A(1405) 1/2⁻⁻

 $I(J^P) = 0(\frac{1}{2}^{-})$ Status: ****

In the 1998 Note on the $\Lambda(1405)$ in PDG 98, R.H. Dalitz discussed the S-shaped cusp behavior of the intensity at the $N-\overline{K}$ threshold observed in THOMAS 73 and HEMINGWAY 85. He commented that this behavior "is characteristic of *S*-wave coupling; the other below threshold hyperon, the $\Sigma(1385)$, has no such threshold distortion because its $N-\overline{K}$ coupling is *P*-wave. For $\Lambda(1405)$ this asymmetry is the sole direct evidence that $J^P = 1/2^-$."

A recent measurement by the CLAS collaboration, MORIYA 14, definitively established the long-assumed $J^P = 1/2^-$ spin-parity assignment of the $\Lambda(1405)$. The experiment produced the $\Lambda(1405)$ spin-polarized in the photoproduction process $\gamma p \rightarrow K^+ \Lambda(1405)$ and measured the decay of the $\Lambda(1405)$ (polarized) $\rightarrow \Sigma^+$ (polarized) π^- . The observed isotropic decay of $\Lambda(1405)$ is consistent with spin J = 1/2. The polarization transfer to the Σ^+ (polarized) direction revealed negative parity, and thus established $J^P = 1/2^-$.

A REVIEW GOES HERE - Check our WWW List of Reviews

VALUE (MeV)	DOCUMENT ID		TECN			
• • • We do not use the following	data for averages	, fits,	limits, etc. • • •			
$1429 + \frac{8}{7}$	¹ MAI	15	DPWA			
$1325 {+15 \atop -15}$	² MAI	15	DPWA			
$1434^{+}_{-}2^{2}$	³ MAI	15	DPWA			
$1330^{+}_{-}5^{4}_{5}$	⁴ MAI	15	DPWA			
$1421 \frac{+}{-} \frac{3}{2}$	⁵ GUO	13	DPWA			
1388± 9	⁶ GUO	13	DPWA			
$1424 + 7 \\ -23$	⁷ IKEDA	12	DPWA			
1381^{+18}_{-6}	⁸ IKEDA	12	DPWA			
 ¹ High-mass pole, solution number 4. ² Low-mass pole, solution number 4. ³ High-mass pole, solution number 2. ⁴ Low-mass pole, solution number 2. ⁵ High-mass pole, fit II ⁶ Low-mass pole ⁸ Low-mass pole 						

A(1405) REGION POLE POSITIONS

HTTP://PDG.LBL.GOV

-2×IMAGINARY PART						
VALUE (MeV)	DOCUMENT ID		TECN			
$\bullet \bullet \bullet$ We do not use the following	data for averages	, fits,	limits, etc. • • •			
$24^{+}_{-} \frac{4}{6}$	¹ MAI	15	DPWA			
180^{+24}_{-36}	² MAI	15	DPWA			
$20^{+}_{-}2^{+}$	³ MAI	15	DPWA			
112^{+34}_{-22}	⁴ MAI	15	DPWA			
38^{+16}_{-10}	⁵ guo	13	DPWA			
228 ⁺⁴⁸ ₋₅₀	⁶ GUO	13	DPWA			
52^{+6}_{-28}	⁷ IKEDA	12	DPWA			
162^{+38}_{-16}	⁸ IKEDA	12	DPWA			
 ¹ High-mass pole, solution number 4. ² Low-mass pole, solution number 4. ³ High-mass pole, solution number 2. ⁴ Low-mass pole, solution number 2. ⁵ High-mass pole, fit II ⁶ Low-mass pole ⁸ Low-mass pole 						

Л(1405) MASS

Ρ	PRODUCTION EXPERIMENTS							
VA	A <i>LUE</i> (M	leV)	EVTS	DOCUMENT ID		TECN	COMMENT	
	1405.1^{+}_{-} 1.3 OUR AVERAGE							
	1405	$^{+11}_{-9}$		HASSANVAND	13	SPEC	$pp \rightarrow p\Lambda(1405) K^+$	
	1405	$^{+}_{-} 1.4$		ESMAILI	10	RVUE	⁴ He $K^- ightarrow \Sigma^{\pm} \pi^{\mp} X$ at rest	
	1406.5	5± 4.0		¹ DALITZ	91		M-matrix fit	
•	• • W	/e do no	ot use the foll	owing data for a	verage	es, fits, l	imits, etc. • • •	
	1391	\pm 1	700	¹ HEMINGWAY	85	HBC	<i>К</i> ⁻ <i>р</i> 4.2 GeV/ <i>с</i>	
\sim	1405		400	² THOMAS	73	HBC	$\pi^- p$ 1.69 GeV/ c	
	1405		120	BARBARO	68 B	DBC	$K^{-}d$ 2.1–2.7 GeV/ c	
	1400	\pm 5	67	BIRMINGHAM	66	HBC	<i>К⁻р</i> 3.5 GeV/ <i>с</i>	
	1382	\pm 8		ENGLER	65	HDBC	π^- p, π^+ d 1.68 GeV/c	
	1400	± 24		MUSGRAVE	65	HBC	<i>₽</i> p 3–4 GeV/c	
	1410			ALEXANDER	62	HBC	$\pi^- p$ 2.1 GeV/ c	
	1405			ALSTON	62	HBC	K ⁻ p 1.2–0.5 GeV/c	
	1405			ALSTON	61 B	HBC	$K^- p$ 1.15 GeV/ c	
	¹ DAL ² THC	ITZ 91 MAS 7	fits the HEM 3 data is fit I	IINGWAY 85 data by CHAO 73 (see	a. e next	section)).	

HTTP://PDG.LBL.GOV

EXTRAPOLATIONS BELOW NK THRESHOLD

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT			
ullet $ullet$ $ullet$ We do not use the following data for averages, fits, limits, etc. $ullet$ $ullet$ $ullet$							
1407.56 or 1407.50	¹ KIMURA	00		potential model			
1411	² MARTIN	81		K-matrix fit			
1406	³ CHAO	73	DPWA	0–range fit (sol. B)			
1421	MARTIN	70	RVUE	Constant K-matrix			
1416 ±4	MARTIN	69	HBC	Constant K-matrix			
1403 ±3	KIM	67	HBC	K-matrix fit			
1407.5 ± 1.2	⁴ KITTEL	66	HBC	0-effective-range fit			
1410.7 ± 1.0	KIM	65	HBC	0-effective-range fit			
1409.6 ± 1.7	⁴ SAKITT	65	HBC	0-effective-range fit			

¹ The KIMURA 00 values are from fits A and B from a coupled-channel potential model using low-energy $\overline{K}N$ and $\Sigma \pi$ data, kaonic-hydrogen x-ray measurements, and our $\Lambda(1405)$ mass and width. The results bear mainly on the *nature* of the $\Lambda(1405)$: three-quark state or $\overline{K}N$ bound state.

or $\overline{K}N$ bound state. ² The MARTIN 81 fit includes the $K^{\pm}p$ forward scattering amplitudes and the dispersion relations they must satisfy.

³See also the accompanying paper of THOMAS 73.

⁴ Data of SAKITT 65 are used in the fit by KITTEL 66.

/(1405) WIDTH

PR	PRODUCTION EXPERIMENTS						
VAL	UE (MeV)	EVTS	DOCUMENT ID		TECN	СОММ	ENT
50.5	$5\pm$ 2.0 OUR	AVERAGE					
62	± 10	_	HASSANVAND	13	SPEC	$pp \rightarrow$	рЛ(1405) К ⁺
50	\pm 2	1	DALITZ	91		M-ma	trix fit
• •	• We do not	use the follo	owing data for av	/erage	es, fits,	limits, e	etc. ● ● ●
24	+ 4 - 3		ESMAILI	10	RVUE	⁴ He <i>k</i>	$X^- o \ \Sigma^\pm \pi^\mp X$ at rest
32	\pm 1	700 1	HEMINGWAY	85	HBC	К р	4.2 GeV/ <i>c</i>
45	to 55	400 2	THOMAS	73	HBC	$\pi^- p$	1.69 GeV/ <i>c</i>
35		120	BARBARO	68 B	DBC	$K^- d$	2.1–2.7 GeV/ <i>c</i>
50	± 10	67	BIRMINGHAM	66	HBC	К [—] р	3.5 GeV/ <i>c</i>
89	± 20		ENGLER	65	HDBC		
60	± 20		MUSGRAVE	65	HBC		
35	\pm 5		ALEXANDER	62	HBC		
50			ALSTON	62	HBC		
20			ALSTON	61 B	HBC		
1 2	DALITZ 91 fit THOMAS 73	ts the HEMI data is fit b	NGWAY 85 data y CHAO 73 (see	a. next	section).	
EX		IONS BEI	OW NK TH	RESI	HOLD	TECN	COMMENT
VAL	JE (IVIEV)			VIID		TECN	COMMENT
• •	• We do not	use the follo	owing data for av	/erage	es, fits,	limits, e	etc. ● ● ●
50.2	24 or 50.26		¹ KIMURA	4	00		potential model
30			² MARTIN	J	81		K-matrix fit
55			^{3,4} CHAO		73	DPWA	0–range fit (sol. B)
20			MARTIN	J	70	RVUE	Constant K-matrix
29	± 6		MARTIN	J	69	HBC	Constant K-matrix
ΗТ	TP://PDG.	LBL.GOV	Page	e 3		Creat	ed: 5/30/2017 17:20

Citation: C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016) and 2017 update

50 ± 5	KIM	67	HBC	K-matrix fit
34.1 ± 4.1	⁵ KITTEL	66	HBC	
37.0±3.2	KIM	65	HBC	
28.2 ± 4.1	⁵ SAKITT	65	HBC	

¹ The KIMURA 00 values are from fits A and B from a coupled-channel potential model using low-energy $\overline{K}N$ and $\Sigma \pi$ data, kaonic-hydrogen x-ray measurements, and our $\Lambda(1405)$ mass and width. The results bear mainly on the *nature* of the $\Lambda(1405)$: three-quark state or $\overline{K}N$ bound state.

or $\overline{K}N$ bound state. ² The MARTIN 81 fit includes the $K^{\pm}p$ forward scattering amplitudes and the dispersion relations they must satisfy.

 ^3An asymmetric shape, with $\Gamma/2=41$ MeV below resonance, 14 MeV above.

 4 See also the accompanying paper of THOMAS 73.

 5 Data of SAKITT 65 are used in the fit by KITTEL 66.

A(1405) DECAY MODES

	Mode	Fraction (Γ_i/Γ)
Г ₁ Г ₂	$\Sigma \pi \Lambda \gamma$	100 %
Г ₃ Г ₄	$\Sigma^{0} \gamma N \overline{K}$	

A(1405) PARTIAL WIDTHS

$\Gamma(\Lambda\gamma)$			Γ <u>2</u>
VALUE (keV)	DOCUMENT ID	COMMENT	
$\bullet \bullet \bullet$ We do not use the fo	ollowing data for averages, fits	, limits, etc. ● ● ●	
27±8	BURKHARDT 91	lsobar model fit	
$\Gamma(\Sigma^0\gamma)$			Гз
VALUE (keV)	DOCUMENT ID	COMMENT	
$\bullet \bullet \bullet$ We do not use the fo	ollowing data for averages, fits	, limits, etc. • • •	
10 ± 4 or 23 ± 7	BURKHARDT 91	lsobar model fit	

*I***(1405) BRANCHING RATIOS**

$\Gamma(N\overline{K})/\Gamma(\Sigma\pi)$				Г	4/Γ1
VALUE	<u>CL%</u>	DOCUMENT ID	TECN	COMMENT	
$\bullet~\bullet~\bullet$ We do not use the	following d	ata for averages, fits	, limits, e	etc. • • •	
<3	95	HEMINGWAY 85	HBC	$K^- p$ 4.2 GeV/ c	

HTTP://PDG.LBL.GOV

A(1405) REFERENCES

MAI	15	EPJ A51 30	M. Mai, UG. Meissner	(BONN, JULI)
MORIYA	14	PRL 112 082004	K. Moriya <i>et al.</i>	(CLAS Collab.) JP
GUO	13	PR C87 035202	ZH. Guo, J. Oller	
HASSANVAND	13	PR C87 055202	M. Hassanvand <i>et al.</i>	
Also		PR C88 019905 (errat.)	M. Hassanvand <i>et al.</i>	
IKEDA	12	NP A881 98	Y. Ikeda, T. Hyodo, W. Weise	(MUNT, RIKEN, TINT)
ESMAILI	10	PL B686 23	J. Esmaili, Y. Akaishi, T. Yamaz	zaki (RIKEN, ISUT+)
KIMURA	00	PR C62 015206	M. Kimura <i>et al.</i>	
PDG	98	EPJ C3 1	C. Caso <i>et al.</i>	(PDG Collab.)
BURKHARDT	91	PR C44 607	H. Burkhardt, J. Lowe	(NOTT, UNM, BIRM)
DALITZ	91	JP G17 289	R.H. Dalitz, A. Deloff	OXFTP, WINR)
HEMINGWAY	85	NP B253 742	R.J. Hemingway	(CERN) J
MARTIN	81	NP B179 33	A.D. Martin	(DURH)
CHAO	73	NP B56 46	Y.A. Chao <i>et al.</i>	(RHEL, CMU, LOUC)
THOMAS	73	NP B56 15	D.W. Thomas et al.	(CMU) J
MARTIN	70	NP B16 479	A.D. Martin, G.G. Ross	(DURH)
MARTIN	69	PR 183 1352	B.R. Martin, M. Sakitt	(LOUC, BNL)
Also		PR 183 1345	B.R. Martin, M. Sakitt	(LOUC, BNL)
BARBARO	68B	PRL 21 573	A. Barbaro-Galtieri <i>et al.</i>	(LRL, SLAC)
KIM	67	PRL 19 1074	J.K. Kim	(YALE)
BIRMINGHAM	66	PR 152 1148	M. Haque <i>et al.</i> (BIR	M, GLAS, LOIC, OXF+)
KITTEL	66	PL 21 349	W. Kittel, G. Otter, I. Wacek	(VIEN)
ENGLER	65	PRL 15 224	A. Engler <i>et al.</i>	(CMU, BNL) IJ
KIM	65	PRL 14 29	J.K. Kim	(COLU)
MUSGRAVE	65	NC 35 735	B. Musgrave <i>et al.</i>	(BIRM, CERN, EPOL+)
SAKITT	65	PR 139 B719	M. Sakitt <i>et al.</i>	(UMD, LRL)
ALEXANDER	62	PRL 8 447	G. Alexander <i>et al.</i>	(LRL) I
ALSTON	62	CERN Conf. 311	M.H. Alston <i>et al.</i>	(LRL) I
ALSTON	61B	PRL 6 698	M.H. Alston <i>et al.</i>	(LRL) I

- OTHER RELATED PAPERS -

IWASAKI	97	PRL 78 3067	M. Iwasaki <i>et al.</i>	(KEK 228 Collab.)
FINK	90	PR C41 2720	P.J.Jr. Fink <i>et al.</i>	(IBMY, ORST, ANSM)
LEINWEBER	90	ANP 198 203	D.B. Leinweber	(MCMS)
MUELLER-GR	. 90	NP A513 557	A. Mueller-Groeling, K. Holinde,	J. Speth (JULI)
BARRETT	89	NC 102A 179	R.C. Barrett	(SURR)
BATTY	89	NC 102A 255	C.J. Batty, A. Gal	(RAL, HEBR)
CAPSTICK	89	Excited Baryons 88, p.32	S. Capstick	(GUEL)
LOWE	89	NC 102A 167	J. Lowe	(BIRM)
WHITEHOUSE	89	PRL 63 1352	D.A. Whitehouse et al.	(BIRM, BOST, BRCO+)
SIEGEL	88	PR C38 2221	P.B. Siegel, W. Weise	(REGE)
WORKMAN	88	PR D37 3117	R.L. Workman, H.W. Fearing	(TRIU)
SCHNICK	87	PRL 58 1719	J. Schnick, R.H. Landau	(ORST)
CAPSTICK	86	PR D34 2809	S. Capstick, N. Isgur	(TNTO)
JENNINGS	86	PL B176 229	B.K. Jennings	(TRIU)
MALTMAN	86	PR D34 1372	K. Maltman, N. Isgur	(LANL, ŤNTO)
ZHONG	86	PL B171 471	Y.S. Zhong et al.	(ADLD, TRIU, SURR)
BURKHARDT	85	NP A440 653	H. Burkhardt, J. Lowe, A.S. Ro	senthal (NOTT+)
DAREWYCH	85	PR D32 1765	J.W. Darewych, R. Koniuk, N.	Isgur (YORKC, TNTO)
VEIT	85	PR D31 1033	E.A. Veit et al.	(TRIÙ, ADLD, SURR)
KIANG	84	PR C30 1638	D. Kiang <i>et al.</i>	(DALH, MCMS)
MILLER	84	Conference paper	D.J. Miller	(LOUC)
Conf. Inter	section	s between Particle and Nu	iclear Physics, p. 783	
VANDIJK	84	PR D30 937	W. van Dijk	(MCMS)
VEIT	84	PL 137B 415	E.A. Veit <i>et al.</i>	(TRIU, SURR, CERN)
DALITZ	82	Heid. Conf.	R.H. Dalitz <i>et al.</i>	(OXFTP)
Heidelberg	Conf.,	p. 201		
DALITZ	81	Kaon Conf.	R.H. Dalitz, J.G. McGinley	(OXFTP)
Low and In	termed	iate Energy Kaon-Nucleon	Physics, p.381	
MARTIN	81B	Kaon Conf.	A.D. Martin	(DURH)
Low and In	termed	iate Energy Kaon-Nucelon	Physics, p. 97	<i>.</i>
OADES	77	NC 42A 462	G.C. Oades, G. Rasche	(AARH, ZURI)
SHAW	73	Purdue Conf. 417	G.L. Shaw	(UCI)
BARBARO	72	LBL-555	A. Barbaro-Galtieri	(LBL)
DOBSON	72	PR D6 3256	P.N. Dobson, R. McElhaney	(HAWA)

RAJASEKA	72	PR D5 610	G. Rajasekaran	(TATA)
Earlier pape	ers also	cited in RAJASEKARAN	72.	
CLINE	71	PRL 26 1194	D. Cline, R. Laumann, J. Mapp	(WISC)
MARTIN	71	PL 35B 62	A.D. Martin, A.D. Martin, G.G. Ross (DURH, LÒUC+)
DALITZ	67	PR 153 1617	R.H. Dalitz, T.C. Wong, G. Rajasekaran	(OXFTP+)
DONALD	66	PL 22 711	R.A. Donald et al.	(LIVP)
KADYK	66	PRL 17 599	J.A. Kadyk <i>et al.</i>	(LRL)
ABRAMS	65	PR 139 B454	G.S. Abrams, B. Sechi-Zorn	(ÙMD)

Citation: C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016) and 2017 update

HTTP://PDG.LBL.GOV