Light Quarks (*u*, *d*, *s*)

OMITTED FROM SUMMARY TABLE

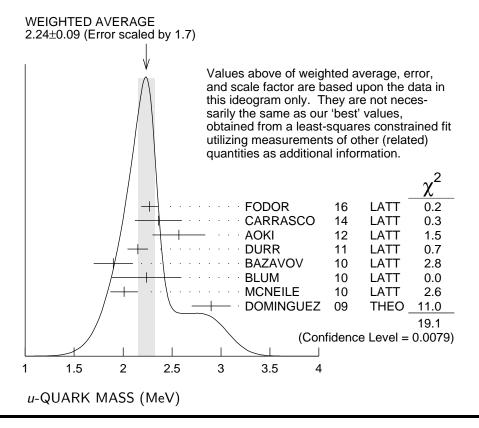
u-QUARK MASS

The *u*-, *d*-, and *s*-quark masses are estimates of so-called "current-quark masses," in a mass- independent subtraction scheme such as $\overline{\text{MS}}$. The ratios m_u/m_d and m_s/m_d are extracted from pion and kaon masses using chiral symmetry. The estimates of *d* and *u* masses are not without controversy and remain under active investigation. Within the literature there are even suggestions that the *u* quark could be essentially massless. The *s*-quark mass is estimated from SU(3) splittings in hadron masses.

We have normalized the $\overline{\text{MS}}$ masses at a renormalization scale of $\mu = 2$ GeV. Results quoted in the literature at $\mu = 1$ GeV have been rescaled by dividing by 1.35. The values of "Our Evaluation" were determined in part via Figures 1 and 2.

MS MASS (MeV)	DOCUMENT ID	TECN	
2.2 $\substack{+0.6\\-0.4}$ OUR EVALUATION	See the ideogram	below	Ι.
$2.27\!\pm\!0.06\!\pm\!0.06$	¹ FODOR	16	LATT
2.36 ± 0.24	² CARRASCO	14	LATT
$2.57 \!\pm\! 0.26 \!\pm\! 0.07$	³ AOKI	12	LATT
$2.15\!\pm\!0.03\!\pm\!0.10$	⁴ DURR	11	LATT
1.9 ± 0.2	⁵ BAZAVOV	10	LATT
$2.24\!\pm\!0.10\!\pm\!0.34$	⁶ BLUM	10	LATT
2.01 ± 0.14	⁷ MCNEILE	10	
2.9 ± 0.2	⁸ DOMINGUEZ	09	THEO
\bullet \bullet We do not use the followin	g data for averages	s, fits,	limits, etc. $\bullet \bullet \bullet$
2.01 ± 0.14	⁷ DAVIES	10	LATT
2.9 ± 0.8	⁹ DEANDREA	80	THEO
3.02±0.33	¹⁰ BLUM	07	LATT
2.7 ±0.4	¹¹ JAMIN	06	THEO
1.9 ± 0.2	¹² MASON	06	LATT
2.8 ± 0.2	¹³ NARISON	06	THEO
1.7 ± 0.3	¹⁴ AUBIN	04A	LATT
1			

¹ FODOR 16 is a lattice simulation with $N_f = 2 + 1$ dynamical flavors and includes partially quenched QED effects.


²CARRASCO 14 is a lattice QCD computation of light quark masses using 2 + 1 + 1 dynamical quarks, with $m_u = m_d \neq m_s \neq m_c$. The *u* and *d* quark masses are obtained separately by using the *K* meson mass splittings and lattice results for the electromagnetic contributions.

³AOKI 12 is a lattice computation using 1 + 1 + 1 dynamical quark flavors.

⁴ DURR 11 determine quark mass from a lattice computation of the meson spectrum using $N_f = 2 + 1$ dynamical flavors. The lattice simulations were done at the physical quark mass, so that extrapolation in the quark mass was not needed. The individual m_u , m_d values are obtained using the lattice determination of the average mass m_{ud} and of the ratio m_s/m_{ud} and the value of $Q = (m_s^2 - m_{ud}^2) / (m_d^2 - m_u^2)$ as determined from $\eta \rightarrow 3\pi$ decays.

⁵BAZAVOV 10 is a lattice computation using 2+1 dynamical quark flavors.

- ⁶ BLUM 10 determines light quark masses using a QCD plus QED lattice computation of the electromagnetic mass splittings of the low-lying hadrons. The lattice simulations use 2+1 dynamical quark flavors.
- ⁷ DAVIES 10 and MCNEILE 10 determine $\overline{m}_{c}(\mu)/\overline{m}_{s}(\mu) = 11.85 \pm 0.16$ using a lattice computation with $N_{f} = 2 + 1$ dynamical fermions of the pseudoscalar meson masses. Mass m_{u} is obtained from this using the value of m_{c} from ALLISON 08 or MCNEILE 10 and the BAZAVOV 10 values for the light quark mass ratios, m_{s}/\overline{m} and m_{u}/m_{d} .
- ⁸DOMINGUEZ 09 use QCD finite energy sum rules for the two-point function of the divergence of the axial vector current computed to order α_s^4 .
- 9 DEANDREA 08 determine m_u-m_d from $\eta \to 3\pi^0$, and combine with the PDG 06 lattice average value of $m_u+m_d=7.6\pm1.6$ to determine m_u and m_d .
- ¹⁰ BLUM 07 determine quark masses from the pseudoscalar meson masses using a QED plus QCD lattice computation with two dynamical quark flavors.
- ¹¹ JAMIN 06 determine m_u (2 GeV) by combining the value of m_s obtained from the spectral function for the scalar $K\pi$ form factor with other determinations of the quark mass ratios.
- ¹² MASON 06 extract light quark masses from a lattice simulation using staggered fermions with an improved action, and three dynamical light quark flavors with degenerate u and d quarks. Perturbative corrections were included at NNLO order. The quark masses m_u and m_d were determined from their $(m_u+m_d)/2$ measurement and AUBIN 04A m_u/m_d value.
- ¹³NARISON 06 uses sum rules for $e^+e^- \rightarrow$ hadrons to order α_s^3 to determine m_s combined with other determinations of the quark mass ratios.
- $^{14}\,\mathrm{AUBIN}$ 04A employ a partially quenched lattice calculation of the pseudoscalar meson masses.

d-QUARK MASS

See the comment for the *u* quark above.

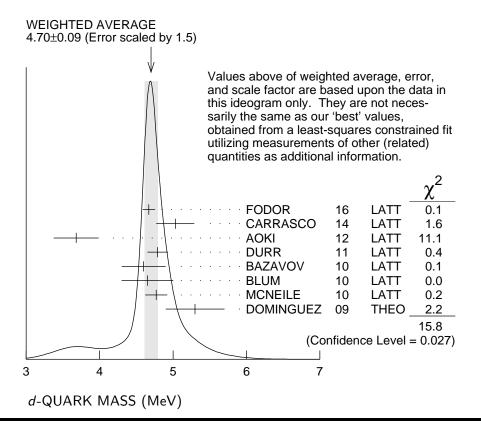
We have normalized the $\overline{\text{MS}}$ masses at a renormalization scale of $\mu = 2$ GeV. Results quoted in the literature at $\mu = 1$ GeV have been rescaled by dividing by 1.35. The values of "Our Evaluation" were determined in part via Figures 1 and 2.

MS MASS (MeV)	DOCUMENT ID	TECN		
4.7 $\stackrel{+0.5}{-0.4}$ OUR EVALUATION	See the ideogram below.			
$4.67 \pm 0.06 \pm 0.06$ 5.03 ± 0.26	¹ FODOR ² CARRASCO			

² CARRASCO	14	LATT
	12	LATT
	11	LATT
	10	LATT
	10	LATT
	10	LATT
⁸ DOMINGUEZ	09	THEO
ng data for averages	s, fits,	limits, etc. • •
⁷ DAVIES	10	LATT
⁹ DEANDREA	10 08	LATT THEO
⁹ DEANDREA ¹⁰ BLUM		
⁹ DEANDREA ¹⁰ BLUM ¹¹ JAMIN	08	THEO
⁹ DEANDREA 10 BLUM 11 JAMIN ¹² MASON	08 07	THEO LATT
⁹ DEANDREA ¹⁰ BLUM ¹¹ JAMIN	08 07 06	THEO LATT THEO
	³ AOKI ⁴ DURR ⁵ BAZAVOV ⁶ BLUM ⁷ MCNEILE ⁸ DOMINGUEZ	³ AOKI 12 ⁴ DURR 11 ⁵ BAZAVOV 10 ⁶ BLUM 10

¹ FODOR 16 is a lattice simulation with $N_f = 2 + 1$ dynamical flavors and includes partially quenched QED effects.

²CARRASCO 14 is a lattice QCD computation of light quark masses using 2 + 1 + 1 dynamical quarks, with $m_{\mu} = m_{d} \neq m_{s} \neq m_{c}$. The *u* and *d* quark masses are obtained separately by using the *K* meson mass splittings and lattice results for the electromagnetic contributions.


 3 AOKI 12 is a lattice computation using 1+1+1 dynamical quark flavors.

⁴ DURR 11 determine quark mass from a lattice computation of the meson spectrum using $N_f = 2 + 1$ dynamical flavors. The lattice simulations were done at the physical quark mass, so that extrapolation in the quark mass was not needed. The individual m_u , m_d values are obtained using the lattice determination of the average mass m_{ud} and of the ratio m_s/m_{ud} and the value of $Q = (m_s^2 - m_{ud}^2) / (m_d^2 - m_u^2)$ as determined from $\eta \rightarrow 3\pi$ decays.

 $^5\,{\rm BAZAVOV}$ 10 is a lattice computation using 2+1 dynamical quark flavors.

- ⁶ BLUM 10 determines light quark masses using a QCD plus QED lattice computation of the electromagnetic mass splittings of the low-lying hadrons. The lattice simulations use 2+1 dynamical quark flavors.
- ⁷ DAVIES 10 and MCNEILE 10 determine $\overline{m}_{c}(\mu)/\overline{m}_{s}(\mu) = 11.85 \pm 0.16$ using a lattice computation with $N_{f} = 2 + 1$ dynamical fermions of the pseudoscalar meson masses. Mass m_{d} is obtained from this using the value of m_{c} from ALLISON 08 or MCNEILE 10 and the BAZAVOV 10 values for the light quark mass ratios, m_{s}/\overline{m} and m_{u}/m_{d} .
- ⁸ DOMINGUEZ 09 use QCD finite energy sum rules for the two-point function of the divergence of the axial vector current computed to order α_s^4 .
- ⁹DEANDREA 08 determine $m_u m_d$ from $\eta \rightarrow 3\pi^0$, and combine with the PDG 06 lattice average value of $m_u + m_d = 7.6 \pm 1.6$ to determine m_u and m_d .

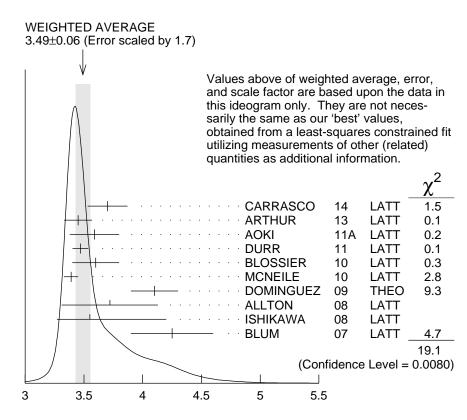
- ¹⁰ BLUM 07 determine quark masses from the pseudoscalar meson masses using a QED plus QCD lattice computation with two dynamical quark flavors.
- ¹¹ JAMIN 06 determine m_d (2 GeV) by combining the value of m_s obtained from the spectral function for the scalar $K\pi$ form factor with other determinations of the quark mass ratios.
- ¹² MASON 06 extract light quark masses from a lattice simulation using staggered fermions with an improved action, and three dynamical light quark flavors with degenerate u and d quarks. Perturbative corrections were included at NNLO order. The quark masses m_u and m_d were determined from their $(m_u+m_d)/2$ measurement and AUBIN 04A m_u/m_d value.
- ¹³NARISON 06 uses sum rules for $e^+e^- \rightarrow$ hadrons to order α_s^3 to determine m_s combined with other determinations of the quark mass ratios.
- ¹⁴ AUBIN 04A perform three flavor dynamical lattice calculation of pseudoscalar meson masses, with continuum estimate of electromagnetic effects in the kaon masses, and one-loop perturbative renormalization constant.

$$\overline{m} = (m_u + m_d)/2$$

See the comments for the *u* quark above.

We have normalized the $\overline{\text{MS}}$ masses at a renormalization scale of $\mu=2$ GeV. Results quoted in the literature at $\mu = 1$ GeV have been rescaled by dividing by 1.35. The values of "Our Evaluation" were determined in part via Figures 1 and 2.

MS MASS (MeV)	DOCUMENT ID		TECN
3.5 +0.7 OU	R EVALUATION See the ideog	gram ł	pelow.
$3.70 \hspace{0.1in} \pm 0.17$	¹ CARRASCO	14	LATT
$3.45 \hspace{0.1in} \pm 0.12$	² ARTHUR	13	LATT
$3.59\ \pm 0.21$	³ AOKI	11A	LATT
$3.469 \pm 0.047 \pm 0.047$		11	LATT
3.6 ± 0.2	⁵ BLOSSIER	10	LATT
3.39 ± 0.06	⁶ MCNEILE	10	
4.1 ± 0.2	⁷ DOMINGUEZ	09	THEO
3.72 ± 0.41	⁸ ALLTON	80	LATT
$3.55 \ {+0.65 \atop -0.28}$	⁹ ISHIKAWA	08	LATT
4.25 ± 0.35	¹⁰ BLUM	07	LATT
• • • We do not us	e the following data for averages	s, fits,	limits, etc. \bullet \bullet
3.40 ±0.07	⁶ DAVIES	10	LATT
$3.85 \pm 0.12 \pm 0.4$	4 ¹¹ BLOSSIER	08	LATT
$\geq 4.85 \pm 0.20$	¹² DOMINGUEZ.	08 B	THEO
4.026 ± 0.048	¹³ NAKAMURA	08	
$4.08 \pm 0.25 \pm 0.4$		06	LATT
$4.7 \pm 0.2 \pm 0.3$	3 ¹⁵ GOCKELER	06A	LATT
3.2 ± 0.3	¹⁶ MASON	06	LATT
3.95 ± 0.3	¹⁷ NARISON	06	THEO
2.8 ± 0.3	¹⁸ AUBIN	04	LATT
$4.29 \pm 0.14 \pm 0.0$	65 ¹⁹ AOKI	03	LATT
3.223 ± 0.3	²⁰ AOKI	03 B	LATT
$4.4 \pm 0.1 \pm 0.4$	4 ²¹ BECIREVIC	03	LATT
4.1 $\pm 0.3 \pm 1.0$	22	03	LATT
1			


 1 CARRASCO 14 is a lattice QCD computation of light quark masses using 2 + 1 + 1 dynamical quarks, with $m_u = m_d \neq m_s \neq m_c$. The *u* and *d* quark masses are obtained separately by using the *K* meson mass splittings and lattice results for the electromagnetic contributions.

 2 ARTHUR 13 is a lattice computation using 2+1 dynamical domain wall fermions. Masses at $\mu=3~{\rm GeV}$ have been converted to $\mu=2~{\rm GeV}$ using conversion factors given in their paper.

 3 AOKI 11A determine quark masses from a lattice computation of the hadron spectrum using $N_f = 2 + 1$ dynamical flavors of domain wall fermions.

⁴ DURR 11 determine quark mass from a lattice computation of the meson spectrum using $N_f = 2 + 1$ dynamical flavors. The lattice simulations were done at the physical quark mass, so that extrapolation in the quark mass was not needed.

 $^5\,\mathrm{BLOSSIER}$ 10 determines quark masses from a computation of the hadron spectrum using $N_f = 2$ dynamical twisted-mass Wilson fermions.

$$\overline{m} = (m_u + m_d) / 2 \text{ (MeV)}$$

- ⁶ DAVIES 10 and MCNEILE 10 determine $\overline{m}_{c}(\mu)/\overline{m}_{s}(\mu) = 11.85 \pm 0.16$ using a lattice computation with $N_{f} = 2 + 1$ dynamical fermions of the pseudoscalar meson masses. Mass \overline{m} is obtained from this using the value of m_{c} from ALLISON 08 or MCNEILE 10 and the BAZAVOV 10 values for the light quark mass ratio, m_{s}/\overline{m} .
- ⁷ DOMINGUEZ 09 use QCD finite energy sum rules for the two-point function of the divergence of the axial vector current computed to order α_s^4 .
- ⁸ ALLTON 08 use a lattice computation of the π , K, and Ω masses with 2+1 dynamical flavors of domain wall quarks, and non-perturbative renormalization.
- ⁹ ISHIKAWA 08 use a lattice computation of the light meson spectrum with 2+1 dynamical flavors of O(a) improved Wilson quarks, and one-loop perturbative renormalization.
- ¹⁰ BLUM 07 determine quark masses from the pseudoscalar meson masses using a QED plus QCD lattice computation with two dynamical quark flavors.
- ¹¹ BLOSSIER 08 use a lattice computation of pseudoscalar meson masses and decay constants with 2 dynamical flavors and non-perturbative renormalization.
- ¹² DOMINGUEZ-CLARIMON 08B obtain an inequality from sum rules for the scalar two-point correlator.
- ¹³NAKAMURA 08 do a lattice computation using quenched domain wall fermions and non-perturbative renormalization.
- 14 GOCKELER 06 use an unquenched lattice computation of the axial Ward Identity with $N_f=2$ dynamical light quark flavors, and non-perturbative renormalization, to obtain $\overline{m}(2 \text{ GeV}) = 4.08 \pm 0.25 \pm 0.19 \pm 0.23$ MeV, where the first error is statistical, the second and third are systematic due to the fit range and force scale uncertainties, respectively. We have combined the systematic errors linearly.

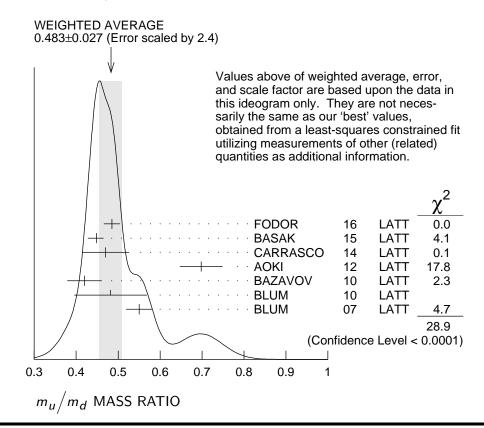
- 15 GOCKELER 06A use an unquenched lattice computation of the pseudoscalar meson masses with $N_f=2$ dynamical light quark flavors, and non-perturbative renormalization.
- 16 MASON 06 extract light quark masses from a lattice simulation using staggered fermions with an improved action, and three dynamical light quark flavors with degenerate u and d quarks. Perturbative corrections were included at NNLO order.
- ¹⁷NARISON 06 uses sum rules for $e^+e^- \rightarrow$ hadrons to order α_s^3 to determine m_s combined with other determinations of the quark mass ratios.
- ¹⁸AUBIN 04 perform three flavor dynamical lattice calculation of pseudoscalar meson masses, with one-loop perturbative renormalization constant.
- ¹⁹ AOKI 03 uses quenched lattice simulation of the meson and baryon masses with degenerate light quarks. The extrapolations are done using quenched chiral perturbation theory.
- ²⁰ The errors given in AOKI 03B were $^{+0.046}_{-0.069}$. We changed them to ± 0.3 for calculating the overall best values. AOKI 03B uses lattice simulation of the meson and baryon masses with two dynamical light quarks. Simulations are performed using the $\mathcal{O}(a)$ improved Wilson action.
- ²¹ BECIREVIC 03 perform quenched lattice computation using the vector and axial Ward identities. Uses $\mathcal{O}(a)$ improved Wilson action and nonperturbative renormalization.
- ²² CHIU 03 determines quark masses from the pion and kaon masses using a lattice simulation with a chiral fermion action in quenched approximation.

VALUE	DOCUMENT ID		TECN COMMENT	
0.38-0.58 OUR EVALUATION	See the ideogram	below.		
$0.485\ \pm 0.011\ \pm 0.016$	¹ FODOR	16	LATT	
$0.4482 \substack{+\ 0.0173 \\ -\ 0.0206}$	² BASAK	15	LATT	
0.470 ± 0.056	³ CARRASCO	14	LATT	
$0.698\ \pm 0.051$	⁴ AOKI	12	LATT	
$0.42 \pm 0.01 \pm 0.04$	⁵ BAZAVOV	10	LATT	
$0.4818 \pm 0.0096 \pm 0.0860$	⁶ BLUM	10	LATT	
0.550 ± 0.031	⁷ BLUM	07	LATT	
• • • We do not use the follow	ng data for average	s, fits,	limits, etc. • • •	
0.43 ±0.08	⁸ AUBIN	04A	LATT	
$0.410\ \pm 0.036$	⁹ NELSON	03	LATT	
0.553 ± 0.043	¹⁰ LEUTWYLER	96	THEO Compilation	
		o .		

m_u/m_d MASS RATIO

¹ FODOR 16 is a lattice simulation with $N_f = 2 + 1$ dynamical flavors and includes partially quenched QED effects.

 2 BASAK 15 is a lattice computation using 2+1 dynamical quark flavors.


³CARRASCO 14 is a lattice QCD computation of light quark masses using 2 + 1 + 1 dynamical quarks, with $m_u = m_d \neq m_s \neq m_c$. The *u* and *d* quark masses are obtained separately by using the *K* meson mass splittings and lattice results for the electromagnetic contributions.

⁴ AOKI 12 is a lattice computation using 1 + 1 + 1 dynamical quark flavors.

 5 BAZAVOV 10 is a lattice computation using 2+1 dynamical quark flavors.

 6 BLUM 10 is a lattice computation using 2+1 dynamical quark flavors.

- ⁷ BLUM 07 determine quark masses from the pseudoscalar meson masses using a QED plus QCD lattice computation with two dynamical quark flavors.
- ⁸ AUBIN 04A perform three flavor dynamical lattice calculation of pseudoscalar meson masses, with continuum estimate of electromagnetic effects in the kaon masses.
- ⁹ NELSON 03 computes coefficients in the order p^4 chiral Lagrangian using a lattice calculation with three dynamical flavors. The ratio m_u/m_d is obtained by combining this with the chiral perturbation theory computation of the meson masses to order p^4 .
- ¹⁰LEUTWYLER 96 uses a combined fit to $\eta \rightarrow 3\pi$ and $\psi' \rightarrow J/\psi(\pi,\eta)$ decay rates, and the electromagnetic mass differences of the π and K.

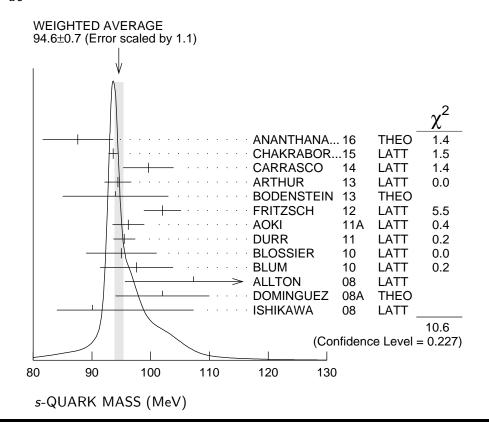
s-QUARK MASS

See the comment for the u quark above.

We have normalized the $\overline{\rm MS}$ masses at a renormalization scale of $\mu = 2$ GeV. Results quoted in the literature at $\mu = 1$ GeV have been rescaled by dividing by 1.35.

MS MASS (MeV)	DOCUMENT ID	TECN
96 $+ \frac{8}{-4}$ OUR EVALUATION	See the ideogram belo	w.
87.6± 6.0	¹ ANANTHANA16	THEO
93.6± 0.8	² CHAKRABOR15	
99.6± 4.3	³ CARRASCO 14	
94.4± 2.3	⁴ ARTHUR 13	
94 ± 9	⁵ BODENSTEIN 13	
$102 ~\pm~ 3 ~\pm~ 1$	⁶ FRITZSCH 12	LATT
HTTP://PDG.LBL.GOV	Page 8	Created: 5/30/2017 17:22

96.2 \pm 2.7 95.5 \pm 1.1 \pm 1.5 95 \pm 6 97.6 \pm 2.9 \pm 5.5 107.3 \pm 11.7 102 \pm 8 90.1 $^{+17.2}_{-6.1}$ • • We do not use the followin	⁷ AOKI ⁸ DURR ⁹ BLOSSIER ¹⁰ BLUM ¹¹ ALLTON ¹² DOMINGUEZ ¹³ ISHIKAWA g data for averages	11 10 10 08 08A 08	LATT
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	 ¹⁴ DAVIES ¹⁴ MCNEILE ¹⁵ BLOSSIER ¹⁶ NAKAMURA ¹⁷ BLUM ¹⁸ CHETYRKIN ¹⁹ GOCKELER ²⁰ GOCKELER 	10 10 08 07 06 06 06 06 06 06 06	LATT LATT LATT LATT THEO LATT LATT THEO LATT
96 $+ 5 + 16$ - 3 - 18 81 ± 22 125 ± 28 93 ± 32 76 ± 8 116 $\pm 6 \pm 0.65$ $84.5^{+12}_{-1.7}$ 106 $\pm 2 \pm 8$ 92 $\pm 9 \pm 16$ 117 ± 17 103 ± 17	 ²⁵ BAIKOV ²⁶ GAMIZ ²⁷ GORBUNOV ²⁸ NARISON ²⁹ AUBIN ³⁰ AOKI ³¹ AOKI ³² BECIREVIC ³³ CHIU ³⁴ GAMIZ ³⁵ GAMIZ 	05 05 04 03 03B 03 03	THEO THEO THEO LATT


- 1 ANANTHANARAYAN 16 determine $\overline{m}_{s}(\text{2 GeV}) = 106.70 \pm 9.36$ MeV and 74.47 \pm 7.77 MeV from fits to ALEPH and OPAL τ decay data, respectively. We have used the weighted average of the two.
- ²CHAKRABORTY 15 is a lattice QCD computation that determines m_c and m_c/m_s using pseudoscalar mesons masses tuned on gluon field configurations with 2+1+1 dynamical flavors of HISQ quarks with u/d masses down to the physical value.
- 3 CARRASCO 14 is a lattice QCD computation of light quark masses using 2 + 1 + 1 dynamical quarks, with $m_u = m_d \neq m_s \neq m_c$. The *u* and *d* quark masses are obtained separately by using the *K* meson mass splittings and lattice results for the electromagnetic contributions.
- 4 ARTHUR 13 is a lattice computation using 2+1 dynamical domain wall fermions. Masses at $\mu = 3$ GeV have been converted to $\mu = 2$ GeV using conversion factors given in their paper.
- 5 BODENSTEIN 13 determines $m_{\rm s}$ from QCD finite energy sum rules, and the perturbative computation of the pseudoscalar correlator to five-loop order.

⁶ FRITZSCH 12 determine m_s using a lattice computation with $N_f = 2$ dynamical flavors.

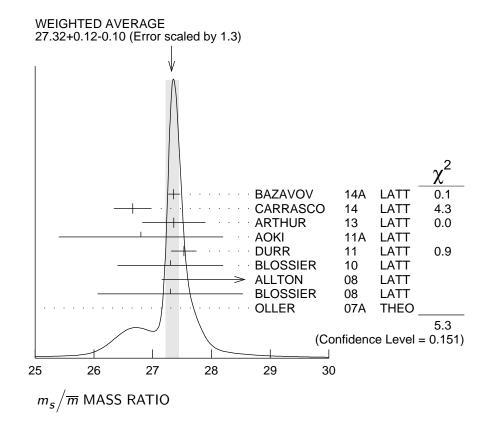
⁷AOKI 11A determine quark masses from a lattice computation of the hadron spectrum using $N_f = 2 + 1$ dynamical flavors of domain wall fermions.

- 8 DURR 11 determine quark mass from a lattice computation of the meson spectrum using $N_f = 2 + 1$ dynamical flavors. The lattice simulations were done at the physical quark mass, so that extrapolation in the quark mass was not needed.
- $^9\,\mathrm{BLOSSIER}$ 10 determines quark masses from a computation of the hadron spectrum using $N_f = 2$ dynamical twisted-mass Wilson fermions.
- 10 BLUM 10 determines light quark masses using a QCD plus QED lattice computation of the electromagnetic mass splittings of the low-lying hadrons. The lattice simulations use 2+1 dynamical quark flavors.
- 11 ALLTON 08 use a lattice computation of the π , ${\it K}$, and ${\it \Omega}$ masses with 2+1 dynamical flavors of domain wall quarks, and non-perturbative renormalization.
- 12 DOMINGUEZ 08A make determination from QCD finite energy sum rules for the pseudoscalar two-point function computed to order α_a^4 .
- 13 ISHIKAWA 08 use a lattice computation of the light meson spectrum with 2+1 dynamical flavors of $\mathcal{O}(a)$ improved Wilson quarks, and one-loop perturbative renormalization.
- $^{14}\,{\sf DAVIES}$ 10 and MCNEILE 10 determine $\overline{m}_{\it C}(\mu)/\overline{m}_{\it S}(\mu)$ = 11.85 \pm 0.16 using a lattice computation with $N_f = 2 + 1$ dynamical fermions of the pseudoscalar meson masses. Mass m_s is obtained from this using the value of m_c from ALLISON 08 or MCNEILE 10.
- $^{15}\,{ extsf{BLOSSIER}}$ 08 use a lattice computation of pseudoscalar meson masses and decay constants with 2 dynamical flavors and non-perturbative renormalization.
- 16 NAKAMURA 08 do a lattice computation using quenched domain wall fermions and non-perturbative renormalization.
- $^{17}\,{
 m BLUM}$ 07 determine quark masses from the pseudoscalar meson masses using a QED plus QCD lattice computation with two dynamical quark flavors.
- ¹⁸ CHETYRKIN 06 use QCD sum rules in the pseudoscalar channel to order α_s^4 .
- 19 GOCKELER 06 use an unquenched lattice computation of the axial Ward Identity with $N_f = 2$ dynamical light quark flavors, and non-perturbative renormalization, to obtain $\overline{m}_s(2 \text{ GeV}) = 111 \pm 6 \pm 4 \pm 6$ MeV, where the first error is statistical, the second and third are systematic due to the fit range and force scale uncertainties, respectively. We have combined the systematic errors linearly.
- 20 GOCKELER 06A use an unquenched lattice computation of the pseudoscalar meson masses with $N_f = 2$ dynamical light quark flavors, and non-perturbative renormalization.
- 21 JAMIN 06 determine $\overline{m}_{
 m s}$ (2 GeV) from the spectral function for the scalar $K\pi$ form factor.
- ²² MASON 06 extract light quark masses from a lattice simulation using staggered fermions with an improved action, and three dynamical light quark flavors with degenerate u and d quarks. Perturbative corrections were included at NNLO order.
- ²³NARISON 06 uses sum rules for $e^+e^- \rightarrow$ hadrons to order α_s^3 .
- ²⁴ NARISON 06 obtains the quoted range from positivity of the spectral functions. ²⁵ BAIKOV 05 determines $\overline{m}_s(M_{\tau}) = 100^{+5+17}_{-3-19}$ from sum rules using the strange spectral function in τ decay. The computations were done to order α_s^3 , with an estimate of the
 - α_{c}^{4} terms. We have converted the result to $\mu = 2$ GeV.
- 26 GAMIZ 05 determines \overline{m}_s (2 GeV) from sum rules using the strange spectral function in au decay. The computations were done to order $lpha_s^2$, with an estimate of the $lpha_s^3$ terms.
- 27 GORBUNOV 05 use hadronic tau decays to $N^3 LO$, including power corrections.
- 28 NARISON 05 determines \overline{m}_s (2 GeV) from sum rules using the strange spectral function in τ decay. The computations were done to order α_s^3 .
- $^{29}\mathrm{AUBIN}$ 04 perform three flavor dynamical lattice calculation of pseudoscalar meson masses, with one-loop perturbative renormalization constant.
- 30 AOKI 03 uses quenched lattice simulation of the meson and baryon masses with degenerate light quarks. The extrapolations are done using quenched chiral perturbation theory. Determines $m_s = 113.8 \pm 2.3 + 5.8 - 2.9$ using K mass as input and $m_s = 142.3 \pm 5.8 + 22 - 2.9$ using ϕ mass as input. We have performed a weighted average of these values.
- HTTP://PDG.LBL.GOV

- ³¹ AOKI 03B uses lattice simulation of the meson and baryon masses with two dynamical light quarks. Simulations are performed using the O(a) improved Wilson action.
- ³² BECIREVIC 03 perform quenched lattice computation using the vector and axial Ward identities. Uses O(a) improved Wilson action and nonperturbative renormalization. They also quote $\overline{m}/m_s=24.3 \pm 0.2 \pm 0.6$.
- ³³CHIU 03 determines quark masses from the pion and kaon masses using a lattice simulation with a chiral fermion action in quenched approximation.
- 34 GAMIZ 03 determines m_s from SU(3) breaking in the τ hadronic width. The value of V_{us} is chosen to satisfy CKM unitarity.
- 35 GAMIZ 03 determines m_s from SU(3) breaking in the τ hadronic width. The value of $V_{\rm US}$ is taken from the PDG.

OTHER LIGHT QUARK MASS RATIOS

m_s/m_d MASS RATIO VALUE DOCUMENT ID TECN COMMENT **17-22 OUR EVALUATION** • • • We do not use the following data for averages, fits, limits, etc. • • • ¹ GAO 20.0 97 THEO ² LEUTWYLER 96 18.9 ± 0.8 THEO Compilation ³ DONOGHUE 21 92 THEO ⁴ GERARD 90 THEO 18 ⁵ LEUTWYLER 90B THEO 18 to 23


 1 GAO 97 uses electromagnetic mass splittings of light mesons.

²LEUTWYLER 96 uses a combined fit to $\eta \rightarrow 3\pi$ and $\psi' \rightarrow J/\psi(\pi,\eta)$ decay rates, and the electromagnetic mass differences of the π and K.

- ³DONOGHUE 92 result is from a combined analysis of meson masses, $\eta \rightarrow 3\pi$ using second-order chiral perturbation theory including nonanalytic terms, and $(\psi(2S) \rightarrow J/\psi(1S)\pi)/(\psi(2S) \rightarrow J/\psi(1S)\eta)$.
- ⁴ GERARD 90 uses large N and η - η' mixing.
- ⁵ LEUTWYLER 90B determines quark mass ratios using second-order chiral perturbation theory for the meson and baryon masses, including nonanalytic corrections. Also uses Weinberg sum rules to determine L_7 .

m_s/\overline{m} MASS RATIO $\overline{m} = (m_u + m_d)/2$

$m \equiv (m_u + m_d)/2$			
VALUE	DOCUMENT ID		TECN
27.3 ± 0.7 OUR EVALUATION	See the ideogram	n belo	w.
$27.35 \!\pm\! 0.05 \! \substack{+0.10 \\ -0.07}$	¹ BAZAVOV	14A	LATT
26.66 ± 0.32	² CARRASCO	14	LATT
27.36 ± 0.54	³ ARTHUR	13	LATT
26.8 ±1.4	⁴ AOKI	11A	LATT
$27.53 \!\pm\! 0.20 \!\pm\! 0.08$	⁵ DURR	11	LATT
27.3 ±0.9	⁶ BLOSSIER	10	LATT
28.8 ± 1.65	⁷ ALLTON	80	LATT
$27.3 \pm 0.3 \pm 1.2$	⁸ BLOSSIER	80	LATT
23.5 ± 1.5	⁹ OLLER	07A	THEO
• • • We do not use the following	g data for averages	s, fits,	limits, etc. \bullet \bullet
27.4 ±0.4	¹⁰ AUBIN	04	LATT

¹BAZAVOV 14A is a lattice computation using 4 dynamical flavors of HISQ fermions.

- 2 CARRASCO 14 is a lattice QCD computation of light quark masses using 2 + 1 + 1 dynamical quarks, with $m_u = m_d \neq m_s \neq m_c$. The *u* and *d* quark masses are obtained separately by using the *K* meson mass splittings and lattice results for the electromagnetic contributions.
- 3 ARTHUR 13 is a lattice computation using 2+1 dynamical domain wall fermions.
- ⁴AOKI 11A determine quark masses from a lattice computation of the hadron spectrum using $N_f = 2 + 1$ dynamical flavors of domain wall fermions.
- 5 DURR 11 determine quark mass from a lattice computation of the meson spectrum using $N_f = 2 + 1$ dynamical flavors. The lattice simulations were done at the physical quark mass, so that extrapolation in the quark mass was not needed.
- ⁶BLOSSIER 10 determines quark masses from a computation of the hadron spectrum using $N_f = 2$ dynamical twisted-mass Wilson fermions.
- ⁷ALLTON 08 use a lattice computation of the π , K, and Ω masses with 2+1 dynamical flavors of domain wall quarks, and non-perturbative renormalization.
- ⁸ BLOSSIER 08 use a lattice computation of pseudoscalar meson masses and decay constants with 2 dynamical flavors and non-perturbative renormalization.
- ⁹ OLLER 07A use unitarized chiral perturbation theory to order p^4 .
- 10 Three flavor dynamical lattice calculation of pseudoscalar meson masses.

Q MASS RATIO

$Q \equiv \sqrt{(m_s^2 - \overline{m}^2)/(m_d^2 - m_s^2)}$	$\overline{n^2}_{u}$; $\overline{m} \equiv (m)$	u^{+}	m _d)/2	
VALUE	DOCUMENT ID		TECN	
\bullet \bullet \bullet We do not use the following	data for averages	, fits,	limits, etc.	• • •
22.0±0.7	¹ COLANGELO	17		
	² FODOR			
	³ MARTEMYA			
22.7 ± 0.8	⁴ ANISOVICH	96	THEO	
¹ COLANGELO 17 obtain Q fro	m a dispersive ar	nalvsis	of KLOE	collabora

of KLOE collaboration data on rom a dispersive analy $\eta \rightarrow \pi^+ \pi^- \pi^0$ decays and chiral perturbation theory input.

- ²FODOR 16 is a lattice simulation with $N_f = 2 + 1$ dynamical flavors and includes partially quenched QED effects.
- ³MARTEMYANOV 05 determine Q from $\eta \rightarrow 3\pi$ decay.
- ⁴ANISOVICH 96 find Q from $\eta \rightarrow \pi^+ \pi^- \pi^0$ decay using dispersion relations and chiral perturbation theory.

LIGHT QUARKS (u, d, s) REFERENCES

COLANGELO ANANTHANA FODOR BASAK CHAKRABOR BAZAVOV CARRASCO ARTHUR BODENSTEIN AOKI FRITZSCH AOKI DURR BAZAVOV BLOSSIER BLUM DAVIES	16 15	PRL 118 022001 PR D94 116014 PRL 117 082001 JPCS 640 012052 PR D91 054508 PR D90 074509 NP B887 19 PR D87 094514 JHEP 1307 138 PR D86 034507 NP B865 397 PR D83 074508 PL B701 265 RMP 82 1349 PR D82 114513 PR D82 094508 PRL 104 132003	R. Arthur et al.	Das (BANG, AHMED) (BMW Collab.) (MILC Collab.) (HPQCD Collab.) (Fermi-LAT and MILC Collabs.) (European Twisted Mass Collabs.) (RBC and UKQCD Collabs.) ominguez, K. Schilcher (MANZ+) (PACS-CS Collab.)
MCNEILE DOMINGUEZ	10 09	PR D82 034512 PR D79 014009	C. McNeile <i>et al.</i> C.A. Dominguez <i>et al.</i>	(HPQCD Collab.)

HTTP://PDG.LBL.GOV

```
(RBC-UKQCD Collab.<sup>2</sup>
al.
                                (BMW Collab.)
1
et al.
                                 (MILC Collab.)
et al
                                 (ETM Collab.)
al.
es et al.
                              (HPQCD Collab.)
et al.
                              (HPQCD Collab.)
guez et al.
```

Page 13

Created: 5/30/2017 17:22

Citation: C. Patrignani et al.	(Particle Data Group), Chin. Phys. C, 40, 100001 (2016) and 2017 upda	ate
citation. c. i atrigham et al.	(1 druce D d d Group), chin. 1 hys. c, 10, 100001 (2010) dha 2011 apad	100

ALLISON ALLTON BLOSSIER DEANDREA DOMINGUEZ DOMINGUEZ ISHIKAWA NAKAMURA BLUM	08 08 08 08 08 08 08 08 08 07	PR D78 054513 PR D78 114509 JHEP 0804 020 PR D78 034032 JHEP 0805 020 PL B660 49 PR D78 011502 PR D78 034502 PR D76 114508	I. Allison <i>et al.</i> (HPQCD Collab.) C. Allton <i>et al.</i> (RBC and UKQCD Collabs.) B. Blossier <i>et al.</i> (ETM Collab.) A. Deandrea, A. Nehme, P. Talavera C.A. Dominguez <i>et al.</i> A. Dominguez-Clarimon, E. de Rafael, J. Taron T. Ishikawa <i>et al.</i> (CP-PACS and JLQCD Collabs.) Y. Nakamura <i>et al.</i> (CP-PACS Collab.) T. Blum <i>et al.</i> (RBC Collab.)
OLLER	07A	EPJ A34 371	J.A. Oller, L. Roca
CHETYRKIN	06	EPJ C46 721	K.G. Chetyrkin, A. Khodjamirian
GOCKELER	06	PR D73 054508	M. Gockeler <i>et al.</i> (QCDSF, UKQCD Collabs)
GOCKELER	06A	PL B639 307	M. Gockeler <i>et al.</i> (QCDSF, UKQCD Collabs)
JAMIN MASON	06 06	PR D74 074009 PR D73 114501	M. Jamin, J.A. Oller, A. Pich Q. Mason <i>et al.</i> (HPQCD Collab.)
NARISON	06	PR D74 034013	S. Narison
PDG	06	JP G33 1	WM. Yao <i>et al.</i> (PDG Collab.)
BAIKOV	05	PRL 95 012003	P.A. Baikov, K.G. Chetyrkin, J.H. Kuhn
GAMIZ	05	PRL 94 011803	E. Gamiz <i>et al.</i>
GORBUNOV	05	PR D71 013002	D.S. Gorbunov, A.A. Pivovarov
MARTEMYA	05	PR D71 017501	B.V. Martemyanov, V.S. Sopov
NARISON	05	PL B626 101	S. Narison
AUBIN	04	PR D70 031504	C. Aubin et al. (HPQCD, MILC, UKQCD Collabs.)
AUBIN	04A	PR D70 114501	C. Aubin <i>et al.</i> (MILC Collab.)
AOKI	03	PR D67 034503	S. Aoki <i>et al.</i> (CP-PACS Collab.)
AOKI	03B	PR D68 054502	S. Aoki <i>et al.</i> (CP-PACS Collab.)
BECIREVIC	03	PL B558 69	D. Becirevic, V. Lubicz, C. Tarantino
CHIU	03	NP B673 217	TW. Chiu, TH. Hsieh
GAMIZ	03	JHEP 0301 060	E. Gamiz <i>et al.</i>
NELSON	03	PRL 90 021601	D. Nelson, G.T. Fleming, G.W. Kilcup
GAO	97	PR D56 4115	DN. Gao, B.A. Li, ML. Yan
ANISOVICH	96	PL B375 335	A.V. Anisovich, H. Leutwyler
LEUTWYLER	96	PL B378 313	H. Leutwyler
DONOGHUE	92	PRL 69 3444	J.F. Donoghue, B.R. Holstein, D. Wyler (MASA+)
GERARD	90	MPL A5 391	J.M. Gerard (MPIM)
LEUTWYLER	90B	NP B337 108	H. Leutwyler (BERN)