gamma$ in 19.7 fb⁻¹ of pp collisions at $E_{\rm cm} = 8$ TeV. See their Fig. 7 for limits on cross section times branching ratio for $m_{H^0} = 150-850$ GeV.
- ²⁴ KHACHATRYAN 15N search for production of A^0 decaying to $ZH^0 \rightarrow \ell^+ \ell^- b\overline{b}$ in 19.7 fb⁻¹ of pp collisions at $E_{\rm cm} = 8$ TeV. See their Fig. 3 for limits on cross section times branching ratios for $m_{A^0} = 225$ –600 GeV.
- ²⁵ KHACHATRYAN 150 search for production of a high-mass narrow resonance A^{U} decaying to $ZH^{0} \rightarrow q \overline{q} \tau^{+} \tau^{-}$ in 19.7 fb⁻¹ of pp collisions at $E_{cm} = 8$ TeV. See their Fig. 6 for limits on cross section times branching ratios for $m_{A^{0}} = 800-2500$ GeV.
- ²⁶ KHACHATRYAN 15R search for a narrow scalar resonance decaying to $H^0 H^0 \rightarrow b \overline{b} b \overline{b}$ in 17.9 fb⁻¹ of pp collisions at $E_{cm} = 8$ TeV. See their Fig. 5 (top) for limits on cross section times branching ratios for $m_{H_2^0}^0 = 0.27$ –1.1 TeV.
- ²⁷ AAD 14AP search for a second H^0 state decaying to $\gamma\gamma$ in addition to the state at about 125 GeV in 20.3 fb⁻¹ of *pp* collisions at $E_{\rm cm} = 8$ TeV. See their Fig. 4 for limits on cross section times branching ratio for $m_{H^0} = 65-600$ GeV.

²⁸ AAD 14M search for the decay cascade $H_2^0 \rightarrow H^{\pm} W^{\mp} \rightarrow H^0 W^{\pm} W^{\mp}$, H^0 decaying to $b\overline{b}$ in 20.3 fb⁻¹ of pp collisions at $E_{\rm cm} = 8$ TeV. See their Table III for limits on cross section times branching ratio for $m_{H_2^0}^{=}=325-1025$ GeV and $m_{H^+}=225-925$ GeV.

²⁹ CHATRCHYAN 14G search for a second H^0 state decaying to $WW^{(*)}$ in addition to the observed signal at about 125 GeV using 4.9 fb⁻¹ of pp collisions at $E_{cm} = 7$ TeV

and 19.4 fb⁻¹ at $E_{cm} = 8$ TeV. See their Fig. 21 (right) for cross section limits in the mass range 110–600 GeV.

- ³⁰ KHACHATRYAN 14P search for a second H^0 state decaying to $\gamma\gamma$ in addition to the observed signal at about 125 GeV using 5.1 fb⁻¹ of pp collisions at $E_{\rm cm} = 7$ TeV and 19.7 fb⁻¹ at $E_{\rm cm} = 8$ TeV. See their Figs. 27 and 28 for cross section limits in the mass range 110–150 GeV.
- ³¹AALTONEN 13P search for production of a heavy Higgs boson H'^0 that decays into a charged Higgs boson H^{\pm} and a lighter Higgs boson H^0 via the decay chain $H'^0 \rightarrow$ $H^{\pm}W^{\mp}$, $H^{\pm} \rightarrow W^{\pm}H^0$, $H^0 \rightarrow b\overline{b}$ in the final state $\ell\nu$ plus 4 jets in 8.7 fb⁻¹ of $p\overline{p}$ collisions at $E_{\rm cm} = 1.96$ TeV. See their Fig. 4 for limits on cross section times branching ratio in the $m_{H^{\pm}} - m_{H'^0}$ plane for $m_{H^0} = 126$ GeV.
- ³² CHATRCHYAN 13BJ search for H^0 production in the decay chain $H^0 \rightarrow A^0 A^0$, $A^0 \rightarrow \mu^+ \mu^-$ in 5.3 fb⁻¹ of pp collisions at $E_{\rm cm} = 7$ TeV. See their Fig. 2 for limits on cross section times branching ratio.
- ³³AALTONEN 11P search in 2.7 fb⁻¹ of $p\overline{p}$ collisions at $E_{cm} = 1.96$ TeV for the decay chain $t \rightarrow bH^+$, $H^+ \rightarrow W^+A^0$, $A^0 \rightarrow \tau^+\tau^-$ with m_{A^0} between 4 and 9 GeV. See their Fig. 4 for limits on B($t \rightarrow bH^+$) for 90 $< m_{H^+} < 160$ GeV.
- ³⁴ ABBIENDI 10 search for $e^+e^- \rightarrow ZH^0$ with the decay chain $H^0 \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_2^0$, $\tilde{\chi}_2^0 \rightarrow \tilde{\chi}_1^0 + (\gamma \text{ or } Z^*)$, when $\tilde{\chi}_1^0$ and $\tilde{\chi}_2^0$ are nearly degenerate. For a mass difference of 2 (4) GeV, a lower limit on m_{H^0} of 108.4 (107.0) GeV (95% CL) is obtained for SM ZH^0 cross section and $B(H^0 \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_2^0) = 1$.
- ³⁵SCHAEL 10 search for the process $e^+e^- \rightarrow H^0 Z$ followed by the decay chain $H^0 \rightarrow A^0 A^0 \rightarrow \tau^+ \tau^- \tau^+ \tau^-$ with $Z \rightarrow \ell^+ \ell^-$, $\nu \overline{\nu}$ at $E_{\rm cm} = 183$ -209 GeV. For a $H^0 Z Z$ coupling equal to the SM value, $B(H^0 \rightarrow A^0 A^0) = B(A^0 \rightarrow \tau^+ \tau^-) = 1$, and $m_{A^0} = 4$ -10 GeV, m_{H^0} up to 107 GeV is excluded at 95% CL.
- ³⁶ ABAZOV 09V search for H^0 production followed by the decay chain $H^0 \rightarrow A^0 A^0 \rightarrow \mu^+ \mu^- \mu^+ \mu^-$ or $\mu^+ \mu^- \tau^+ \tau^-$ in 4.2 fb⁻¹ of $p\overline{p}$ collisions at $E_{\rm cm} = 1.96$ TeV. See their Fig. 3 for limits on $\sigma(H^0) \cdot B(H^0 \rightarrow A^0 A^0)$ for $m_{A^0} = 3.6$ –19 GeV.
- ³⁷ ABBIENDI 05A search for $e^+e^- \rightarrow H_1^0 A^0$ in general Type-II two-doublet models, with decays H_1^0 , $A^0 \rightarrow q \overline{q}$, g g, $\tau^+ \tau^-$, and $H_1^0 \rightarrow A^0 A^0$.
- ³⁸ ABBIENDI 04K search for $e^+e^- \rightarrow H^0 Z$ with H^0 decaying to two jets of any flavor including gg. The limit is for SM production cross section with $B(H^0 \rightarrow jj) = 1$.
- ³⁹ ABDALLAH 04 consider the full combined LEP and LEP2 datasets to set limits on the Higgs coupling to W or Z bosons, assuming SM decays of the Higgs. Results in Fig. 26. ⁴⁰ ACHARD 04B search for $e^+e^- \rightarrow H^0 Z$ with H^0 decaying to $b \overline{b}$, $c \overline{c}$, or g g. The limit is for SM production cross section with $B(H^0 \rightarrow jj) = 1$.
- ⁴¹ ACHARD 04F search for H^0 with anomalous coupling to gauge boson pairs in the processes $e^+e^- \rightarrow H^0\gamma$, $e^+e^-H^0$, H^0Z with decays $H^0 \rightarrow f\bar{f}$, $\gamma\gamma$, $Z\gamma$, and W^*W at $E_{\rm cm} = 189$ –209 GeV. See paper for limits.
- ⁴² ABBIENDI 03F search for $H^0 \rightarrow$ anything in $e^+e^- \rightarrow H^0 Z$, using the recoil mass spectrum of $Z \rightarrow e^+e^-$ or $\mu^+\mu^-$. In addition, it searched for $Z \rightarrow \nu \overline{\nu}$ and $H^0 \rightarrow e^+e^-$ or photons. Scenarios with large width or continuum H^0 mass distribution are considered. See their Figs. 11–14 for the results.

⁴³ ABBIENDI 03G search for $e^+e^- \rightarrow H_1^0 Z$ followed by $H_1^0 \rightarrow A^0 A^0$, $A^0 \rightarrow c\overline{c}$, gg, or $\tau^+\tau^-$ in the region $m_{H_1^0} = 45-86$ GeV and $m_{A^0} = 2-11$ GeV. See their Fig. 7 for the limits.

- ⁴⁴ Search for associated production of a $\gamma\gamma$ resonance with a Z boson, followed by $Z \rightarrow q \overline{q}$, $\ell^+ \ell^-$, or $\nu \overline{\nu}$, at $E_{\rm cm} \leq 209$ GeV. The limit is for a H^0 with SM production cross section and B($H^0 \rightarrow f \overline{f}$)=0 for all fermions f.
- ⁴⁵ For B($H^0 \rightarrow \gamma \gamma$)=1, $m_{H^0} > 113.1$ GeV is obtained.
- ⁴⁶ HEISTER 02M search for $e^+e^- \rightarrow H^0 Z$, assuming that H^0 decays to $q \overline{q}$, g g, or $\tau^+\tau^-$ only. The limit assumes SM production cross section.
- ⁴⁷ ABBIENDI 01E search for neutral Higgs bosons in general Type-II two-doublet models, at $E_{\rm cm} \leq 189$ GeV. In addition to usual final states, the decays H_1^0 , $A^0 \rightarrow q \overline{q}$, g g are searched for. See their Figs. 15,16 for excluded regions.
- ⁴⁸ ACCIARRI 00R search for $e^+e^- \rightarrow H^0\gamma$ with $H^0 \rightarrow b\overline{b}$, $Z\gamma$, or $\gamma\gamma$. See their Fig. 3 for limits on $\sigma \cdot B$. Explicit limits within an effective interaction framework are also given, for which the Standard Model Higgs search results are used in addition.
- ⁴⁹ ACCIARRI 00R search for the two-photon type processes $e^+e^- \rightarrow e^+e^-H^0$ with $H^0 \rightarrow b\overline{b}$ or $\gamma\gamma$. See their Fig. 4 for limits on $\Gamma(H^0 \rightarrow \gamma\gamma) \cdot \mathcal{B}(H^0 \rightarrow \gamma\gamma \text{ or } b\overline{b})$ for $m_{H^0} = 70-170$ GeV.
- ⁵⁰ GONZALEZ-GARCIA 98B use DØ limit for $\gamma\gamma$ events with missing E_T in $p\overline{p}$ collisions (ABBOTT 98) to constrain possible ZH or WH production followed by unconventional $H \rightarrow \gamma\gamma$ decay which is induced by higher-dimensional operators. See their Figs. 1 and 2 for limits on the anomalous couplings.
- 51 KRAWCZYK 97 analyse the muon anomalous magnetic moment in a two-doublet Higgs model (with type II Yukawa couplings) assuming no H^0_1ZZ coupling and obtain $m_{H^0_1}\gtrsim$
 - 5 GeV or $m_{A^0} \gtrsim$ 5 GeV for tan β > 50. Other Higgs bosons are assumed to be much heavier.
- ⁵² ALEXANDER 96H give $B(Z \rightarrow H^0 \gamma) \times B(H^0 \rightarrow q \overline{q}) < 1-4 \times 10^{-5}$ (95%CL) and $B(Z \rightarrow H^0 \gamma) \times B(H^0 \rightarrow b \overline{b}) < 0.7-2 \times 10^{-5}$ (95%CL) in the range 20 $< m_{H^0} < 80$ GeV.

SEARCHES FOR A HIGGS BOSON WITH STANDARD MODEL COUPLINGS

These listings are based on experimental searches for a scalar boson whose couplings to W, Z and fermions are precisely those of the Higgs boson predicted by the three-generation Standard Model with the minimal Higgs sector.

For a review and a bibliography, see the review on "Status of Higgs Boson Physics."

Direct Mass Limits for H^0

The mass limits shown below apply to a Higgs boson H^0 with Standard Model couplings whose mass is a priori unknown. These mass limits are compatible with and independent of the observed signal at about 125 GeV. In particular, the symbol H^0 employed below does not in general refer to the observed signal at about 125 GeV.

The cross section times branching ratio limits quoted in the footnotes below are typically given relative to those of a Standard Model Higgs boson of the relevant mass. These limits can be reinterpreted in terms of more general models (e.g. extended Higgs sectors) in which the Higgs couplings to W, Z and fermions are re-scaled from their Standard Model values.

All data that have been superseded by newer results are marked as "not used" or have been removed from this compilation, and are documented in previous editions of this *Review* of Particle Physics.

VALUE (GeV)	CL%	DOCUMENT ID		TECN	COMME	NT
> 122 and none 128–1000 (CL = 95%)						
none 145–1000	95	¹ KHACHATRY	15AW	/CMS	$p p \rightarrow$	$H^0 X$ combined
none 90–102, 149–172	95	² AALTONEN	13L	CDF	$pp \rightarrow$	H^0X , combined
none 90–109, 149–182	95	³ AALTONEN	13M	TEVA	Tevatro	on combined
none 90–101, 157–178	95	⁴ ABAZOV	13L	D0	$p\overline{p} \rightarrow$	$H^0 X$, combined
none 110–121.5, 128–145	95	⁵ CHATRCHYA	N 12N	CMS	pp ightarrow	$H^0 X$ combined
>114.1	95	⁶ ABDALLAH	04	DLPH	e^+e^-	$\rightarrow H^0 Z$
>112.7	95	⁶ ABBIENDI	03 B	OPAL	e^+e^-	$\rightarrow H^0 Z$
>114.4	95	^{6,7} HEISTER	03 D	LEP	e^+e^-	$\rightarrow H^0 Z$
>111.5	95	^{6,8} HEISTER	02	ALEP	e^+e^-	$\rightarrow H^0 Z$
>112.0	95	⁶ ACHARD	01 C	L3	e^+e^-	$\rightarrow H^0 Z$
• • • We do not	use the	following data for	avera	ges, fits,	limits, e	etc. ● ● ●
none 132–200	95	⁹ AAD	1544	ΑΤΙ S	$nn \rightarrow$	$H_0 \times H_0 \rightarrow W W(*)$
10110 102 200	55		150	ΔΤΙς		$H^0 W / 7 \times H^0 \rightarrow b\overline{b}$
			1/1	ΔΤΙ S		$H^0 \times H^0 \rightarrow U U$
			1/1			$\mu 0 \times \mu 0 \times 7 $
nono 111 E 110	05		14J NI 1 4 A A	CMS	$pp \rightarrow$	$\mu 0 \times \mu 0 \rightarrow \lambda \rho$
129.5–832	90	¹⁴ CHATRCHYA	N 14AA	CMS	$pp \rightarrow$	$H^0 W / Z X H^0 \rightarrow b\overline{b}$
none 127–600	95		N 14C	CMS	$p p \rightarrow$	$H_0 \times H_0 \rightarrow W W(*)$
10110 127 000	55		13R	CDE	$p p \rightarrow$	$H^0 W / 7 X H^0 \rightarrow b\overline{b}$
		17 AALTONEN	130		$pp \rightarrow p $	$H^0 \times H^0 \rightarrow h\overline{h}$
nono 140 170	05		121/		$pp \rightarrow$	$\mu 0 \times \mu 0 \longrightarrow \mu / \mu / (*)$
none 149–172	95	19 ADAZOV	125		$pp \rightarrow \frac{p}{2}$	$ \begin{array}{cccc} \Pi & \Lambda, \Pi & \rightarrow & VVVV \\ \downarrow 0 & \chi & \chi \\ \end{array} $
		20 ADAZOV	13E		$pp \rightarrow \frac{p}{2}$	$\mu 0 \times \ell_{-}$
	05	21 ADAZOV	120		$pp \rightarrow \overline{p}$	$\mu^{2} \Lambda, \ell^{2} J J$
none 159–170	95	ABAZOV	13G		$p p \rightarrow -$	$H^{\circ}X, H^{\circ} \rightarrow WW^{(*)}$
		23 ADAZOV	13H	DU	$pp \rightarrow $	$H^{\circ}X, H^{\circ} \rightarrow \gamma\gamma$
		20 ABAZOV	131	DU	$pp \rightarrow $	$H^{\circ}X, \ell \nu j j$
		24 ABAZOV	13J	DO	$p\overline{p} \rightarrow$	$H^0 X$, leptonic
		²⁵ ABAZOV	13K	D0	$p \overline{p} \rightarrow$	$H^{\circ}ZX$
		²⁰ CHATRCHYA	N 13AL	CMS	$pp \rightarrow$	$H^0 X, H^0 \rightarrow \tau \tau,$ $\chi(*) = \tau \tau(*)$
		27 CHATRCHVA	N 138k	CMS		$\mu^0 \times \mu^0 \rightarrow 7 \sim$
nono 1/5 710	05					$\mu^0 X$ combined
10110 145-710	90			CMS	$pp \rightarrow$	$\mu_{0+\pm \sqrt{2}}$
nono 112 100	05			CIVIS	$pp \rightarrow$	
128–133, 138–149	95	CHAIRCH IA	IN 13Y	CIVIS	$p p \rightarrow$	$\Pi^* \lambda, \Pi^* \to \gamma \gamma$
none 130–164, 170–180	95	³¹ CHATRCHYA	N 13Y	CMS	$p p \rightarrow$	$H^0X, H^0 \rightarrow ZZ^*$
none 129-160	95	³² CHATRCHYA	N 13Y	CMS	$p p \rightarrow$	$H^0X, H^0 \rightarrow WW^*$
none 111–122, 131–559	95	³³ AAD	12AI	ATLS	pp ightarrow	$H^0 X$ combined
none 133–261	95	³⁴ AAD	12AJ	ATLS	$pp \rightarrow$	$H^0X, H^0 \rightarrow WW^{(*)}$

HTTP://PDG.LBL.GOV

Citation: C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016) and 2017 update

		AAD	1200	AILS	$pp \rightarrow$	$\Pi \Lambda, \Pi \rightarrow I^{+}I$
none 319–558	95	³⁶ AAD	12bz	ATLS	$pp \rightarrow$	$H^0X, H^0 \rightarrow ZZ$
none 300–322, 353–410	95	³⁷ AAD	12CA	ATLS	$pp \rightarrow$	$H^0X, H^0 \rightarrow ZZ$
333 410		³⁸ AAD	12CN	ATLS	$pp \rightarrow$	$H^0 W/ZX, H^0 \rightarrow b\overline{b}$
		³⁹ AAD	12co	ATLS	$pp \rightarrow$	$H^0 X, H^0 \rightarrow WW$
none 134–156, 182–233, 256–265,	95	⁴⁰ AAD	12D	ATLS	$pp \rightarrow$	$H^0X, H^0 \rightarrow ZZ^{(*)}$
268-415 none 113-115,	95	⁴¹ AAD	12G	ATLS	pp ightarrow	$H^0 X, H^0 \rightarrow \gamma \gamma$
134.5-130		42 δαι τονεν	120K	CDE	$n\overline{n} \rightarrow$	н ⁰ + т х
		43 AALTONEN	12AN		$pp \rightarrow pp \rightarrow pp$	$H^0 X$ inclusive $A\ell$
		44 AALTONEN	12AN	CDF	$p p \rightarrow$	$\mu^0 \chi \mu^0 \rightarrow \gamma \gamma$
		45 AALTONEN	12/1	CDF	$p p \rightarrow$	$H^0 \times H^0 \rightarrow \tau \tau$
		⁴⁶ AALTONEN	120	CDF	$p \overline{p} \rightarrow p$	$H^0 Z X H^0 \rightarrow h \overline{h}$
none 100–106	95	⁴⁷ AALTONEN	12T	TEVA	$p \overline{p} \rightarrow p$	$H^0 W / Z X, H^0 \rightarrow b\overline{b}$
		⁴⁸ ABAZOV	12ĸ	D0	$p \overline{p} \rightarrow \overline{q} q$	$H^0 W/ZX, H^0 \rightarrow b\overline{b}$
		^{49,50} CHATRCHYAN	112AY	CMS	$p p \rightarrow$	$H^0 W X$. $H^0 Z X$
		⁵¹ CHATRCHYAN	112C	CMS	$pp \rightarrow$	$H^0X, H^0 \rightarrow ZZ$
		⁵² CHATRCHYAN	112 D	CMS	$pp \rightarrow$	$H^0X, H^0 \rightarrow ZZ^{(*)}$
none 129–270	95	⁵³ CHATRCHYAN	112E	CMS	$pp \rightarrow$	$H^0 X, H^0 \rightarrow W W^{(*)}$
		⁵⁴ CHATRCHYAN	12F	CMS	$pp \rightarrow$	H ⁰ WX, H ⁰ ZX
none 128–132	95	⁵⁵ CHATRCHYAN	112G	CMS	$pp \rightarrow$	$H^0 X, H^0 \rightarrow \gamma \gamma$
none 134–158, 180–305,	95	⁵⁶ CHATRCHYAN	I 12H	CMS	$pp \rightarrow$	$H^0X, H^0 \rightarrow ZZ^{(*)}$
340-405 none 270-440	95	⁵⁷ CHATRCHYAN	1121	CMS	$nn \rightarrow$	$H^0 X H^0 \rightarrow 77$
		⁵⁸ CHATRCHYAN	I 12к	CMS	$p p \rightarrow$	$H^0 X, H^0 \rightarrow \tau^+ \tau^-$
		⁵⁹ ABAZOV	11G	D0	$p \overline{p} \rightarrow$	$H^0 X, H^0 \rightarrow WW^{(*)}$
		⁶⁰ CHATRCHYAN	11J	CMS	$p p \rightarrow$	$H^0 X, H^0 \rightarrow W W$
none 162–166	95	⁶¹ AALTONEN	10F	TEVA	$\overline{p} \overline{p} \rightarrow$	$H^0 X, H^0 \rightarrow W W^{(*)}$
		⁶² AALTONEN	10M	TEVA	$p\overline{p} \rightarrow$	$ggX \rightarrow H^0X, H^0 \rightarrow$
		⁶³ AALTONEN	09A	CDF	$\overline{D} \rightarrow \overline{D}$	$H^0 X. H^0 \rightarrow WW^{(*)}$
		⁶⁴ ABAZOV	09 U	D0	$H^0 \rightarrow$	$\tau^+ \tau^-$
		⁶⁵ ABAZOV	06	D0	$p\overline{p} \rightarrow$	$H^0X, H^0 \rightarrow WW^*$
		⁶⁶ ABAZOV	060	D0	$p\overline{p} \rightarrow$	$H^0 W X, H^0 \rightarrow W W^*$

¹KHACHATRYAN 15AW search for H^0 production in the decays $H^0 \rightarrow W^+ W^- \rightarrow \ell \nu \ell \nu$, $\ell \nu q q$, and $H^0 \rightarrow ZZ \rightarrow 4\ell$, $\ell \ell \tau \tau$, $\ell \ell \nu \nu$, and $\ell \ell q q$ in up to 5.1 fb⁻¹ of ppcollisions at $E_{\rm cm} = 7$ TeV and up to 19.7 fb⁻¹ at $E_{\rm cm} = 8$ TeV in the range $m_{H^0} =$ 145–1000 GeV. See their Fig. 7 for limits on cross section times branching ratio.

²AALTONEN 13L combine all CDF searches with 9.45–10.0 fb⁻¹ of $p\overline{p}$ collisions at $E_{\rm cm} = 1.96$ TeV. A limit on cross section times branching ratio which corresponds to (0.45–4.8) times the expected Standard Model cross section is given for $m_{H^0} = 90-200$ GeV at 95 %CL. An excess of events over background is observed with a local significance of 2.0 σ at $m_{H^0} = 125$ GeV. In the Standard Model with an additional generation of heavy quarks and leptons which receive their masses via the Higgs mechanism, $m_{\mu 0}$ values between 124 and 203 GeV are excluded at 95% CL.

³AALTONEN 13M combine all Tevatron data from the CDF and D0 Collaborations. A limit on cross section times branching ratio which corresponds to (0.37-3.1) times the

expected Standard Model cross section is given for $m_{H^0} =$ 90–200 GeV at 95% CL. An excess of events over background is observed with a local significance of 3.0 σ at $m_{\mu 0}$ = 125 GeV. In the Standard Model with an additional generation of heavy quarks and leptons which receive their masses via the Higgs mechanism, $m_{\mu 0}$ values between 121 and 225 GeV are excluded at 95% CL.

- ⁴ABAZOV 13L combine all D0 results with up to 9.7 fb⁻¹ of $p\overline{p}$ collisions at $E_{cm} =$ 1.96 TeV. A limit on cross section times branching ratio which corresponds to (0.66-3.1)times the expected Standard Model cross section is given in the range $m_{H^0} = 90-200$ GeV at 95% CL. An excess of events over background is observed with a local significance of 1.7 σ at $m_{H^0} = 125$ GeV. In the Standard Model with an additional generation of heavy quarks and leptons which receive their masses via the Higgs mechanism, $m_{\mu 0}$
- values between 125 and 218 GeV are excluded at 95% CL. ⁵ CHATRCHYAN 12N search for H^0 production in the decays $H \rightarrow \gamma \gamma$, $ZZ^* \rightarrow 4\ell$, $WW^* \rightarrow \ell \nu \ell \nu$, $\tau \tau$, and $b\overline{b}$ in 4.9–5.1 fb⁻¹ of pp collisions at $E_{\rm cm} =$ 7 TeV and 5.1–5.3 fb⁻¹ at $E_{\rm cm} = 8$ TeV. The expected exclusion region for no signal is 110–145 GeV at 99.9% CL. See also CHATRCHYAN 13Y. ⁶ Search for $e^+e^- \rightarrow H^0Z$ at $E_{\rm cm} \leq 209$ GeV in the final states $H^0 \rightarrow b\overline{b}$ with $Z \rightarrow \ell \overline{\ell}, \ \nu \overline{\nu}, \ q \overline{q}, \ \tau^+ \tau^-$ and $H^0 \rightarrow \tau^+ \tau^-$ with $Z \rightarrow q \overline{q}$.
- ⁷ Combination of the results of all LEP experiments.
- 8 A 3 σ excess of candidate events compatible with $m_{\mu0}$ near 114 GeV is observed in the
- combined channels $q \overline{q} q \overline{q}$, $q \overline{q} \ell \overline{\ell}$, $q \overline{q} \tau^+ \tau^-$. ⁹AAD 15AA search for $H^0 \rightarrow WW^{(*)}$ in 4.5 fb⁻¹ of pp collisions at $E_{\rm cm} = 7$ TeV and 20.3 fb⁻¹ at $E_{\rm cm} = 8$ TeV. A limit on cross section times branching ratio which corresponds to (0.2–6) times the expected Standard Model cross section is given for $m_{H^0} = 110-200 \text{ GeV}$ at 95% CL.
- 10 AAD 15G search for $W H^0$ and $Z H^0$ production followed by $H^0 \rightarrow b \overline{b}$ in 4.7 fb⁻¹ of pp collisions at $E_{\rm cm} = 7$ TeV and 20.3 fb⁻¹ at $E_{\rm cm} = 8$ TeV. A limit on the cross section times branching ratio which corresponds to (0.8–2.6) times the expected Standard Model cross section is given for $m_{H^0} = 110-140$ GeV at 95% CL.
- ¹¹AAD 14AS search for $H^0 \rightarrow \mu^+ \mu^-$ in 4.5 fb⁻¹ of *pp* collisions at $E_{\rm cm}=$ 7 TeV and 20.3 fb⁻¹ at $E_{\rm cm} = 8$ TeV. A limit on the cross section times branching ratio which corresponds to (6.5–16.8) times the expected Standard Model cross section is given for $m_{H^0} = 120-150$ GeV at 95% CL.
- ¹² AAD 14J search for $H^0 \rightarrow Z\gamma \rightarrow \ell\ell\gamma$ in 4.5 fb⁻¹ of pp collisions at $E_{\rm cm} = 7$ TeV and 20.3 fb⁻¹ at $E_{\rm cm}$ = 8 TeV. A limit on cross section times branching ratio which corresponds to (4–18) times the expected Standard Model cross section is given for m_{H^0} = 120-150 GeV at 95% CL.
- ¹³CHATRCHYAN 14AA search for H^0 production in the decay mode $H^0 \rightarrow ZZ^{(*)} \rightarrow$ 4ℓ in 5.1 fb⁻¹ of pp collisions at $E_{\rm cm} = 7$ TeV and 19.7 fb⁻¹ at $E_{\rm cm} = 8$ TeV. The expected exclusion region for no signal is 115–740 GeV at the 95% CL. See their Fig. 18 for cross section limits for $m_{H^0} = 110\text{--}1000$ GeV.
- ¹⁴CHATRCHYAN 14AI search for $W H^0$ and $Z H^0$ production followed by $H^0 \rightarrow b \overline{b}$ in up to 5.1 fb⁻¹ of *pp* collisions at $E_{\rm cm} = 7$ TeV and up to 18.9 fb⁻¹ at $E_{\rm cm} = 8$ TeV. A limit on the cross section times branching ratio which corresponds to (1–3) times the expected Standard Model cross section is given for $m_{H^0} = 110-135$ GeV at 95% CL.
- ¹⁵ CHATRCHYAN 14G search for H^0 production in the decay mode $H^0 \rightarrow WW^{(*)} \rightarrow$ $\ell \nu \ell \nu$ in 4.9 fb⁻¹ of pp collisions at $E_{\rm cm} = 7$ TeV and 19.4 fb⁻¹ at $E_{\rm cm} = 8$ TeV. The expected exclusion region for no signal is 115–600 GeV at the 95% CL. See their Fig. 21 (left) for cross section limits for $m_{H^0} = 110-600$ GeV.
- ¹⁶AALTONEN 13B search for associated $H^0 Z$ production in the final state $H^0 \rightarrow b \overline{b}$, $Z \rightarrow \nu \overline{\nu}$, and $H^0 W$ production in $H^0 \rightarrow b \overline{b}$, $W \rightarrow \ell \nu$ (ℓ not identified) with an

improved *b* identification algorithm in 9.45 fb⁻¹ of $p\overline{p}$ collisions at $E_{\rm cm} = 1.96$ TeV. A limit on cross section times branching ratio which corresponds to (0.72–11.8) times the expected Standard Model cross section is given for $m_{\mu^0} = 90-150$ GeV at 95%CL. The limit for $m_{\mu^0} = 125$ GeV is 3.06, where 3.33 is expected for no signal.

- ¹⁷ AALTONEN 13C search for associated $H^0 W$ and $H^0 Z$ as well as vector-boson fusion $H^0 q \overline{q'}$ production in the final state $H^0 \rightarrow b\overline{b}$, $W/Z \rightarrow q\overline{q}$ with 9.45 fb⁻¹ of $p\overline{p}$ collisions at $E_{\rm cm} = 1.96$ TeV. A limit on cross section times branching ratio which is (7.0–64.6) times larger than the expected Standard Model cross section is given in the range $m_{H^0} = 100$ –150 GeV at 95% CL. The limit for $m_{H^0} = 125$ GeV is 9.0, where 11.0 is expected for no signal.
- ¹⁸ AALTONEN 13K search for H^0 production (with a possible additional W or Z) in the final state $H^0 \rightarrow WW^{(*)} \rightarrow \ell \nu \ell \nu$ in 9.7 fb⁻¹ of $p\overline{p}$ collisions at $E_{\rm cm} = 1.96$ TeV. A limit on cross section times branching ratio which corresponds to (0.49–14.1) times the expected Standard Model cross section is given in the range $m_{H^0} = 110-200$ GeV at 95% CL. The limit at $m_{H^0} = 125$ GeV is 3.26, where 3.25 is expected for no signal. In the Standard Model with an additional generation of heavy quarks and leptons which receive their masses via the Higgs mechanism, m_{H^0} values between 124 and 200 GeV are excluded at 95% CL.
- ¹⁹ ABAZOV 13E search for H^0 production in four-lepton final states from $H^0 \rightarrow ZZ^{(*)}$ and $H^0 Z$ in 9.6–9.8 fb⁻¹ of $p\overline{p}$ collisions at $E_{\rm cm} = 1.96$ TeV. A limit on cross section times branching ratio which corresponds to (8.6–78.9) times the expected Standard Model cross section is given in the range $m_{H^0} = 115$ –200 GeV at 95% CL. The limit for $m_{H^0} = 125$ GeV is 42.3, where 42.8 is expected for no signal.
- ²⁰ ABAZOV 13F search for H^0 production in final states $e \tau j j$ and $\mu \tau j j$ in 9.7 fb⁻¹ of $p \overline{p}$ collisions at $E_{\rm cm} = 1.96$ TeV. The search is sensitive to $H \rightarrow \tau \tau$ and $H \rightarrow WW^{(*)}$. A limit on cross section times branching ratio which corresponds to (9.4–17.9) times the expected Standard Model cross section is given in the range $m_{H^0} = 105-150$ GeV at 95% CL. The limit for $m_{H^0} = 125$ GeV is 11.3, where 9.0 is expected for no signal.
- ²¹ABAZOV 13G search for H^0 production in final states $H^0 \rightarrow WW^{(*)} \rightarrow \ell^+ \nu \ell^- \nu$ in 9.7 fb⁻¹ of $p\overline{p}$ collisions at $E_{\rm CM} = 1.96$ TeV and give a limit on cross section times branching ratio for $m_{H^0} = 100-150$ GeV at 95% CL. The limit for $m_{H^0} = 125$ GeV is 4.1, where 3.4 is expected for no signal. In the Standard Model with an additional generation of heavy quarks and leptons which receive their masses via the Higgs mechanism, m_{H^0} values between 125 and 218 GeV are excluded at 95% CL
- values between 125 and 218 GeV are excluded at 95% CL. ²² ABAZOV 13H search for H^0 production with the decay $H^0 \rightarrow \gamma \gamma$ in 9.6 fb⁻¹ of $p\overline{p}$ collisions at $E_{\rm cm} = 1.96$ TeV. A limit on cross section times branching ratio which corresponds to (8.3–25.4) times the expected Standard Model cross section is given in the range $m_{H^0} = 100-150$ GeV at 95% CL. The limit for $m_{H^0} = 125$ GeV is 12.8, where 8.7 is expected for no signal.
- ²³ ABAZOV 13I search for H^0 production in the final state with one lepton and two or more jets plus missing E_T with *b* identification in 9.7 fb⁻¹ of $p\overline{p}$ collisions at $E_{\rm cm} = 1.96$ TeV. The search is mainly sensitive to $H^0 W \rightarrow b\overline{b}\ell\nu$, $H^0 \rightarrow WW^{(*)} \rightarrow \ell\nu q\overline{q}$, and $H^0 V \rightarrow VWW^{(*)} \rightarrow \ell\nu q\overline{q}q\overline{q}$ (V = W, Z). A limit on cross section times branching ratio which corresponds to (1.3–11.4) times the expected Standard Model cross section is given in the range $m_{H^0} = 90$ –200 GeV at 95% CL. The limit for $m_{H^0} = 125$ GeV is 5.8, where 4.7 is expected for no signal. In the Standard Model with an additional generation of heavy quarks and leptons which receive their masses via the Higgs mechanism, m_{H^0} values between 150 and 188 GeV are excluded at 95% CL.
- values between 150 and 188 GeV are excluded at 95% CL. ²⁴ ABAZOV 13J search for H^0 production in the final states $e e \mu$, $e \mu \mu$, $\mu \tau \tau$, and $e^{\pm} \mu^{\pm}$ in 8.6–9.7 fb⁻¹ of $p \overline{p}$ collisions at $E_{\rm cm} = 1.96$ TeV. The search is sensitive to $W H^0$, $Z H^0$ and gluon fusion production with $H^0 \rightarrow W W^{(*)}$, $Z Z^{(*)}$, decaying to leptonic final states, and to $W H^0$, $Z H^0$ production with $H^0 \rightarrow \tau^+ \tau^-$. A limit on cross section times

branching ratio which corresponds to (4.4-12.7) times the expected Standard Model cross section is given in the range $m_{H^0} = 100-200$ GeV at 95% CL. The limit for $m_{H^0} = 125$ GeV is 8.4, where 6.3 is expected for no signal.

- ²⁵ ABAZOV 13K search for associated $H^0 Z$ production in the final states $\ell\ell bb$ with b identification in 9.7 fb⁻¹ of $p\overline{p}$ collisions at $E_{\rm cm} = 1.96$ TeV. A limit on cross section times branching ratio which corresponds to (1.8–53) times the expected Standard Model cross section is given for $m_{H^0} = 90$ –150 GeV at 95% CL. The limit for $m_{H^0} = 125$ GeV is 7.1, where 5.1 is expected for no signal.
- ²⁶ CHATRCHYAN 13AL search for $H^0 \rightarrow \tau^+ \tau^-$, $WW^{(*)}$, and $ZZ^{(*)}$ in 5.1 fb⁻¹ and 5.3 fb⁻¹ of pp collisions at $E_{\rm cm} = 7$ and 8 TeV. In the Standard Model with an additional generation of heavy quarks and leptons which receive their masses via the Higgs mechanism, m_{H^0} values between 110 and 600 GeV are excluded at 99% CL.
- ²⁷ CHATRCHYAN 13BK search for $H^0 \rightarrow Z\gamma \rightarrow \ell\ell\gamma$ in 5.0 fb⁻¹ of pp collisions at $E_{\rm cm} = 7$ TeV and 19.6 fb⁻¹ at $E_{\rm cm} = 8$ TeV. A limit on cross section times branching ratio which corresponds to (4–25) times the expected Standard Model cross section is given in the range $m_{H^0} = 120$ –160 GeV at 95% CL. The limit for $m_{H^0} = 125$ GeV is 9.5, where 10 is expected for no signal.
- ²⁸ CHATRCHYAN 13Q search for H^0 production in the decays $H^0 \rightarrow W^+ W^- \rightarrow \ell \nu \ell \nu$, $\ell \nu q q$ and $H^0 \rightarrow ZZ \rightarrow 4\ell$, $\ell \ell \tau \tau$, $\ell \ell \nu \nu$, and $\ell \ell q q$ in up to 5.1 fb⁻¹ of pp collisions at $E_{\rm cm} = 7$ TeV and up to 5.3 fb⁻¹ at $E_{\rm cm} = 8$ TeV in the range $m_{H^0} = 145$ -1000 GeV. Superseded by KHACHATRYAN 15AW.
- ²⁹ CHATRCHYAN 13x search for $H^0 t \bar{t}$ production followed by $H^0 \rightarrow b \bar{b}$, one top decaying to $\ell \nu$ and the other to either $\ell \nu$ or $q \bar{q}$ in 5.0 fb⁻¹ and 5.1 fb⁻¹ of pp collisions at $E_{\rm cm} = 7$ and 8 TeV. A limit on cross section times branching ratio which corresponds to (4.0–8.6) times the expected Standard Model cross section is given for $m_{H^0} = 110-140$ GeV at 95% CL. The limit for $m_{H^0} = 125$ GeV is 5.8, where 5.2 is expected for no signal.
- ³⁰ CHATRCHYAN 13Y search for H^0 production in the decay $H \rightarrow \gamma \gamma$ in 5.1 fb⁻¹ of pp collisions at $E_{\rm cm} = 7$ TeV and 5.3 fb⁻¹ at $E_{\rm cm} = 8$ TeV. The expected exclusion region for no signal is 110–144 GeV at 95% CL.
- ³¹ CHATRCHYAN 13Y search for H^0 production in the decay $H \rightarrow ZZ^* \rightarrow 4\ell$ in 5.0 fb⁻¹ of pp collisions at $E_{\rm cm} = 7$ TeV and 5.3 fb⁻¹ at $E_{\rm cm} = 8$ TeV. The expected exclusion region for no signal is 120–180 GeV at 95% CL.
- ³² CHATRCHYAN 13Y search for H^0 production in the decay $H \rightarrow WW^* \rightarrow \ell \nu \ell \nu$ in 4.9 fb⁻¹ of pp collisions at $E_{\rm cm} = 7$ TeV and 5.3 fb⁻¹ at $E_{\rm cm} = 8$ TeV. The expected exclusion region for no signal is 122–160 GeV at 95% CL.
- ³³ AAD 12AI search for H^0 production in pp collisions for the final states $H^0 \rightarrow ZZ^{(*)}$, $\gamma\gamma$, $WW^{(*)}$, $b\overline{b}$, $\tau\tau$ with 4.6–4.8 fb⁻¹ at $E_{\rm cm} = 7$ TeV, and $H^0 \rightarrow ZZ^{(*)} \rightarrow 4\ell$, $\gamma\gamma$, $WW^{(*)} \rightarrow e\nu\mu\nu$ with 5.8–5.9 fb⁻¹ at $E_{\rm cm} = 8$ TeV. The 99% CL excluded range is 113–114, 117–121, and 132–527 GeV. An excess of events over background with a local significance of 5.9 σ is observed at $m_{H^0} = 126$ GeV.
- ³⁴ AAD 12AJ search for H^0 production in the decay $H^0 \rightarrow WW^{(*)} \rightarrow \ell \nu \ell \nu$ with 4.7 fb⁻¹ of pp collisions at $E_{\rm cm} = 7$ TeV. A limit on cross section times branching ratio which corresponds to (0.2–10) times the expected Standard Model cross section is given for $m_{H^0} = 110$ –600 GeV at 95% CL.
- ³⁵ AAD 12BU search for H^0 production in the decay $H \rightarrow \tau^+ \tau^-$ with 4.7 fb⁻¹ of pp collisions at $E_{\rm cm} = 7$ TeV. A limit on cross section times branching ratio which is (2.9–11.7) times larger than the expected Standard Model cross section is given for $m_{H^0} = 100-150$ GeV at 95% CL.

³⁶AAD 12BZ search for H^0 production in the decay $H \rightarrow ZZ \rightarrow \ell^+ \ell^- \nu \overline{\nu}$ with 4.7 fb⁻¹ of pp collisions at $E_{\rm cm} = 7$ TeV. A limit on cross section times branching ratio

which corresponds to (0.2–4) times the expected Standard Model cross section is given for $m_{H^0}=$ 200–600 GeV at 95% CL.

- ³⁷ AAD 12CA search for H^0 production in the decay $H \rightarrow ZZ \rightarrow \ell^+ \ell^- q \overline{q}$ with 4.7 fb⁻¹ of pp collisions at $E_{\rm cm} = 7$ TeV. A limit on cross section times branching ratio which corresponds to (0.7-9) times the expected Standard Model cross section is given for $m_{H^0} = 200-600$ GeV at 95% CL.
- ³⁸ AAD 12CN search for associated $H^0 W$ and $H^0 Z$ production in the channels $W \rightarrow \ell \nu$, $Z \rightarrow \ell^+ \ell^-$, $\nu \overline{\nu}$, and $H^0 \rightarrow b\overline{b}$, with 4.7 fb⁻¹ of pp collisions at $E_{\rm cm} = 7$ TeV. A limit on cross section times branching ratio which is (2.5–5.5) times larger than the expected Standard Model cross section is given for $m_{H^0} = 110-130$ GeV at 95% CL.
- ³⁹AAD 12CO search for H^0 production in the decay $H \rightarrow WW \rightarrow \ell \nu q \overline{q}$ with 4.7 fb⁻¹ of pp collisions at $E_{\rm cm} = 7$ TeV. A limit on cross section times branching ratio which is (1.9–10) times larger than the expected Standard Model cross section is given for $m_{H^0} = 300-600$ GeV at 95% CL.
- ⁴⁰ AAD 12D search for H^0 production with $H \to ZZ^{(*)} \to 4\ell$ in 4.8 fb⁻¹ of pp collisions at $E_{\rm cm} = 7$ TeV in the mass range $m_{H^0} = 110$ -600 GeV. An excess of events over background with a local significance of 2.1 σ is observed at 125 GeV.
- ⁴¹ AAD 12G search for H^0 production with $H \rightarrow \gamma \gamma$ in 4.9 fb⁻¹ of pp collisions at $E_{\rm cm} = 7$ TeV in the mass range $m_{H^0} = 110-150$ GeV. An excess of events over background with a local significance of 2.8 σ is observed at 126.5 GeV.
- ⁴² AALTONEN 12AK search for associated $H^0 t \bar{t}$ production in the decay chain $t \bar{t} \rightarrow WWbb \rightarrow \ell \nu q q b b$ with 9.45 fb⁻¹ of $p \bar{p}$ collisions at $E_{\rm cm} = 1.96$ TeV. A limit on cross section times branching ratio which is (10–40) times larger than the expected Standard Model cross section is given for $m_{H^0} = 100-150$ GeV at 95% CL. The limit for $m_{H^0} = 125$ GeV is 20.5, where 12.6 is expected.
- ⁴³ AALTONEN 12AM search for H^0 production in inclusive four-lepton final states coming from $H^0 \rightarrow ZZ$, $H^0Z \rightarrow WW^{(*)}\ell\ell$, or $H^0Z \rightarrow \tau\tau\ell\ell$, with 9.7 fb⁻¹ of $p\overline{p}$ collisions at $E_{\rm cm} = 1.96$ TeV. A limit on cross section times branching ratio which is (7.2–42.4) times larger than the expected Standard Model cross section is given for $m_{H^0} = 120-300$ GeV at 95% CL. The best limit is for $m_{H^0} = 200$ GeV.
- ⁴⁴ AALTONEN 12AN search for H^0 production in the decay $H^0 \rightarrow \gamma \gamma$ with 10 fb⁻¹ of $p\overline{p}$ collisions at $E_{\rm cm} = 1.96$ TeV. A limit on cross section times branching ratio which is (7.7–21.3) times larger than the expected Standard Model cross section is given for $m_{H^0} = 100$ –150 GeV at 95% CL. The limit for $m_{H^0} = 125$ GeV is 17.0, where 9.9 is expected.
- ⁴⁵ AALTONEN 12J search for H^0 production in the decay $H^0 \rightarrow \tau^+ \tau^-$ (one leptonic, the other hadronic) with 6.0 fb⁻¹ of $p\overline{p}$ collisions at $E_{\rm cm} = 1.96$ TeV. A limit on cross section times branching ratio which is (14.6–70.2) times larger than the expected Standard Model cross section is given for $m_{H^0} = 100-150$ GeV at 95% CL. The best limit is for $m_{H^0} = 120$ GeV.
- ⁴⁶ AALTONEN 12Q search for associated $H^0 Z$ production in the final state $H^0 \rightarrow b \overline{b}, Z \rightarrow \ell^+ \ell^-$ with 9.45 fb⁻¹ of $p\overline{p}$ collisions at $E_{\rm cm} = 1.96$ TeV. A limit on cross section times branching ratio which corresponds to (1.0–37.5) times the expected Standard Model cross section is given for $m_{H^0} = 90$ –150 GeV at 95% CL. The limit for $m_{H^0} = 125$ GeV is 7.1, where 3.9 is expected. A broad excess of events for $m_{H^0} > 110$ GeV is observed, with a local significance of 2.4 σ at $m_{H^0} = 135$ GeV.
- ⁴⁷ AALTONEN 12T combine AALTONEN 12Q, AALTONEN 12R, AALTONEN 12S, ABAZOV 12O, ABAZOV 12P, and ABAZOV 12K. An excess of events over background is observed which is most significant in the region $m_{H^0} = 120-135$ GeV, with a local significance of up to 3.3 σ. The local significance at $m_{H^0} = 125$ GeV is 2.8 σ, which

corresponds to $(\sigma(H^0 W) + \sigma(H^0 Z)) B(H^0 \rightarrow b\overline{b}) = (0.23 \substack{+0.09 \\ -0.08}) \text{ pb, compared to}$ the Standard Model expectation at $m_{H^0} = 125 \text{ GeV of } 0.12 \pm 0.01 \text{ pb.}$

- ⁴⁸ ABAZOV 12K search for associated $H^0 Z$ production in the final state $H^0 \rightarrow b\overline{b}, Z \rightarrow \nu \overline{\nu}$, and $H^0 W$ production with $W \rightarrow \ell \nu \ (\ell \ \text{not identified})$ with 9.5 fb⁻¹ of $p\overline{p}$ collisions at $E_{\rm cm} = 1.96$ TeV. A limit on cross section times branching ratio which is (1.9–16.8) times larger than the expected Standard Model cross section is given for $m_{H^0} = 100-150$ GeV at 95% CL. The limit for $m_{H^0} = 125$ GeV is 4.3, where 3.9 is expected.
- ⁴⁹ CHATRCHYAN 12AY search for associated $H^0 W$ and $H^0 Z$ production in the channels $W \rightarrow \ell \nu, Z \rightarrow \ell^+ \ell^-$, and $H^0 \rightarrow \tau \tau, WW^{(*)}$, with 5 fb⁻¹ of pp collisions at $E_{\rm cm} = 7$ TeV. A limit on cross section times branching ratio which is (3.1–9.1) times larger than the expected Standard Model cross section is given for $m_{H^0} = 110-200$ GeV at 95% CL.
- 50 CHATRCHYAN 12AY combine CHATRCHYAN 12F and CHATRCHYAN 12AO in addition and give a limit on cross section times branching ratio which is (2.1–3.7) times larger than the expected Standard Model cross section for $m_{H^0} = 110\text{--}170$ GeV at 95% CL. The limit for $m_{H^0} = 125$ GeV is 3.3.
- ⁵¹ CHATRCHYAN 12C search for H^0 production with $H \rightarrow ZZ \rightarrow \ell^+ \ell^- \tau^+ \tau^-$ in 4.7 fb⁻¹ of pp collisions at $E_{\rm cm} = 7$ TeV. A limit on cross section times branching ratio which is (4–12) times larger than the expected Standard Model cross section is given for $m_{H^0} = 190$ –600 GeV at 95% CL. The best limit is at $m_{H^0} = 200$ GeV.
- ⁵² CHATRCHYAN 12D search for H^0 production with $H \rightarrow ZZ^{(*)} \rightarrow \ell^+ \ell^- q\overline{q}$ in 4.6 fb⁻¹ of pp collisions at $E_{\rm cm} = 7$ TeV. A limit on cross section times branching ratio which corresponds to (1–22) times the expected Standard Model cross section is given for $m_{H^0} = 130-164$ GeV, 200–600 GeV at 95% CL. The best limit is at $m_{H^0} = 230$ GeV. In the Standard Model with an additional generation of heavy quarks and leptons which receive their masses via the Higgs mechanism, m_{H^0} values in the ranges $m_{H^0} = 154-161$ GeV and 200–470 GeV are excluded at 95% CL.
- ⁵³ CHATRCHYAN 12E search for H^0 production with $H \to WW^{(*)} \to \ell^+ \nu \ell^- \overline{\nu}$ in 4.6 fb⁻¹ of pp collisions at $E_{cm} = 7$ TeV in the mass range $m_{H^0} = 110$ -600 GeV.
- ⁵⁴ CHATRCHYAN 12F search for associated $H^0 W$ and $H^0 Z$ production followed by $W \rightarrow \ell \nu, Z \rightarrow \ell^+ \ell^-, \nu \overline{\nu}$, and $H^0 \rightarrow b \overline{b}$, in 4.7 fb⁻¹ of pp collisions at $E_{\rm cm} = 7$ TeV. A limit on cross section times branching ratio which is (3.1–9.0) times larger than the expected Standard Model cross section is given for $m_{H^0} = 110-135$ GeV at 95% CL. The best limit is at $m_{H^0} = 110$ GeV.
- ⁵⁵ CHATRCHYAN 12G search for H^0 production with $H \rightarrow \gamma \gamma$ in 4.8 fb⁻¹ of pp collisions at $E_{\rm cm} = 7$ TeV in the mass range $m_{H^0} = 110-150$ GeV. An excess of events over background with a local significance of 3.1 σ is observed at 124 GeV.
- ⁵⁶ CHATRCHYAN 12H search for H^0 production with $H \rightarrow ZZ^{(*)} \rightarrow 4\ell$ in 4.7 fb⁻¹ of pp collisions at $E_{\rm cm} = 7$ TeV in the mass range $m_{H^0} = 110-600$ GeV. Excesses of events over background are observed around 119, 126 and 320 GeV. The region $m_{H^0} = 114.4-134$ GeV remains consistent with the expectation for the production of a SM-like Higgs boson.
- ⁵⁷ CHATRCHYAN 12I search for H^0 production with $H \rightarrow ZZ \rightarrow \ell^+ \ell^- \nu \overline{\nu}$ in 4.6 fb⁻¹ of pp collisions at $E_{\rm cm} = 7$ TeV in the mass range $m_{H^0} = 250-600$ GeV.
- ⁵⁸ CHATRCHYAN 12K search for H^0 production in the decay $H \rightarrow \tau^+ \tau^-$ with 4.6 fb⁻¹ of pp collisions at $E_{\rm cm} = 7$ TeV. A limit on cross section times branching ratio which is (3.2–7.0) times larger than the expected Standard Model cross section is given for $m_{H^0} = 110-145$ GeV at 95% CL.
- = 110–145 GeV at 95% CL. 59 ABAZOV 11G search for H^0 production in 5.4 fb⁻¹ of $p\overline{p}$ collisions at $E_{\rm cm} = 1.96$ TeV in the decay mode $H^0 \rightarrow WW^{(*)} \rightarrow \ell \nu q \overline{q}'$ (and processes with similar final states). A limit on cross section times branching ratio which is (3.9–37) times larger than the

expected Standard Model cross section is given for $m_{H^0} = 115-200$ GeV at 95% CL. The best limit is at $m_{H^0} = 160$ GeV.

- ⁶⁰ CHATRCHYAN 11J search for H^0 production with $H \rightarrow W^+ W^- \rightarrow \ell \ell \nu \nu$ in 36 pb⁻¹ of pp collisions at $E_{\rm cm} = 7$ TeV. See their Fig. 6 for a limit on cross section times branching ratio for $m_{H^0} = 120$ -600 GeV at 95% CL. In the Standard Model with an additional generation of heavy quarks and leptons which receive their masses via the Higgs mechanism, m_{H^0} values between 144 and 207 GeV are excluded at 95% CL.
- ⁶¹AALTONEN 10F combine searches for H^0 decaying to $W^+ W^-$ in $p\overline{p}$ collisions at $E_{\rm cm}$ = 1.96 TeV with 4.8 fb⁻¹ (CDF) and 5.4 fb⁻¹ (DØ).
- ⁶² AALTONEN 10M combine searches for H^0 decaying to $W^+ W^-$ in $p\overline{p}$ collisions at $E_{\rm cm}$ = 1.96 TeV with 4.8 fb⁻¹ (CDF) and 5.4 fb⁻¹ (DØ) and derive limits $\sigma(p\overline{p} \rightarrow H^0) \cdot$ B($H^0 \rightarrow W^+ W^-$) < (1.75–0.38) pb for $m_H = 120$ –165 GeV, where H^0 is produced in gg fusion. In the Standard Model with an additional generation of heavy quarks, m_{H^0} between 131 and 204 GeV is excluded at 95% CL.
- ⁶³ AALTONEN 09A search for H^0 production in $p\overline{p}$ collisions at $E_{\rm cm} = 1.96$ TeV in the decay mode $H^0 \rightarrow WW^{(*)} \rightarrow \ell^+ \ell^- \nu \overline{\nu}$. A limit on $\sigma(H^0) \cdot B(H^0 \rightarrow WW^{(*)})$ between 0.7 and 2.5 pb (95% CL) is given for $m_{H^0} = 110-200$ GeV, which is 1.7-45 times larger than the expected Standard Model cross section. The best limit is obtained for $m_{H^0} = 160$ GeV.
- ⁶⁴ ABAZOV 09U search for $H^0 \rightarrow \tau^+ \tau^-$ with $\tau \rightarrow$ hadrons in 1 fb⁻¹ of $p\overline{p}$ collisions at $E_{\rm cm} = 1.96$ TeV. The production mechanisms include associated $W/Z+H^0$ production, weak boson fusion, and gluon fusion. A limit (95% CL) is given for $m_{H^0} = 105-145$ GeV, which is 20–82 times larger than the expected Standard Model cross section. The limit for $m_{H^0} = 115$ GeV is 29 times larger than the expected Standard Model cross section. ⁶⁵ ABAZOV 06 exerch for Hings becau production in $\pi\overline{p}$ cellisions at \overline{r} and \overline{r}
- ⁶⁵ ABAZOV 06 search for Higgs boson production in $p\overline{p}$ collisions at $E_{\rm cm} = 1.96$ TeV with the decay chain $H^0 \rightarrow WW^* \rightarrow \ell^{\pm} \nu \ell'^{\mp} \overline{\nu}$. A limit $\sigma(H^0) \cdot B(H^0 \rightarrow WW^*) < (5.6-3.2)$ pb (95 %CL) is given for $m_{H^0} = 120-200$ GeV, which far exceeds the expected constrained Model cross section.
- ⁶⁶ABAZOV 060 search for associated $H^0 W$ production in $p\overline{p}$ collisions at $E_{\rm cm} = 1.96$ TeV with the decay $H^0 \rightarrow WW^*$, in the final states $\ell^{\pm}\ell'^{\mp}\nu\nu'X$ where $\ell = e, \mu$. A limit $\sigma(H^0 W) \cdot B(H^0 \rightarrow WW^*) < (3.2-2.8)$ pb (95 %CL) is given for $m_{H^0} = 115-175$ GeV, which far exceeds the expected Standard Model cross section.

Indirect Mass Limits for H^0 from Electroweak Analysis

The mass limits shown below apply to a Higgs boson H^0 with Standard Model couplings whose mass is a priori unknown.

For limits obtained before the direct measurement of the top quark mass, see the 1996 (Physical Review **D54** 1 (1996)) Edition of this Review. Other studies based on data available prior to 1996 can be found in the 1998 Edition (The European Physical Journal **C3** 1 (1998)) of this Review.

VALUE (GeV)	DOCUMENT ID		TECN
94 <mark>-25</mark>	¹ BAAK	12A	RVUE
• • • We do not use the following	data for averages	, fits,	limits, etc. • • •
91^{+30}_{-23}	² BAAK	12	RVUE
91^{+31}_{-24}	³ ERLER	10A	RVUE
129^{+74}_{-49}	⁴ LEP-SLC	06	RVUE
HTTP://PDG.LBL.GOV	Page 29		Created: 5/30/2017 17:23

- ¹ BAAK 12A make Standard Model fits to Z and neutral current parameters, m_t , m_W , and Γ_W measurements available in 2012 (using also preliminary data). The quoted result is obtained from a fit that does not include the measured mass value of the signal observed at the LHC and also no limits from direct Higgs searches.
- ² BAAK 12 make Standard Model fits to Z and neutral current parameters, m_t , m_W , and Γ_W measurements available in 2010 (using also preliminary data). The quoted result is obtained from a fit that does not include the limit from the direct Higgs searches. The result including direct search data from LEP2, the Tevatron and the LHC is 120^{+12}_{-5} GeV.
- ³ ERLER 10A makes Standard Model fits to Z and neutral current parameters, m_t , m_W measurements available in 2009 (using also preliminary data). The quoted result is obtained from a fit that does not include the limits from the direct Higgs searches. With direct search data from LEP2 and Tevatron added to the fit, the 90% CL (99% CL) interval is 115–148 (114–197) GeV.

⁴LEP-SLC 06 make Standard Model fits to Z parameters from LEP/SLC and m_t , m_W , and Γ_W measurements available in 2005 with $\Delta \alpha_{had}^{(5)}(m_Z) = 0.02758 \pm 0.00035$. The 95% CL limit is 285 GeV.

AABOUD 17 PL B764 11 M. Aaboud et al. (ATLAS Collab.) 16AA EPJ C76 585 AABOUD M. Aaboud et al. (ATLAS Collab.) AABOUD 16AB EPJ C76 605 M. Aaboud et al. (ATLAS Collab.) (ATLAS Collab. AABOUD 16AE JHEP 1609 173 M. Aaboud et al. JHEP 1609 001 (ATLAS Collab.) AABOUD 16H M. Aaboud et al. M. Aaboud et al. AABOUD 16 PR D94 052002 (ATLAS Collab. AAD 16AX EPJ C76 45 G. Aad et al. ATLAS Collab. JHEP 1601 032 (ATLAS Collab.) AAD 16C G. Aad et al. AAD 16L EPJ C76 210 G. Aad et al. (ATLAS Collab.) AALTONEN T. Aaltonen et al. (CDF Collab.) 16C PR D93 112010 ABLIKIM 16E PR D93 052005 M. Ablikim et al. (BES III Collab. KHACHATRY... 16A (CMS Collab. PL B752 221 V. Khachatryan et al. KHACHATRY... 16BG EPJ C76 371 V. Khachatryan et al. (CMS Collab.) KHACHATRY... 16F JHEP 1601 079 V Khachatryan et al. (CMS Collab. KHACHATRY... 16M PRL 117 051802 CMS Collab. V. Khachatrvan et al. PL B755 217 (CMS Collab.) KHACHATRY... 16P V. Khachatryan et al. KHACHATRY... 16W PL B758 296 V Khachatryan et al. (CMS Collab. Khachatryan et al. KHACHATRY... 16Z PL B759 369 V. (CMS Collab.) AAD 15AA PR D92 012006 G. Aad et al. (ATLAS Collab.) AAD 15BD EPJ C75 337 G. Aad et al. (ATLAS Collab.) AAD 15BH EPJ C75 299 Aad et al. (ATLAS Collab. G. Also EPJ C75 408 (errat.) G. Aad et al. (ATLAS Collab.) AAD 15BK EPJ C75 412 G. Aad et al. (ATLAS Collab.) AAD 15BZ PR D92 052002 G. Aad et al. (ATLAS Collab.) AAD 15CE PR D92 092004 G. Aad et al. (ATLAS Collab. AAD JHEP 1501 069 (ATLAS Collab.) 15G G. Aad et al. AAD 15H PRL 114 081802 G. Aad et al. (ATLAS Collab. (ATLAS Collab. AAD 15S PL B744 163 G. Aad et al. KHACHATRY... 15AW JHEP 1510 144 (CMS Collab.) V Khachatryan et al. KHACHATRY... 15AY JHEP 1511 071 V Khachatryan et al. CMS Collab. KHACHATRY... 15BB PL B750 494 (CMS Collab. V. Khachatrvan et al. KHACHATRY... 15N PL B748 221 V. Khachatryan et al. (CMS Collab.) KHACHATRY... 150 (CMS Collab. PL B748 255 V Khachatryan et al. KHACHATRY... 15R PL B749 560 V. Khachatryan et al. (CMS Collab. LEES 15H PR D91 071102 J.P. Lees et al. (BABAR Collab.) 14AP PRL 113 171801 G. Aad et al. (ATLAS Collab. AAD 14AS PL B738 68 AAD (ATLAS Collab.) G. Aad et al. AAD 14AW JHEP 1411 056 G. Aad et al. (ATLAS Collab.) 14BA JHEP 1411 088 AAD G. Aad et al. (ATLAS Collab.) AAD 14J PL B732 8 G. Aad et al. (ATLAS Collab. PR D89 032002 (ATLAS Collab. AAD 14M G. Aad et al. AAD 140 PRL 112 201802 Aad et al. (ATLAS Collab.) G. CHATRCHYAN 14AA PR D89 092007 S. Chatrchyan et al. (CMS Collab. CHATRCHYAN 14AI PR D89 012003 S. Chatrchyan et al. (CMS_Collab.) CHATRCHYAN 14B EPJ C74 2980 (CMS Collab.) S. Chatrchyan et al.

SEARCHES FOR NEUTRAL HIGGS BOSONS REFERENCES

HTTP://PDG.LBL.GOV

Page 30

CHATRCHYAN	14G	IHEP 1401 096	S Chatrchvan <i>et al</i>	(CMS_Collab_)
KHACHATRY	14M	IHEP 1410 160	V Khachatryan <i>et al</i>	(CMS Collab.)
KHACHATRY	14P	FP1 C74 3076	V Khachatryan <i>et al</i>	(CMS Collab.)
KHACHATRY	14Q	PR D90 112013	V. Khachatryan <i>et al.</i>	(CMS Collab.)
AAD	13ÅG	PL B721 32	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	13AT	NJP 15 043009	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	130	JHEP 1302 095	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAIJ	13T	JHEP 1305 132	R. Aaij <i>et al.</i>	(LHCb Collab.)
AALTONEN	13B	PR D87 052008	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN	13C	JHEP 1302 004	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN	13K	PR D88 052012	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN	13L	PR D88 052013	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN	13M	PR D88 052014	T. Aaltonen <i>et al.</i>	(CDF and D0 Collabs.)
AALTONEN	13P	PRL 110 121801	T. Aaltonen <i>et al.</i>	(CDF Collab.)
ABAZOV	13E	PR D88 032008	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABAZOV	13F	PR D88 052005	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABAZOV	13G	PR D88 052006	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABAZOV	13H	PR D88 052007	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABAZOV	131	PR D88 052008	V.M. Abazov <i>et al.</i>	(DU Collab.)
	13J 121/	PR D88 052009	V.IVI. ADAZOV et al.	(DU Collab.)
	121	PR D00 052010	V.M. Abazov et al.	(D0 Collab.)
	13L 12	EDI (72 2552	V.IVI. ADAZOV EL AI.	(Do Collab.)
	1340	DI B722 207	S Chatrohyan at al	(CMS Collab)
CHATRCHYAN	13AU	PL B725 36	S Chatrohyan et al	(CMS Collab.)
CHATRCHYAN	13R I	PL B726 564	S Chatrchyan <i>et al</i>	(CMS_Collab.)
CHATRCHYAN	13BK	PL B726 587	S Chatrchyan <i>et al</i>	(CMS_Collab.)
CHATRCHYAN	130	FP1 C73 2469	S Chatrchyan <i>et al</i>	(CMS_Collab.)
CHATRCHYAN	13X	JHEP 1305 145	S. Chatrchyan <i>et al.</i>	(CMS Collab.)
CHATRCHYAN	13Y	JHEP 1306 081	S. Chatrchyan <i>et al.</i>	(CMS Collab.)
LEES	13C	PR D87 031102	J.P. Lees <i>et al.</i>	(BÀBAR Collab.)
LEES	13L	PR D88 031701	J.P. Lees <i>et al.</i>	(BABAR Collab.)
LEES	13R	PR D88 071102	J.P. Lees <i>et al.</i>	(BABAR Collab.)
AAD	12AI	PL B716 1	G. Aad <i>et al.</i>	(ATLAS Collab.)
	12AJ	PL B/10 02	G. Aad et al.	(ATLAS Collab.)
	12AQ	IHEP 1200 070	G. Add et al.	(ATLAS Collab.)
AAD	12B7	PI B717 29	G Aad et al	(ATLAS Collab.)
AAD	12CA	PL B717 70	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	12CN	PL B718 369	G. Aad et al.	(ATLAS Collab.)
AAD	12CO	PL B718 391	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	12D	PL B710 383	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	12G	PRL 108 111803	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	12N	EPJ C72 2157	G. Aad <i>et al.</i>	(ATLAS Collab.)
AALTONEN	12AB	PR D85 092001	I. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN	12AK	PRL 109 181802	I. Aaltonen <i>et al.</i>	(CDF Collab.)
	12AIVI 12AN	PR D80 072012 DI P717 172	T. Aaltonen <i>et al.</i>	(CDF Collab.)
	12AN	PR D86 001101	T. Aaltonen et al.	(CDF Collab.)
	1270	PRI 108 181804	T Astonen et al.	(CDF Collabs.)
AALTONEN	120	PRI 109 111803	T Aaltonen <i>et al</i>	(CDF_Collab.)
AALTONEN	12R	PRL 109 111804	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN	12S	PRL 109 111805	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN	12T	PRL 109 071804	T. Aaltonen <i>et al.</i>	(CDF and D0 Collabs.)
AALTONEN	12U	PR D85 012007	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN	12X	PR D85 032005	T. Aaltonen <i>et al.</i>	(CDF Collab.)
ABAZOV	12G	PL B710 569	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABAZOV	12K	PL B716 285	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABAZOV	120	PRL 109 121803	V.M. Abazov <i>et al.</i>	(D0 Collab.)
	12P 12	PRL 109 121804	V.IVI. ADAZOV <i>et al.</i>	(DU Collab.)
	12	EDI (72 2003	M. Adikim et al. M. Baak at al	(Cfitter Group)
BAAK	12A	EP I C72 2205	M. Baak et al	(Gfitter Group)
CHATRCHYAN	12AO	JHEP 1209 111	S. Chatrchvan <i>et al.</i>	(CMS Collab.)
CHATRCHYAN	12AY	JHEP 1211 088	S. Chatrchyan <i>et al.</i>	(CMS Collab.)
CHATRCHYAN	12C	JHEP 1203 081	S. Chatrchyan <i>et al.</i>	(CMS Collab.)
CHATRCHYAN	12D	JHEP 1204 036	S. Chatrchyan <i>et al.</i>	(CMS Collab.)
CHATRCHYAN	12E	PL B710 91	S. Chatrchyan <i>et al.</i>	(CMS Collab.)
CHAIRCHYAN	12F	PL B710 284	S. Chatrchyan <i>et al.</i>	(CMS_Collab.)
	12G 10H	PL B/IU 403 DDI 100 111004	5. Chatronyan <i>et al.</i>	(CIVIS Collab.)
CHAIRCHIAN	1211	FNL 100 111004	5. Chatronyan <i>et al.</i>	(CIVIS COIIAD.)

HTTP://PDG.LBL.GOV

Page 31

	101	ILED 1202 040	S Chatrohyan at al	(CMS Callab)
	121	JHEP 1203 040	5. Chatronyan et al.	
CHAIRCHYAN	12K	PL B/13 68	S. Chatrchyan <i>et al.</i>	(CMS Collab.)
CHATRCHYAN	12N	PL B716 30	S. Chatrchyan <i>et al.</i>	(CMS Collab.)
CHATRCHYAN	12V	PRL 109 121801	S. Chatrchyan <i>et al.</i>	(CMS Collab.)
AALTONEN	11P	PRL 107 031801	T. Aaltonen <i>et al.</i>	(CDF Collab.)
ABA70V	11G	PRI 106 171802	VM Abazov et al	(D0 Collab)
ABAZOV	11K	PI R608 07	VM Abazov et al	(D0 Collab.)
	11\\/	DDI 107 101901	V.M. Abazov et al.	(D0 Collab.)
	1100	PRL 107 121001		
ABOUZAID	IIA	PRL 107 201803	E. Abouzaid <i>et al.</i>	(Kiev Collab.)
CHAIRCHYAN	11J	PL B699 25	S. Chatrchyan <i>et al.</i>	(CMS Collab.)
DEL-AMO-SA	11J	PRL 107 021804	P. del Amo Sanchez <i>et al.</i>	(BABAR Collab.)
LEES	11H	PRL 107 221803	J.P. Lees <i>et al.</i>	(BABAR Collab.)
AALTONEN	10F	PRL 104 061802	T. Aaltonen <i>et al.</i>	(CDF and D0 Collabs.)
AALTONEN	10M	PR D82 011102	T Aaltonen <i>et al</i>	(CDE and D0 Collabs)
	10	PI B682 381	G Abbiendi et al	(OPAL Collab.)
	10	IHED 1008 003	S Androps at al	
	10	DD D01 0E1201	J. Frier	
	10A	PR Doi 051501	J. Effer	
HYUN	10	PRL 105 091801	H.J. Hyun <i>et al.</i>	(BELLE Collab.)
SCHAEL	10	JHEP 1005 049	S. Schael <i>et al.</i>	(ALEPH Collab.)
AALTONEN	09A	PRL 102 021802	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN	09AB	PRL 103 061803	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN	09AR	PRL 103 201801	T. Aaltonen <i>et al.</i>	(CDF Collab.)
ABAZOV	09U	PRL 102 251801	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABAZOV	091/	PRI 103 061801	VM Abazov et al	(D0 Collab.)
AURERT	00P	PRI 103 181801	B Aubert et al	(BABAR Collab.)
AUBERT	007	DDI 103 001001	B. Aubert et al.	(BABAR Collab.)
	092	DDL 102 051003	D. Aubert et al.	(KEK E201- Callab.)
	09	PRL 102 031002	f.C. Tung et al.	(NEK ES91a Collab.)
ABAZOV	080	PRL 101 051801	V.IVI. Abazov <i>et al.</i>	(DU Collab.)
ABDALLAH	08R	EPJ C54 I	J. Abdallah <i>et al.</i>	(DELPHI Collab.)
Also		EPJ C56 165 (errat.	.) J. Abdallah <i>et al.</i>	(DELPHI Collab.)
LOVE	08	PRL 101 151802	W. Love <i>et al.</i>	(CLEO Collab.)
ABBIENDI	07	EPJ C49 457	G. Abbiendi <i>et al.</i>	(OPAL Collab.)
BESSON	07	PRL 98 052002	D. Besson et al.	(CLEO Collab.)
SCHAEL	07	EPJ C49 439	S. Schael <i>et al.</i>	(ALEPH Collab.)
ABAZOV	06	PRL 96 011801	V.M. Abazov et al.	(D0 Collab.)
ABAZOV	06O	PRL 97 151804	V.M. Abazov <i>et al.</i>	(D0 Collab.)
LEP-SIC	06	PRPI 427 257	ALEPH DELPHI 13 OPAL	SLD and working groups
SCHAFI	06B	FP1 C47 547	S Schael et al	(LEP Collabs)
	054	EPI C40 317	G Abbiendi et al	(OPAL Collab.)
		EDI CAA 147	L Abdallab at al	(DEL DUL Collab.)
	050	DI D600 25	D. Abdallall et al.	(L2 Callab.)
	05	PL D009 33	P. Achard <i>et al.</i>	
ACOSTA	05Q	PR D/2 0/2004	D. Acosta <i>et al.</i>	(CDF Collab.)
PARK	05	PRL 94 021801	H.K. Park <i>et al.</i>	(FNAL HyperCP Collab.)
ABBIENDI	04K	PL B597 11	G. Abbiendi <i>et al.</i>	(OPAL Collab.)
ABBIENDI	04M	EPJ C37 49	G. Abbiendi <i>et al.</i>	(OPAL Collab.)
ABDALLAH	04	EPJ C32 145	J. Abdallah <i>et al.</i>	(DELPHI Collab.)
ABDALLAH	04B	EPJ C32 475	J. Abdallah <i>et al.</i>	(DELPHI Collab.)
ABDALLAH	04L	EPJ C35 313	J. Abdallah <i>et al.</i>	(DELPHI Collab.)
ABDALLAH	04O	EPJ C38 1	J. Abdallah <i>et al.</i>	(DELPHI Collab.)
ACHARD	04B	PL B583 14	P. Achard <i>et al.</i>	(L3 Collab.)
ACHARD	04F	PL B589 89	P Achard et al	(L3 Collab)
	03B	EP1 C26 479	C Abbiendi et al	(OPAL Collab.)
	03E	EDI C27 311	G. Abbiendi et al.	(OPAL Collab.)
	031	EDI (27 702	G. Abbiendi et al.	(OPAL Collab.)
	030	LFJ C27 403	G. Abbieliul <i>et al.</i>	(UFAL COND.)
ACHARD	030	PL B308 191	P. Achard <i>et al.</i>	(L3 Collab.)
CARENA	03	EPJ C26 601	M.S. Carena <i>et al.</i>	
HEISTER	03D	PL B565 61	A. Heister <i>et al.</i>	(ALEPH, DELPHI, L3+)
ALEPH, DE	LPHI,	L3, OPAL, LEP Hig	gs Working Group	<i>(</i> - - <i>· · ·</i> · <i>· · · · · · · · · ·</i>
ABBIENDI	02D	EPJ C23 397	G. Abbiendi <i>et al.</i>	(OPAL Collab.)
ABBIENDI	02F	PL B544 44	G. Abbiendi <i>et al.</i>	(OPAL Collab.)
ACHARD	02C	PL B534 28	P. Achard <i>et al.</i>	(L3 Collab.)
ACHARD	02H	PL B545 30	P. Achard <i>et al.</i>	(L3 Collab.)
AKEROYD	02	PR D66 037702	A.G. Akeroyd <i>et al.</i>	
HEISTER	02	PL B526 191	A. Heister <i>et al.</i>	(ALEPH Collab.)
HEISTER	02L	PL B544 16	A. Heister <i>et al.</i>	(ALEPH Collab)
HEISTER	02M	PL B544 25	A. Heister et al	(ALEPH Collab.)
ABBIENDI	01F	FPI C18 425	G Abbiendi <i>et al</i>	(OPAL Collab.)
ABREII	01F	PI B507 80	P Abreu et al	(DELPHI Collab.)
	010	PL R517 210	P Achard et al	(I 3 Collab.)
	014	PR D6/ 002002	T Affolder $et al$	(CDE Collab.)
RADATE	010	DI RA00 52	$\begin{array}{c} \mathbf{P} \mathbf{B} \\ \mathbf{P} \mathbf{B} \\ \mathbf{r} \\ $	(ALEDU Callab.)
DANATE	010	IL D499 33	n. Darale el al.	(ALEFH COUDD.)

HTTP://PDG.LBL.GOV

Page 32

ACCIARRI	00M	PL B485 85	M. Acciarri <i>et al.</i>	(L3 Collab.)
ACCIARRI	00R	PL B489 102	M. Acciarri <i>et al.</i>	(L3 Collab.)
ACCIARRI	00S	PL B489 115	M. Acciarri <i>et al.</i>	(L3 Collab.)
BARATE	00L	PL B487 241	R. Barate <i>et al.</i>	(ALEPH Collab.)
ABBIENDI	99E	EPJ C7 407	G. Abbiendi <i>et al.</i>	`(OPAL Collab.)
ABBIENDI	990	PL B464 311	G. Abbiendi <i>et al.</i>	(OPAL Collab.)
ABBOTT	99B	PRL 82 2244	B. Abbott <i>et al.</i>	(D0 Collab.)
ABREU	99P	PL B458 431	P. Abreu <i>et al.</i>	(DELPHI Collab.)
CARENA	99B	hep-ph/9912223	M.S. Carena <i>et al.</i>	· · · ·
CERN-TH/9	99-374			
ABBOTT	98	PRL 80 442	B. Abbott <i>et al.</i>	(D0 Collab.)
ACKERSTAFF	98S	EPJ C5 19	K. Ackerstaff <i>et al.</i>	(OPAL Collab.)
ACKERSTAFF	98Y	PL B437 218	K. Ackerstaff <i>et al.</i>	(OPAL Collab.)
GONZALEZ	98B	PR D57 7045	M.C. Gonzalez-Garcia, S.M. Lietti, S.F	. Novaes
PDG	98	EPJ C3 1	C. Caso <i>et al.</i>	(PDG Collab.)
KRAWCZYK	97	PR D55 6968	M. Krawczyk, J. Zochowski	(WARS)
ALEXANDER	96H	ZPHY C71 1	G. Alexander et al.	(OPAL Collab.)
PDG	96	PR D54 1	R. M. Barnett <i>et al.</i>	(PDG Collab.)
ABREU	95H	ZPHY C67 69	P. Abreu <i>et al.</i>	(DELPHI Collab.)
BALEST	95	PR D51 2053	R. Balest <i>et al.</i>	(CLEO Collab.)
PICH	92	NP B388 31	A. Pich, J. Prades, P. Yepes	(CERN, CPPM)
ANTREASYAN	90C	PL B251 204	D. Antreasyan <i>et al.</i> (C	rystal Ball Collab.)

Citation: C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016) and 2017 update