Double- β Decay

OMITTED FROM SUMMARY TABLE A REVIEW GOES HERE – Check our WWW List of Reviews

Half-life Measurements and Limits for Double-β Decay

In most cases the transitions $(Z, A) \rightarrow (Z+2, A) + 2e^- + (0 \text{ or } 2) \overline{v}_e$ to the 0^+ ground state of the final nucleus are listed. However, we also list transitions that increase the nuclear charge (2e⁺, e⁺/EC and ECEC) and transitions to excited states of the final nuclei $(0_i^+, 2^+,$ and $2_i^+)$. In the following Listings, only best or comparable limits or lifetimes for each isotope are reported and only those with ${\sf T}_{1/2}$ $>$ 10^{20} years that are relevant for particle physics. For 2ν decay, which is well established, only measured half-lives with the smallest (or comparable) error for each nucleus are reported.

HTTP://PDG.LBL.GOV Page 2 Created: 5/30/2017 17:23

¹ ALDUINO 17 use the CUORE-0 detector containing 10.8 kg of 130 Te in 52 crystals of TeO₂. The exposure was 9.3 kg yr of 130 Te. This is a more accurate rate determination than in ARNOLD 11 and BARABASH 11A.

2 ARNOLD 17 use the NEMO-3 tracking calorimeter, containing 410 g of enriched 116 Cd exposed for 5.26 yr, to determine the half-life value and limit. Supersedes BARABASH 11A.

 3 AGOSTINI 16 search for a sharp energy photon of 429.88 \pm 0.19 keV providing the signature of the radiative 0ν ECEC decay of 36 Ar. The bare Ge detectors are immersed in 89.2t of LAr, corresponding to 298 kg of 36 Ar. The GERDA phase I ran from $11/2011$ to 5/2013. The obtained limit is still many orders of magnitude from the theoretical predication.

4 ALDUINO 16 report result obtained with 9.8 kg y of data collected with the CUORE-0 bolometer, combined with data from the CUORICINO. Supersedes ALFONSO 15.

 5 ANGLOHER 16B use the CRESST-II detector and CaWO₄ crystals to search for the 0ν 2EC decay of 40 Ca. Limits for 180 W, which is one of the best candidates to observe resonant transition enhancement, are also reported.

 6 ARNOLD 16 use the NEMO-3 detector and a source of 6.99 g of 48 Ca. The half-life is based on 36.7 g year exposure. It is consistent, although somewhat longer, than the previous determinations of the half-life. Supersedes BARABASH 11A.

 7 ARNOLD 16A use the NEMO-3 tracking calorimeter, containing 36.6 g of 150 Nd exposed for 1918.5 days, to determine the half-life. Supersedes ARGYRIADES 09.

 8 ASAKURA 16 use the KamLAND-Zen liquid scintillator calorimeter (136 Xe 89.5 kg yr) to place a limit on the $0\nu\beta\beta$ -decay into the first excited state of the daughter nuclide.

 9 ASAKURA 16 use the KamLAND-Zen liquid scintillator calorimeter $(^{136}$ Xe 89.5 kg yr) to place a limit on the $0\nu\beta\beta$ -decay into the second excited state of the daughter nuclide.

 10 ASAKURA 16 use the KamLAND-Zen liquid scintillator calorimeter ($136Xe$ 89.5 kg yr) to place a limit on the $0\nu\beta\beta$ -decay into the third excited state of the daughter nuclide.

¹¹ BELLI 16 report on searches for various $\beta\beta$ decay modes in ¹⁰⁶Cd isotope into ground state and into excited levels of the daughter nucleus. In particular, a search for the resonant 0ν 2EC decay into excited states is considered. They use 545.2 days of data from an isotopically enriched 106 CdWO $_4$ (216 g) scintillator, in coincidence with 4 Ge detectors.

12 Assume resonant 0 ν 2EC (2K) decay into the $E^* = 2718$ keV excited state.

13 Assume resonant 0ν 2EC (KL₁) decay into the E^{*} = 2741 keV excited state.

14 Assume resonant 0ν 2EC (KL_3) decay into the E^{*} = 2748 keV excited state.

- 15 EBERT 16 use the COBRA demonstrator with CdZnTe semiconductor detectors to obtain 0ν half-life limits for a number of isotopes. The limit for 114 Cd fulfills the listing criteria; it is based on a total detector mass exposure of 212.8 kg day.
- 16 GANDO 16 use the the KamLAND detector to search for the 0 ν decay of 136 Xe. With a significant background reduction, the combination of results of the first (270.7 days) and the second phase (263.8 days) of the experiment leads to about six fold improvement over the previous limit. Supersedes GANDO 13A.
- 17 AGOSTINI 15A use 17.9 kg yr exposure of the GERDA calorimeter to derive an improved measurement of the 2 $\nu\beta\beta$ decay half life of 76 Ge.
- 18 ARNOLD 15 use the NEMO-3 tracking calorimeter with 34.3 kg yr exposure to determine the $2\nu\beta\beta$ -half life of 100 Mo. Supersedes ARNOLD 05A and ARNOLD 04.
- 19 ARNOLD 15 use the NEMO-3 tracking calorimeter with 34.3 kg yr exposure to determine the limit of $0\nu\beta\beta$ -half life of 100 Mo. Supersedes ARNOLD 2005A and BARABASH 11A.
- ²⁰ ALBERT 14 use the EXO-200 tracking detector for a re-measurement of the $2\nu\beta\beta$ -half life of ¹³⁶Xe. A nuclear matrix element of 0.0218 \pm 0.0003 MeV⁻¹ is derived from this data. Supersedes ACKERMAN 11.
- 21 ALBERT 14B use 100 kg yr of exposure of the EXO-200 tracking calorimeter to place a lower limit on the $0\nu\beta\beta$ -half life of 136 Xe. Supersedes AUGER 12.
- 22 ARNOLD 14 use 34.7 kg yr of exposure of the NEMO-3 tracking calorimeter to derive a limit on the \langle m \rangle -driven (light neutrino mass) 0 $\nu\beta\beta$ -half life of 100 Mo. $\,$ Supersedes BARABASH 11A.
- 23 ARNOLD 14 use 34.7 kg yr of exposure of the NEMO-3 tracking calorimeter to derive a limit on the $\langle\lambda\rangle$ -driven (right handed quark and lepton currents) 0 $\nu\beta\beta$ -half life of 100_{Mo} .
- 24 ARNOLD 14 use 34.7 kg yr of exposure of the NEMO-3 tracking calorimeter to derive a limit on the $\langle \eta \rangle$ -driven (right handed quark current) 0 $\nu\beta\beta$ -half life of 100 Mo.
- 25 KIDD 14 utilize two undergraound Ge detectors to determine the inclusive double beta decay rate to the first excited 0^{+}_{1} state using γ - γ coincidences.
- 26 AGOSTINI 13A use 21.6 kg yr of data, collected with GERDA detector array, to place a lower limit on the $0\nu\beta\beta$ -half life of 76 Ge. This result is in tension with the evidence for $0\nu\beta\beta$ -decay reported in KLAPDOR-KLEINGROTHAUS 06A. This half-life limit exceeds the limit reported in KLAPDOR-KLEINGROTHAUS 01.
- ²⁷ BELLI 13A use an underground Ge detector to search for the $2\beta^+$ -decay of 96 Ru via the intensity of the annihilation peak. This method cannot distinguish two from zero neutrino decay.
- 28 GAVRILYAK 13 use a proportional counter filled with Kr gas to search for the 2ν 2K decay of 78Kr. Data with the enriched and depleted Kr were used to determine signal and background. A 2.5 σ excess of events obtained with the enriched sample is interpreted as an indication for the presence of this decay.
- 29 GAVRILYAK 13 use a proportional counter filled with Kr gas to search for the 0ν2K decay of 78 Kr into 2828 keV excited state of 78 Se. This transition could be subject to resonant rate enhancement. Data obtained with the enriched and depleted Kr were used to determine signal and background.
- 30 ANDREOTTI 12 use high resolution TeO₂ bolometric calorimeter to search for the 0v $\beta\beta$ decay of 130 Te leading to the excited 0^1_{+} state at 1793.5 keV.
- ³¹ BELLI 12A use 106 CdWO₄ 215 g crystal scintillator to search for various $\beta\beta$ decay modes. The limit for the ECEC mode is derived from the fit to the background spectrum in the 1.8–3.2 MeV energy interval in the run of 6590 hours. The same analysis provides several limits (~ 2 –5 $\times 10^{20}$ years) for the ECEC mode leading to the excited 0⁺ and 2^{+} states. Also a similar size limits for the possible resonance process populating states at 2718 keV, 2741 keV, and 2748 keV were obtained.
- 32 BELLI 12A use 106 CdWO $_4$ 215 g crystal scintillator to search for various $\beta\beta$ decay modes. The limit for the EC β^+ mode is derived from the fit to the background spectrum in the

HTTP://PDG.LBL.GOV Page 4 Created: 5/30/2017 17:23

2.0–3.0 MeV energy interval in the run of 6590 hours. The same analysis provides several limits (\sim 0.5–1.3 \times 10²¹ years) for the EC β^+ mode leading to the excited 0⁺ and 2⁺ states.

- 33 BELLI 12A use 106 CdWO $_4$ 215 g crystal scintillator to search for various $\beta\beta$ decay modes. The limit for the $\beta^+\beta^+$ mode is derived from the fit to the background spectrum in the 0.76–2.8 MeV energy interval in the run of 6590 hours. The same analysis provides the limit (1.2 × 10²¹ years) for the $\beta^+\beta^+$ mode leading to the first excited 2⁺ state.
- 34 GANDO 12A use a modification of the existing KamLAND detector. The $ββ$ decay source/detector is 13 tons of enriched 136 Xe-loaded scintillator contained in an inner balloon. The $2\nu\beta\beta$ decay rate is derived from the fit to the spectrum between 0.5 and 4.8 MeV. This result is in agreement with ACKERMAN 11.
- 35 ARNOLD 11 use enriched 130 Te in the NEMO-3 detector to measure the 2 ν $\beta\beta$ decay rate. This result is in agreement with, but more accurate than ARNABOLDI 03.
- 36 ARNOLD 11 use the NEMO-3 detector to obtain a limit for the 0ν $\beta\beta$ decay. This result is less significant than ARNABOLDI 05.
- 37 BARABASH 11 use 100 g of enriched 112 Sn to determine a limit for the ECEC 0 $\nu\beta\beta$ decay to the 0_3^+ state of 112 Cd by searching for the de-excitation γ with a Ge detector. This decay mode is a candidate for resonant rate enhancement.
- 38 BARABASH 11 use 100 g of enriched 112 Sn to determine a limit for the ECEC 0 $\nu\beta\beta$ decay to the 0^+_2 state of 112 Cd by searching for the de-excitation γ with a Ge detector.
- 39 BARABASH 11 use 100 g of enriched 112 Sn to determine a limit for the ECEC 0 $\nu\beta\beta$ decay to the 0^{+}_{1} state of 112 Cd by searching for the de-excitation γ with a Ge detector.
- 40 BARABASH 11 use 100 g of enriched 112 Sn to determine a limit for the ECEC 0 $\nu\beta\beta$ decay to the ground state of 112 Cd by searching for the de-excitation γ with a Ge detector.
- 41 Supersedes ARNABOLDI 03.
- ⁴² BARABASH 11A use the NEMO-3 detector to measure $2\nu\beta\beta$ rates and place limits on $0\nu\beta\beta$ half lives for various nuclides.
- 43 Supersedes ARNOLD 05A, ARNOLD 04, ARNOLD 98, and ELLIOTT 92.
- 44 Less restrictive than ARNABOLDI 08.
- ⁴⁵ BELLI 11D use ZnWO₄ scintillator calorimeters to search for various $\beta\beta$ decay modes of 64Zn, 70Zn, 180W, and 186W.
- 46 RUKHADZE 11 uses 13.6 g of enriched 106 Cd to search for the neutrinoless ECEC decay into an excited state of $106Pd$ and its characteristic γ -radiation using the TGV2 detector. This decay mode is a candidate for resonant rate enhancement, however, hindered by the large spin difference.
- ⁴⁷ ARGYRIADES 10 use 9.4 \pm 0.2 g of 96 Zr in NEMO-3 detector and identify its 2 $\nu\beta\beta$ decay. The result is in agreement and supersedes ARNOLD 99.
- 48 ARGYRIADES 10 use 9.4 \pm 0.2 g of 96 Zr in NEMO-3 detector and obtain a limit of the 0 $\nu\beta\beta$ decay. The result is in agreement and supersedes <code>ARNOLD 99.</code>
- 49 ARGYRIADES 10 use 9.4 ± 0.2 g of 96 Zr in NEMO-3 detector and obtain a limit of the 0ν $\beta\beta$ decay into the first excited 0 $_1^+$ state in ⁹⁶Mo.
- $^{50}\,$ BELLI 10 use enriched $^{100}\,$ Mo with 4 HP Ge detectors to record the 590.8 and 539.5 keV γ rays from the decay of the 0^{+}_{1} state in 100 Ru both in singles and coincidences. This result confirms the measurement of KIDD 09 and ARNOLD 07 and supersedes them.
- 51 BELLI 09A use ZnWO₄ scintillating crystals to search for various modes of $\beta\beta$ decay. This work improves the limits for different modes of ⁶⁴Zn decay into the ground state of 64 Ni, in this case for the $0\nu\beta$ ⁺EC mode. Supersedes BELLI 08.

 52 BELLI 09A use ZnWO₄ scintillating crystals to search for various modes of $\beta\beta$ decay. This work improves the limits for different modes of 64 Zn decay into the ground state of 64 Ni, in this case for the $0\nu\beta\beta$ ECEC mode. Supersedes BELLI 08.

HTTP://PDG.LBL.GOV Page 5 Created: 5/30/2017 17:23

- 53 KIDD 09 combine past and new data with an improved coincidence detection efficiency determination. The result agrees with ARNOLD 95. Supersedes DEBRAECKELEER 01 and BARABASH 95.
- ⁵⁴ BELLI 08 use ZnWO₄ scintillation calorimeter to search for neutrinoless β^+ plus electron capture decay of 64 Zn. The halflife limit for the $2\nu\beta\beta$ mode is 2.1×10^{20} years.
- 55 BELLI 08B use CdWO $_4$ scintillation calorimeter to search for 0 $\nu\beta\beta$ decay of 114 Cd.
- 56 UMEHARA 08 use Ca F_2 scintillation calorimeter to search for double beta decay of ⁴⁸Ca. Limit is significantly more stringent than quoted sensitivity: 18×10^{21} years.
- 57 First exclusive measurement of 2 ν -decay to the first excited 0^{+}_{1} -state of daughter nucleus. Thist exclusive measurement or 2ν -decay to the first excited σ_1 -state or daughter nucleus.
ARNOLD 07 use the NEMO-3 tracking calorimeter to detect all particles emitted in decay. Result agrees with the inclusive $(0\nu + 2\nu)$ measurement of DEBRAECKELEER 01.
- 58 Limit on 0 ν -decay to the first excited 0 $^{+}_{1}$ -state of daughter nucleus using NEMO-3 Emit on oz-decay to the mst excited of --
tracking calorimeter. Supersedes DASSIE 95.
- 59 Limit on 0ν -decay to the first excited 2^+ -state of daughter nucleus using NEMO-3 tracking calorimeter.
- 60 KLAPDOR-KLEINGROTHAUS 06^A present re-analysis of data originally published in KLAPDOR-KLEINGROTHAUS 04A. Modified pulse shape analysis leads the authors to claim improved 6 σ statistical evidence for observation of 0v-decay, compared to 4.2 σ in KLAPDOR-KLEINGROTHAUS 04A. Analysis of the systematic uncertainty is not presented. This re-analysis is disputed in AGOSTINI 13A and SCHWINGENHEUER 13.
- 61 Supersedes ARNABOLDI 04. Bolometric TeO₂ detector array CUORICINO is used for high resolution search for $0\nu\beta\beta$ decay. The half-life limit is derived from 3.09 kg yr 130_{Te exposure.}
- 62 NEMO-3 tracking calorimeter is used in ARNOLD 05A to place limit on $0\nu\beta\beta$ half-life of 82 Se. Detector contains 0.93 kg of enriched 82 Se. Supersedes ARNOLD 04.
- 63 ARNOLD 05A use the NEMO-3 tracking detector to determine the $2\nu\beta\beta$ half-life of 82 Se with high statistics and low background (389 days of data taking). Supersedes ARNOLD 04.
- 64 ARNOLD 04 use the NEMO-3 tracking detector to determine the limit for $0\nu\beta\beta$ halflife of 82 Se. This represents an improvement, by a factor of \sim 10, when compared with ELLIOTT 92. It supersedes the limit of ARNOLD 98 for this decay using NEMO-2.
- 65 BARABASH 04 perform an inclusive measurement of the $\beta\beta$ decay of $\overline{150}$ Nd into the first excited (0^+_1) state of 150 Sm. Gamma radiation emitted in decay of the excited state is detected.
- 66 Decay into first excited state of daughter nucleus.
- 67 Supersedes ALESSANDRELLO 00. Array of TeO₂ crystals in high resolution cryogenic calorimeter. Some enriched in 128 Te. Ground state to ground state decay.
- 68 Calorimetric measurement of $2νββ$ ground state decay of 116 Cd using enriched CdWO₄ scintillators. Agrees with EJIRI 95 and ARNOLD 96. Supersedes DANEVICH 00.
- ⁶⁹ Limit on 0νββ decay of 116 Cd using enriched CdWO₄ scintillators. Supersedes DANEVICH 00.
- 70 Limit on 0 $\nu\beta\beta$ decay of 116 Cd into first excited 2 $^+$ state of daughter nucleus using enriched CdWO₄ scintillators. Supersedes DANEVICH 00.
- 71 Limit on 0 $\nu\beta\beta$ decay of 116 Cd into first excited 0 $^+$ state of daughter nucleus using enriched CdWO₄ scintillators. Supersedes DANEVICH 00.
- ⁷² Limit on 0 $\nu\beta\beta$ decay of 116 Cd into second excited 0⁺ state of daughter nucleus using enriched CdWO₄ scintillators. Supersedes DANEVICH 00.
- 73 Limit on the 0 $\nu\beta\beta$ ground state decay of 186 W using enriched CdWO $_4$ scintillators.
- ⁷⁴ Limit on the $0\nu\beta\beta$ decay of $186W$ to the first excited 2^+ state of the daughter nucleus using enriched CdWO_4 scintillators.
- 75 AALSETH 02B limit is based on 117 mol \cdot yr of data using enriched Ge detectors. Background reduction by means of pulse shape analysis is applied to part

of the data set. Reported limit is slightly less restrictive than that in KLAPDOR-KLEINGROTHAUS 01 However, it excludes part of the allowed half-life range reported in KLAPDOR-KLEINGROTHAUS 01B for the same nuclide. The analysis has been criticized in KLAPDOR-KLEINGROTHAUS 04B. The criticism was addressed and disputed in AALSETH 04.

- ⁷⁶ BERNABEI 02D report a limit for the 0ν , 0^+ \rightarrow 0⁺ decay of ¹³⁴Xe, present in the source at 17%, by considering the maximum number of events for this mode compatible with the fitted smooth background.
- ⁷⁷ DANEVICH 01 place limit on 0 $\nu\beta\beta$ decay of 160 Gd using Gd₂SiO₅:Ce crystal scintillators. The limit is more stringent than KOBAYASHI 95.
- ⁷⁸ DANEVICH 01 place limits on 0 $\nu\beta\beta$ decay of 160 Gd into excited 2⁺ state of daughter nucleus using $\mathsf{Gd}_2\mathsf{SiO}_5$:Ce crystal scintillators.
- 79 KLAPDOR-KLEINGROTHAUS 01 is a continuation of the work published in BAUDIS 99. Isotopically enriched Ge detectors are used in calorimetric measurement. The most stringent bound is derived from the data set in which pulse-shape analysis has been used to reduce background. Exposure time is 35.5 kg y. Supersedes BAUDIS 99 as most stringent result.
- ⁸⁰ WIESER 01 reports an inclusive geochemical measurement of $96Zr$ $\beta\beta$ half life. Their result agrees within 2σ with ARNOLD 99 but only marginally, within 3σ , with KAWASHIMA 93.
- ⁸¹ BRUDANIN 00 determine the 2νββ halflife of ⁴⁸Ca. Their value is less accurate than BALYSH 96.
- 82 ARNOLD 99 measure directly the $2\nu\beta\beta$ decay of Zr for the first time, using the NEMO-2 tracking detector and an isotopically enriched source. The lifetime is more accurate than the geochemical result of KAWASHIMA 93.
- 83 ARNOLD 98 determine the limit for $0\nu\beta\beta$ decay to the excited 2⁺ state of ⁸²Se using the NEMO-2 tracking detector.
- ⁸⁴ DESILVA 97 result for $2\nu\beta\beta$ decay of 150 Nd is in marginal agreement with ARTEMEV 93. It has smaller errors.
- ⁸⁵ BALYSH 96 measure the $2νββ$ decay of 48 Ca, using a passive source of enriched 48 Ca in a TPC.
- 86 BERNATOWICZ 92 finds 128 Te/ 130 Te activity ratio from slope of 128 Xe/ 132 Xe vs $130\chi_{\rm e}/132\chi_{\rm e}$ ratios during extraction, and normalizes to lead-dated ages for the 130 Te lifetime. The authors state that their results imply that "(a) the double beta decay of 128 Te has been firmly established and its half-life has been determined ... without any ambiguity due to trapped Xe interferences... (b) Theoretical calculations ... underestimate the [long half-lives of 128 Te 130 Te] by 1 or 2 orders of magnitude, pointing to a real suppression in the $2\nu\beta\beta$ decay rate of these isotopes. (c) Despite [this], most $ββ$ -models predict a *ratio* of $2νββ$ decay widths ... in fair agreement with observation." Further details of the experiment are given in BERNATOWICZ 93. Our listed half-life has been revised downward from the published value by the authors, on the basis of reevaluated cosmic-ray $128Xe$ production corrections.
- 87 TURKEVICH 91 observes activity in old U sample. The authors compare their results with theoretical calculations. They state "Using the phase-space factors of Boehm and Vogel (BOEHM 87) leads to matrix element values for the 238 U transition in the same range as deduced for 130 Te and 76 Ge. On the other hand, the latest theoretical estimates (STAUDT 90) give an upper limit that is 10 times lower. This large discrepancy implies either a defect in the calculations or the presence of a faster path than the standard
- two-neutrino mode in this case." See BOEHM 87 and STAUDT 90.
⁸⁸ Ratio of inclusive double beta half lives of ¹²⁸Te and ¹³⁰Te determined from minerals melonite (NiTe₂) and altaite (PbTe) by means of mass spectroscopic measurement of abundance of $\beta \beta$ -decay products. As gas-retention-age could not be determined the authors use half life of 130 Te (LIN 88) to infer the half life of 128 Te. No estimate of the systematic uncertainty of this method is given. The directly determined half life ratio agrees with BERNATOWICZ 92. However, the inferred 128 Te half life disagrees with KIRSTEN 83 and BERNATOWICZ 92.

HTTP://PDG.LBL.GOV Page 7 Created: 5/30/2017 17:23

$\langle m_\nu \rangle$, The Effective Weighted Sum of Majorana Neutrino Masses Contributing to Neutrinoless Double- β Decay

 $\langle m_\nu \rangle = |\Sigma \,\, U_1^2 \, m_{\nu_j}|,$ where the sum goes from 1 to n and where $n=$ number of neutrino generations, and ν_j is a Majorana neutrino. Note that $\mathbf{\mathcal{U}}_{\mathbf{e}\,j}^2$, not $|\mathbf{\mathcal{U}}_{\mathbf{e}\,j}|^2$, occurs in the sum. The possibility of cancellations has been stressed. In the following Listings, only best or comparable limits or lifetimes for each isotope are reported.

 1 ARNOLD 17 utilize NEMO-3 data, taken with enriched 116 Cd to limit the effective Majorana neutrino mass. The reported range results from the use of different nuclear matrix elements. Supersedes BARABASH 11A.

 2 ALDUINO 16 place a limit on the effective Majorana neutrino mass using the combined data of the CUORE-0 and CUORICINO experiments. The range reflects the authors' evaluation of the variability of the nuclear matrix elements. Supersededs ALFONSO 15.

- 3 ARNOLD 16A limit is derived from data taken with the NEMO-3 detector and 150 Nd. A range of nuclear matrix elements that include the effect of nuclear deformation have been used. Supersedes ARGYRIADES 09.
- 4 GANDO 16 result is based on the 2016 KamLAND-Zen half-life limit. The stated range reflects different nuclear matrix elements, an unquenched $g_A = 1.27$ is used. Supersedes GANDO 13A.
- SANDO 15A.
5 ARNOLD 15 use the NEMO-3 tracking calorimeter with 34.3 kg yr exposure to determine the neutrino mass limit based on the $0\nu\beta\beta$ -half life of 100 Mo. The spread range reflects different nuclear matrix elements. Supersedes ARNOLD 14 and BARABASH 11A.
- 6 ALBERT 14^B is based on 100 kg yr of exposure of the EXO-200 tracking calorimeter. The mass range reflects the nuclear matrix element calculations. Supersedes AUGER 12.
- 7 AGOSTINI 13A is based on 21.6 kg yr of data collected by the GERDA detector. The reported range reflects different nuclear matrix elements. This result is in tension with the evidence for $0\nu\beta\beta$ -decay reported in KLAPDOR-KLEINGROTHAUS 06A and earlier references to that work.
- 8 GANDO 12A limit is based on the KamLAND-Zen data. The reported range reflects different nuclear matrix elements. Superseded by GANDO 13A.
- 9 BARABASH 11A limit is based on NEMO-3 data for 82 Se. The reported range reflects different nuclear matrix elements. Supersedes ARNOLD 05A and ARNOLD 04.
- 10 ARGYRIADES 10 use 96 Zr and the NEMO-3 tracking detector to obtain the reported mass limit. The range reflects the fluctuation of the nuclear matrix elements considered.
- 11 Limit was obtained using CaF $_{2}$ scintillation calorimeter to search for double beta decay of 48 Ca. Reported range of limits reflects spread of QRPA and SM matrix element calculations used. Supersedes OGAWA 04.
- ¹² ARNOLD 07 use NEMO-3 half life limit for 0v-decay of 100 Mo to the first excited 0⁺- $\frac{1}{1}$ state of daughter nucleus to obtain neutrino mass limit. The spread reflects the choice of two different nuclear matrix elements. This limit is not competitive when compared to the decay to the ground state.
- 13 ARNOLD 07 use NEMO-3 half life limit for 0v-decay of 100 Mo to the first excited 2⁺state of daughter nucleus to obtain neutrino mass limit. This limit is not competitive when compared to the decay to the ground state.
- 14Re-analysis of data originally published in KLAPDOR-KLEINGROTHAUS 04A. Modified pulse shape analysis leads the authors to claim 6σ statistical evidence for observation of 0ν-decay. Authors use matrix element of STAUDT 90. Uncertainty of nuclear matrix element is not reflected in stated error. Supersedes KLAPDOR-KLEINGROTHAUS 04A.
- 15 Supersedes ARNABOLDI 04. Reported range of limits due to use of different nuclear matrix element calculations.
- 16 Mass limits reported in ARNOLD 05A are derived from 100 Mo data, obtained by the NEMO-3 collaboration. The range reflects the spread of matrix element calculations considered in this work. Supersedes ARNOLD 04.
- 17 Neutrino mass limits based on 82 Se data utilizing the NEMO-3 detector. The range reported in ARNOLD 05A reflects the spread of matrix element calculations considered in this work. Supersedes ARNOLD 04.
- 18 Supersedes ARNABOLDI 03. Reported range of limits due to use of different nuclear matrix element calculations.
- 19 ARNOLD 04 limit is based on the nuclear matrix elements of SIMKOVIC 99, STOICA 01 and CIVITARESE 03.
- 20 Supersedes KLAPDOR-KLEINGROTHAUS 02D. Event excess at $ββ$ -decay energy is used to derive Majorana neutrino mass using the nuclear matrix elements of STAUDT 90. The mass range shown is based on the authors evaluation of the uncertainties of the STAUDT 90 matrix element calculation. If this uncertainty is neglected, and only statistical errors are considered, the range in $\langle{\sf m}\rangle$ becomes (0.2–0.6) eV at the 3 σ level.
- ²¹ Calorimetric CaF₂ scintillator. Range of limits reflects authors' estimate of the uncertainty of the nuclear matrix elements. Replaces YOU 91 as the most stringest limit based on 48 Ca.

- ²² Supersedes ALESSANDRELLO 00. Cryogenic calorimeter search. Reported a range reflecting uncertainty in nuclear matrix element calculations.
- ²³ Limit for $\langle m_{\nu} \rangle$ is based on the nuclear matrix elements of STAUDT 90 and ARNOLD 96. Supersedes DANEVICH 00.
- ²⁴ AALSETH 02B reported range of limits on $\langle m_{\nu} \rangle$ reflects the spread of theoretical nuclear matrix elements. Excludes part of allowed mass range reported in KLAPDOR-KLEINGROTHAUS 01B.
- ²⁵ BERNABEI 02D limit is based on the matrix elements of SIMKOVIC 02. The range of neutrino masses based on a variety of matrix elements is 1.1–2.9 eV.
- 26 KLAPDOR-KLEINGROTHAUS 02D is a detailed description of the analysis of the data collected by the Heidelberg-Moscow experiment, previously presented in KLAPDOR-KLEINGROTHAUS 01B. Matrix elements in STAUDT 90 have been used. See the footnote in the preceding table for further details. See also KLAPDORthe footnote in the preceding table for further details. KLEINGROTHAUS 02B.
- 27 The range of the reported $\langle m_\nu \rangle$ values reflects the spread of the nuclear matrix elements. On axis value assuming $\langle \lambda \rangle = \langle \eta \rangle = 0$.
- 28 KLAPDOR-KLEINGROTHAUS 01 uses the calculation by STAUDT 90. Using several other models in the literature could worsen the limit up to 1.2 eV. This is the most stringent experimental bound on $m_{\nu^{\star}}$ It supersedes BAUDIS 99B.
- 29 ARNOLD 99 limit based on the nuclear matrix elements of STAUDT 90.
- 30 BERNATOWICZ 92 finds these majorana neutrino mass limits assuming that the measured geochemical decay width is a limit on the 0ν decay width. The range is the range found using matrix elements from HAXTON 84, TOMODA 87, and SUHONEN 91. Further details of the experiment are given in BERNATOWICZ 93.
- 31 ELLIOTT 92 uses the matrix elements of HAXTON 84.

Limits on Lepton-Number Violating $(V+A)$ Current Admixture

For reasons given in the discussion at the beginning of this section, we list only results from 1989 and later. $\langle\lambda\rangle=\lambda\sum U_{\bf ej}V_{{\bf ej}}$ and $\langle\eta\rangle=\eta\sum U_{{\bf ej}}V_{{\bf ej}}$, where the sum is over the number of neutrino generations. This sum vanishes for massless or unmixed neutrinos. In the following Listings, only best or comparable limits or lifetimes for each isotope are reported.

 1 ARNOLD 14 is based on 34.7 kg yr of exposure of the NEMO-3 tracking calorimeter. The reported range limit on $\langle\lambda\rangle$ and $\langle\eta\rangle$ reflects the nuclear matrix element uncertainty in 100_{Mo} .

- ² ARNOLD 07 use NEMO-3 half life limit for 0v-decay of 100 Mo to the first excited 2⁺state of daughter nucleus to limit the right-right handed admixture of weak currents $\langle\lambda\rangle$. This limit is not competitive when compared to the decay to the ground state.
- 3Re-analysis of data originally published in KLAPDOR-KLEINGROTHAUS 04A. Modified pulse shape analysis leads the authors to claim 6σ statistical evidence for observation of 0 ν -decay. Authors use matrix element of MUTO 89 to determine $\langle\lambda\rangle$ and $\langle\eta\rangle.$ Uncertainty of nuclear matrix element is not reflected in stated errors.
- 4 ARNOLD 05A derive limit for $\langle \lambda \rangle$ based on 100 Mo data collected with NEMO-3 detector. No limit for $\langle \eta \rangle$ is given. Supersedes ARNOLD 04.
- 5 ARNOLD 05A derive limit for $\langle \lambda \rangle$ based on 82 Se data collected with NEMO-3 detector. No limit for $\langle \eta \rangle$ is given. Supersedes ARNOLD 04.
- 6 ARNOLD 04 use the matrix elements of SUHONEN 94 to obtain a limit for $\langle \lambda \rangle$, no limit for $\langle \eta \rangle$ is given. This limit is more stringent than the limit in EJIRI 01 for the same nucleus.
- 7 ARNOLD 04 use the matrix elements of TOMODA 91 and SUHONEN 91 to obtain a limit for $\langle \lambda \rangle$, no limit for $\langle \eta \rangle$ is given.
- 8 Supersedes ALESSANDRELLO 00. Cryogenic calorimeter search. Reported a range reflecting uncertainty in nuclear matrix element calculations.
- $^{\text{9}}$ Limits for $\langle\lambda\rangle$ and $\langle\eta\rangle$ are based on nuclear matrix elements of STAUDT 90. Supersedes DANEVICH 00.
- 10 The range of the reported $\langle\lambda\rangle$ and $\langle\eta\rangle$ values reflects the spread of the nuclear matrix elements. On axis value assuming $\langle m_\nu \rangle$ =0 and $\langle \lambda \rangle$ = $\langle \eta \rangle$ =0, respectively.
- 11 GUENTHER 97 limits use the matrix elements of STAUDT 90. Supersedes BALYSH 95 and BALYSH 92.
- 12 VUILLEUMIER 93 uses the matrix elements of MUTO 89. Based on a half-life limit 2.6×10^{23} y at 90%CL.
- 13 BERNATOWICZ 92 takes the measured geochemical decay width as a limit on the 0 ν width, and uses the SUHONEN 91 coefficients to obtain the least restrictive limit on η . Further details of the experiment are given in BERNATOWICZ 93.

Double-β Decay REFERENCES

HTTP://PDG.LBL.GOV Page 11 Created: 5/30/2017 17:23

HTTP://PDG.LBL.GOV Page 12 Created: 5/30/2017 17:23

HTTP://PDG.LBL.GOV Page 13 Created: 5/30/2017 17:23