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Axions (A0) and Other
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A0 (Axion) MASS LIMITS from Astrophysics and CosmologyA0 (Axion) MASS LIMITS from Astrophysics and CosmologyA0 (Axion) MASS LIMITS from Astrophysics and CosmologyA0 (Axion) MASS LIMITS from Astrophysics and Cosmology
These bounds depend on model-dependent assumptions (i.e. — on a combination of

axion parameters).

VALUE (MeV) DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, fits, limits, etc. • • •
>0.2 BARROSO 82 ASTR Standard Axion

>0.25 1 RAFFELT 82 ASTR Standard Axion

>0.2 2 DICUS 78C ASTR Standard Axion

MIKAELIAN 78 ASTR Stellar emission

>0.3 2 SATO 78 ASTR Standard Axion

>0.2 VYSOTSKII 78 ASTR Standard Axion

1 Lower bound from 5.5 MeV γ-ray line from the sun.
2 Lower bound from requiring the red giants’ stellar evolution not be disrupted by axion
emission.

A0 (Axion) and Other Light Boson (X0) Searches in Hadron DecaysA0 (Axion) and Other Light Boson (X0) Searches in Hadron DecaysA0 (Axion) and Other Light Boson (X0) Searches in Hadron DecaysA0 (Axion) and Other Light Boson (X0) Searches in Hadron Decays
Limits are for branching ratios.

VALUE CL% DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, fits, limits, etc. • • •
1 WON 16 BELL η → γX0 (X0 → π+π−)

<1 × 10−9 95 2 AAIJ 15AZ LHCB B0 → K∗0X0 (X0 → µ+ µ−)

<1.5 × 10−6 90 3 ADLARSON 13 WASA π0 → γX0 (X0 → e+ e−),
m

X 0 = 100 MeV

<2 × 10−8 90 4 BABUSCI 13B KLOE φ → ηX0 (X0 → e+ e−)
5 ARCHILLI 12 KLOE φ → ηX0, X0 → e+ e−

<2 × 10−15 90 6 GNINENKO 12A BDMP π0 → γX0 (X0 → e+ e−)

<3 × 10−14 90 7 GNINENKO 12B BDMP η(η′) → γX0 (X0 → e+ e−)

<7 × 10−10 90 8 ADLER 04 B787 K+ → π+X0

<7.3 × 10−11 90 9 ANISIMOVSK...04 B949 K+ → π+X0

<4.5 × 10−11 90 10 ADLER 02C B787 K+ → π+X0

<4 × 10−5 90 11 ADLER 01 B787 K+ → π+π0A0

<4.9 × 10−5 90 AMMAR 01B CLEO B± → π±(K±)X0

<5.3 × 10−5 90 AMMAR 01B CLEO B0 → K0
S

X0

<3.3 × 10−5 90 12 ALTEGOER 98 NOMD π0 → γX0, m
X 0 < 120 MeV

<5.0 × 10−8 90 13 KITCHING 97 B787 K+ → π+X0 (X0 → γγ)

<5.2 × 10−10 90 14 ADLER 96 B787 K+ → π+X0

<2.8 × 10−4 90 15 AMSLER 96B CBAR π0 → γX0, m
X 0 < 65 MeV

<3 × 10−4 90 15 AMSLER 96B CBAR η → γX0, m
X 0= 50–200 MeV

<4 × 10−5 90 15 AMSLER 96B CBAR η′ → γX0, m
X 0= 50–925 MeV

<6 × 10−5 90 15 AMSLER 94B CBAR π0 → γX0, m
X 0=65–125 MeV
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<6 × 10−5 90 15 AMSLER 94B CBAR η → γX0, m
X 0=200–525 MeV

<7 × 10−3 90 16 MEIJERDREES94 CNTR π0 → γX0, m
X 0=25 MeV

<2 × 10−3 90 16 MEIJERDREES94 CNTR π0 → γX0, m
X 0=100 MeV

<2 × 10−7 90 17 ATIYA 93B B787 Sup. by ADLER 04

<3 × 10−13 18 NG 93 COSM π0 → γX0

<1.1 × 10−8 90 19 ALLIEGRO 92 SPEC K+ → π+X0 (X0 → e+ e−)

<5 × 10−4 90 20 ATIYA 92 B787 π0 → γX0

<1 × 10−12 95 21 BARABASH 92 BDMP π± → e±ν X0(X0 → e+ e−,
γγ), m

X 0 = 8 MeV

<1 × 10−12 95 22 BARABASH 92 BDMP K± → π±X0(X0 → e+ e−,
γγ), m

X 0 = 10 MeV

<1 × 10−11 95 23 BARABASH 92 BDMP K0
L

→ π0X0(X0 → e+ e−,

γγ), m
X 0 = 10 MeV

<1 × 10−14 95 24 BARABASH 92 BDMP η′ → ηX0(X0 → e+ e−, γγ),
m

X 0 = 10 MeV

<4 × 10−6 90 25 MEIJERDREES92 SPEC π0 → γX0 (X0 → e+ e−),
m

X 0= 100 MeV

<1 × 10−7 90 26 ATIYA 90B B787 Sup. by KITCHING 97

<1.3 × 10−8 90 27 KORENCHE... 87 SPEC π+ → e+ν A0 (A0 → e+ e−)

<1 × 10−9 90 28 EICHLER 86 SPEC Stopped π+ → e+ νA0

<2 × 10−5 90 29 YAMAZAKI 84 SPEC For 160<m<260 MeV

<(1.5–4)× 10−6 90 29 YAMAZAKI 84 SPEC K decay, m
X 0 ≪ 100 MeV

30 ASANO 82 CNTR Stopped K+ → π+X0

31 ASANO 81B CNTR Stopped K+ → π+X0

32 ZHITNITSKII 79 Heavy axion

1WON 16 look for a vector boson coupled to baryon number. Derived limits on α′
< 10−3–10−2 for m

X 0 = 290–520 MeV at 95% CL. See their Fig. 4 for mass-

dependent limits.
2The limit is for τ

X 0 = 10 ps and m
X 0 = 214–4350 MeV. See their Fig. 4 for mass-

and lifetime-dependent limits.
3 Limits between 2.0 × 10−5 and 1.5 × 10−6 are obtained for m

X 0 = 20–100 MeV (see

their Fig. 8). Angular momentum conservation requires that X0 has spin ≥ 1.
4The limit is for B(φ → ηX0)·B(X0 → e+ e−) and applies to m

X 0 = 410 MeV. It

is derived by analyzing η → π0π0π0 and π−π+π0. Limits between 1 × 10−6 and

2 × 10−8 are obtained for m
X 0 ≤ 450 MeV (see their Fig. 6).

5ARCHILLI 12 analyzed η → π+π−π0 decays. Derived limits on α′/α < 2 × 10−5

for m
X 0 = 50–420 MeV at 90% CL. See their Fig. 8 for mass-dependent limits.

6This limit is for B(π0 → γX0)·B(X0 → e+ e−) and applies for m
X 0 = 90 MeV and

τ
X 0 ≃ 1 × 10−8 sec. Limits between 10−8 and 2 × 10−15 are obtained for m

X 0 =

3–120 MeV and τ
X 0 = 1× 10−11–1 sec. See their Fig. 3 for limits at different masses

and lifetimes.
7This limit is for B(η → γX0)·B(X0 → e+ e−) and applies for m

X 0 = 100 MeV and

τ
X 0 ≃ 6× 10−9 sec. Limits between 10−5 and 3× 10−14 are obtained for m

X 0 .
550 MeV and τ

X 0 = 10−10–10 sec. See their Fig. 5 for limits at different mass and

lifetime and for η′ decays.
8This limit applies for a mass near 180 MeV. For other masses in the range m

X 0 =

150–250 MeV the limit is less restrictive, but still improves ADLER 02C and ATIYA 93B.
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9ANISIMOVSKY 04 bound is for m
X 0=0.

10ADLER 02C bound is for m
X 0 <60 MeV. See Fig. 2 for limits at higher masses.

11The quoted limit is for m
X 0 = 0–80 MeV. See their Fig. 5 for the limit at higher mass.

The branching fraction limit assumes pure phase space decay distributions.
12ALTEGOER 98 looked for X0 from π0 decay which penetrate the shielding and convert

to π0 in the external Coulomb field of a nucleus.
13KITCHING 97 limit is for B(K+ → π+X0)·B(X0 → γγ) and applies for m

X 0 ≃ 50

MeV, τ
X 0 < 10−10 s. Limits are provided for 0<m

X 0 < 100 MeV, τ
X 0 < 10−8 s.

14ADLER 96 looked for a peak in missing-mass distribution. This work is an update of

ATIYA 93. The limit is for massless stable X0 particles and extends to m
X 0=80 MeV

at the same level. See paper for dependence on finite lifetime.
15AMSLER 94B and AMSLER 96B looked for a peak in missing-mass distribution.
16The MEIJERDREES 94 limit is based on inclusive photon spectrum and is independent

of X0 decay modes. It applies to τ(X0)> 10−23 sec.
17ATIYA 93B looked for a peak in missing mass distribution. The bound applies for stable

X0 of m
X 0=150–250 MeV, and the limit becomes stronger (10−8) for m

X 0=180–240

MeV.
18NG 93 studied the production of X0 via γγ → π0 → γX0 in the early universe at T≃ 1

MeV. The bound on extra neutrinos from nucleosynthesis ∆Nν < 0.3 (WALKER 91) is
employed. It applies to m

X 0 ≪ 1 MeV in order to be relativistic down to nucleosynthesis

temperature. See paper for heavier X0.
19ALLIEGRO 92 limit applies for m

X 0=150–340 MeV and is the branching ratio times the

decay probability. Limit is < 1.5 × 10−8 at 99%CL.
20ATIYA 92 looked for a peak in missing mass distribution. The limit applies to

m
X 0=0–130 MeV in the narrow resonance limit. See paper for the dependence on

lifetime. Covariance requires X0 to be a vector particle.
21BARABASH 92 is a beam dump experiment that searched for a light Higgs. Limits

between 1 × 10−12 and 1 × 10−7 are obtained for 3 < m
X 0 < 40 MeV.

22 Limits between 1 × 10−12 and 1 are obtained for 4 < m
X 0 < 69 MeV.

23 Limits between 1 × 10−11 and 5 × 10−3 are obtained for 4 < m
X 0 < 63 MeV.

24 Limits between 1 × 10−14 and 1 are obtained for 3 < m
X 0 < 82 MeV.

25MEIJERDREES 92 limit applies for τ
X 0 = 10−23–10−11 sec. Limits between 2×10−4

and 4 × 10−6 are obtained for m
X 0 = 25–120 MeV. Angular momentum conservation

requires that X0 has spin ≥ 1.
26ATIYA 90B limit is for B(K+ → π+X0)·B(X0 → γγ) and applies for m

X 0 = 50 MeV,

τ
X 0 < 10−10 s. Limits are also provided for 0 < m

X 0 < 100 MeV, τ
X 0 < 10−8 s.

27KORENCHENKO 87 limit assumes m
A0 = 1.7 MeV, τ

A0 . 10−12 s, and B(A0 →
e+ e−) = 1.

28 EICHLER 86 looked for π+ → e+ νA0 followed by A0 → e+ e−. Limits on the

branching fraction depend on the mass and and lifetime of A0. The quoted limits are

valid when τ(A0)& 3. × 10−10s if the decays are kinematically allowed.
29YAMAZAKI 84 looked for a discrete line in K+ → π+X. Sensitive to wide mass range

(5–300 MeV), independent of whether X decays promptly or not.
30ASANO 82 at KEK set limits for B(K+ → π+X0) for m

X 0 <100 MeV as BR

< 4.× 10−8 for τ(X0 → nγ ’s) > 1.× 10−9 s, BR < 1.4× 10−6 for τ < 1.× 10−9s.
31ASANO 81B is KEK experiment. Set B(K+ → π+X0) < 3.8 × 10−8 at CL = 90%.
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32ZHITNITSKII 79 argue that a heavy axion predicted by YANG 78 (3 <m <40 MeV)
contradicts experimental muon anomalous magnetic moments.

A0 (Axion) Searches in Quarkonium DecaysA0 (Axion) Searches in Quarkonium DecaysA0 (Axion) Searches in Quarkonium DecaysA0 (Axion) Searches in Quarkonium Decays
Decay or transition of quarkonium. Limits are for branching ratio.

VALUE CL% DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, fits, limits, etc. • • •

<2.8 × 10−8 90 1 ABLIKIM 16E BES3 J/ψ → A0 γ (A0 → µ+µ−)

<4 × 10−7 90 2 ABLIKIM 12 BES3 J/ψ → A0 γ (A0 → µ+µ−)

<4.0 × 10−5 90 3 ANTREASYAN 90C CBAL Υ(1S) → A0 γ

<5 × 10−5 90 4 DRUZHININ 87 ND φ → A0 γ (A0 → e+ e−)

<2 × 10−3 90 5 DRUZHININ 87 ND φ → A0 γ (A0 → γγ)

<7 × 10−6 90 6 DRUZHININ 87 ND φ → A0 γ (A0 → missing)

<1.4 × 10−5 90 7 EDWARDS 82 CBAL J/ψ → A0 γ

1ABLIKIM 16E limits between 2.8–495.3×10−8 were obtained for 0.212 GeV < m
A0 <

3.0 GeV. See their Fig. 5 for mass-dependent limits.
2ABLIKIM 12 derived limits between 4× 10−7–2.1× 10−5 for 0.212 GeV < m

A0 < 3.0

GeV. See their Fig. 2(c) for mass-dependent limits.
3ANTREASYAN 90C assume that A0 does not decay in the detector.
4The first DRUZHININ 87 limit is valid when τ

A0/m
A0 < 3 × 10−13 s/MeV and

m
A0 < 20 MeV.

5The second DRUZHININ 87 limit is valid when τ
A0/m

A0 < 5 × 10−13 s/MeV and

m
A0 < 20 MeV.

6The third DRUZHININ 87 limit is valid when τ
A0/m

A0 > 7 × 10−12 s/MeV and

m
A0 < 200 MeV.

7 EDWARDS 82 looked for J/ψ → γA0 decays by looking for events with a single

γ
[
of energy ∼ 1/2 the J/ψ(1S) mass

]
, plus nothing else in the detector. The limit is

inconsistent with the axion interpretation of the FAISSNER 81B result.

A0 (Axion) Searches in Positronium DecaysA0 (Axion) Searches in Positronium DecaysA0 (Axion) Searches in Positronium DecaysA0 (Axion) Searches in Positronium Decays
Decay or transition of positronium. Limits are for branching ratio.

VALUE CL% DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, fits, limits, etc. • • •
<4.4 × 10−5 90 1 BADERT... 02 CNTR o-Ps → γX1 X2, mX1

+mX2
≤

900 keV
<2 × 10−4 90 MAENO 95 CNTR o-Ps → A0 γ m

A0=850–1013 keV

<3.0 × 10−4 90 2 ASAI 94 CNTR o-Ps → A0 γ m
A0=30–500 keV

<2.8 × 10−5 90 3 AKOPYAN 91 CNTR o-Ps → A0 γ (A0 → γγ),
m

A0 < 30 keV

<1.1 × 10−6 90 4 ASAI 91 CNTR o-Ps → A0 γ, m
A0 < 800 keV

<3.8 × 10−4 90 GNINENKO 90 CNTR o-Ps → A0 γ, m
A0 < 30 keV

<(1–5) × 10−4 95 5 TSUCHIAKI 90 CNTR o-Ps → A0 γ, m
A0 = 300–900 keV

<6.4 × 10−5 90 6 ORITO 89 CNTR o-Ps → A0 γ, m
A0 < 30 keV

7 AMALDI 85 CNTR Ortho-positronium
8 CARBONI 83 CNTR Ortho-positronium
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1BADERTSCHER 02 looked for a three-body decay of ortho-positronium into a photon
and two penetrating (neutral or milli-charged) particles.

2The ASAI 94 limit is based on inclusive photon spectrum and is independent of A0 decay
modes.

3The AKOPYAN 91 limit applies for a short-lived A0 with τ
A0 < 10−13 m

A0 [keV] s.

4ASAI 91 limit translates to g2
A0 e+ e−

/4π < 1.1 × 10−11 (90% CL) for m
A0 < 800

keV.
5The TSUCHIAKI 90 limit is based on inclusive photon spectrum and is independent of

A0 decay modes.
6ORITO 89 limit translates to g2

A0 e e
/4π < 6.2 × 10−10. Somewhat more sensitive

limits are obtained for larger m
A0 : B < 7.6 × 10−6 at 100 keV.

7AMALDI 85 set limits B(A0 γ) / B(γγγ) < (1–5) × 10−6 for m
A0 = 900–100 keV

which are about 1/10 of the CARBONI 83 limits.
8 CARBONI 83 looked for orthopositronium → A0 γ. Set limit for A0 electron coupling

squared, g(e e A0)2/(4π) < 6. × 10−10–7. × 10−9 for m
A0 from 150–900 keV (CL =

99.7%). This is about 1/10 of the bound from g−2 experiments.

A0 (Axion) Search in PhotoproductionA0 (Axion) Search in PhotoproductionA0 (Axion) Search in PhotoproductionA0 (Axion) Search in Photoproduction
VALUE DOCUMENT ID COMMENT

• • • We do not use the following data for averages, fits, limits, etc. • • •
1 BASSOMPIE... 95 m

A0 = 1.8 ± 0.2 MeV

1BASSOMPIERRE 95 is an extension of BASSOMPIERRE 93. They looked for a peak

in the invariant mass of e+ e− pairs in the region m
e+ e−

= 1.8 ± 0.2 MeV. They

obtained bounds on the production rate A0 for τ(A0) = 10−18–10−9 sec. They also
found an excess of events in the range m

e+ e−
= 2.1–3.5 MeV.

A0 (Axion) Production in Hadron CollisionsA0 (Axion) Production in Hadron CollisionsA0 (Axion) Production in Hadron CollisionsA0 (Axion) Production in Hadron Collisions
Limits are for σ(A0) / σ(π0).

VALUE CL% EVTS DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, fits, limits, etc. • • •
1 JAIN 07 CNTR A0 → e+ e−
2 AHMAD 97 SPEC e+ production
3 LEINBERGER 97 SPEC A0 → e+ e−
4 GANZ 96 SPEC A0 → e+ e−
5 KAMEL 96 EMUL 32S emulsion, A0 →

e+ e−
6 BLUEMLEIN 92 BDMP A0 NZ → ℓ+ ℓ−NZ
7 MEIJERDREES92 SPEC π− p → nA0, A0 →

e+ e−
8 BLUEMLEIN 91 BDMP A0 → e+ e−, 2γ
9 FAISSNER 89 OSPK Beam dump,

A0 → e+ e−
10 DEBOER 88 RVUE A0 → e+ e−
11 EL-NADI 88 EMUL A0 → e+ e−
12 FAISSNER 88 OSPK Beam dump, A0 → 2γ
13 BADIER 86 BDMP A0 → e+ e−

<2. × 10−11 90 0 14 BERGSMA 85 CHRM CERN beam dump
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<1. × 10−13 90 0 14 BERGSMA 85 CHRM CERN beam dump

24 15 FAISSNER 83 OSPK Beam dump, A0 → 2γ
16 FAISSNER 83B RVUE LAMPF beam dump
17 FRANK 83B RVUE LAMPF beam dump
18 HOFFMAN 83 CNTR πp → nA0

(A0 → e+ e−)
19 FETSCHER 82 RVUE See FAISSNER 81B

12 20 FAISSNER 81 OSPK CERN PS ν wideband

15 21 FAISSNER 81B OSPK Beam dump, A0 → 2γ

8 22 KIM 81 OSPK 26 GeV pN → A0X

0 23 FAISSNER 80 OSPK Beam dump,

A0 → e+ e−
<1. × 10−8 90 24 JACQUES 80 HLBC 28 GeV protons

<1. × 10−14 90 24 JACQUES 80 HLBC Beam dump
25 SOUKAS 80 CALO 28 GeV p beam dump
26 BECHIS 79 CNTR

<1. × 10−8 90 27 COTEUS 79 OSPK Beam dump

<1. × 10−3 95 28 DISHAW 79 CALO 400 GeV pp

<1. × 10−8 90 ALIBRAN 78 HYBR Beam dump

<6. × 10−9 95 ASRATYAN 78B CALO Beam dump

<1.5 × 10−8 90 29 BELLOTTI 78 HLBC Beam dump

<5.4 × 10−14 90 29 BELLOTTI 78 HLBC m
A0=1.5 MeV

<4.1 × 10−9 90 29 BELLOTTI 78 HLBC m
A0=1 MeV

<1. × 10−8 90 30 BOSETTI 78B HYBR Beam dump
31 DONNELLY 78

<0.5 × 10−8 90 HANSL 78D WIRE Beam dump
32 MICELMAC... 78
33 VYSOTSKII 78

1 JAIN 07 claims evidence for A0 → e+ e− produced in 207Pb collision on nuclear

emulsion (Ag/Br) for m(A0) = 7 ± 1 or 19 ± 1 MeV and τ(A0) ≤ 10−13 s.
2AHMAD 97 reports a result of APEX Collaboration which studied positron production in
238U+232Ta and 238U+181Ta collisions, without requiring a coincident electron. No
narrow lines were found for 250 <E

e+ < 750 keV.

3 LEINBERGER 97 (ORANGE Collaboration) at GSI looked for a narrow sum-energy

e+ e−-line at ∼ 635 keV in 238U+181Ta collision. Limits on the production proba-

bility for a narrow sum-energy e+ e− line are set. See their Table 2.
4GANZ 96 (EPos II Collaboration) has placed upper bounds on the production cross sec-

tion of e+ e− pairs from 238U+181Ta and 238U+232Th collisions at GSI. See Table 2

for limits both for back-to-back and isotropic configurations of e+ e− pairs. These lim-

its rule out the existence of peaks in the e+ e− sum-energy distribution, reported by an
earlier version of this experiment.

5KAMEL 96 looked for e+ e− pairs from the collision of 32S (200 GeV/nucleon) and
emulsion. No evidence of mass peaks is found in the region of sensitivity me e >2 MeV.

6BLUEMLEIN 92 is a proton beam dump experiment at Serpukhov with a secondary

target to induce Bethe-Heitler production of e+ e− or µ+µ− from the produce A0.
See Fig. 5 for the excluded region in m

A0 -x plane. For the standard axion, 0.3 <x<25

is excluded at 95% CL. If combined with BLUEMLEIN 91, 0.008 <x<32 is excluded.
7MEIJERDREES 92 give Γ(π− p → nA0)·B(A0 → e+ e−)

/
Γ(π− p → all) < 10−5

(90% CL) for m
A0 = 100 MeV, τ

A0 = 10−11–10−23 sec. Limits ranging from 2.5 ×
10−3 to 10−7 are given for m

A0 = 25–136 MeV.
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8BLUEMLEIN 91 is a proton beam dump experiment at Serpukhov. No candidate event

for A0 → e+ e−, 2γ are found. Fig. 6 gives the excluded region in m
A0 -x plane (x =

tanβ = v2/v1). Standard axion is excluded for 0.2 < m
A0 < 3.2 MeV for most

x > 1, 0.2–11 MeV for most x < 1.
9 FAISSNER 89 searched for A0 → e+ e− in a proton beam dump experiment at SIN. No
excess of events was observed over the background. A standard axion with mass 2me–20

MeV is excluded. Lower limit on f
A0 of ≃ 104 GeV is given for m

A0 = 2me–20 MeV.

10DEBOER 88 reanalyze EL-NADI 88 data and claim evidence for three distinct states

with mass ∼ 1.1, ∼ 2.1, and ∼ 9 MeV, lifetimes 10−16–10−15 s decaying to e+ e−
and note the similarity of the data with those of a cosmic-ray experiment by Bristol group
(B.M. Anand, Proc. of the Royal Society of London, Section A A22A22A22A22 183 (1953)). For a

criticism see PERKINS 89, who suggests that the events are compatible with π0 Dalitz
decay. DEBOER 89B is a reply which contests the criticism.

11EL-NADI 88 claim the existence of a neutral particle decaying into e+ e− with mass

1.60 ± 0.59 MeV, lifetime (0.15 ± 0.01) × 10−14 s, which is produced in heavy ion
interactions with emulsion nuclei at ∼ 4 GeV/c/nucleon.

12 FAISSNER 88 is a proton beam dump experiment at SIN. They found no candidate event

for A0 → γγ. A standard axion decaying to 2γ is excluded except for a region x≃ 1.

Lower limit on f
A0 of 102–103 GeV is given for m

A0 = 0.1–1 MeV.

13BADIER 86 did not find long-lived A0 in 300 GeV π− Beam Dump Experiment that

decays into e+ e− in the mass range m
A0 = (20–200) MeV, which excludes the A0 decay

constant f (A0) in the interval (60–600) GeV. See their figure 6 for excluded region on

f (A0)-m
A0 plane.

14BERGSMA 85 look for A0 → 2γ, e+ e−, µ+µ−. First limit above is for m
A0 = 1

MeV; second is for 200 MeV. See their figure 4 for excluded region on f
A0−m

A0 plane,

where f
A0 is A0 decay constant. For Peccei-Quinn PECCEI 77 A0, m

A0 <180 keV and

τ >0.037 s. (CL = 90%). For the axion of FAISSNER 81B at 250 keV, BERGSMA 85
expect 15 events but observe zero.

15 FAISSNER 83 observed 19 1-γ and 12 2-γ events where a background of 4.8 and 2.3
respectively is expected. A small-angle peak is observed even if iron wall is set in front
of the decay region.

16 FAISSNER 83B extrapolate SIN γ signal to LAMPF ν experimental condition. Resulting
370 γ’s are not at variance with LAMPF upper limit of 450 γ’s. Derived from LAMPF

limit that
[
dσ(A0)/dω at 90◦

]
m

A0/τ
A0 < 14 × 10−35 cm2 sr−1 MeV ms−1. See

comment on FRANK 83B.
17 FRANK 83B stress the importance of LAMPF data bins with negative net signal. By

statistical analysis say that LAMPF and SIN-A0 are at variance when extrapolation by
phase-space model is done. They find LAMPF upper limit is 248 not 450 γ’s. See
comment on FAISSNER 83B.

18HOFFMAN 83 set CL = 90% limit dσ/dt B(e+ e−) < 3.5× 10−32 cm2/GeV2 for 140

<m
A0 <160 MeV. Limit assumes τ(A0) < 10−9 s.

19 FETSCHER 82 reanalyzes SIN beam-dump data of FAISSNER 81. Claims no evidence
for axion since 2-γ peak rate remarkably decreases if iron wall is set in front of the decay
region.

20 FAISSNER 81 see excess µe events. Suggest axion interactions.
21 FAISSNER 81B is SIN 590 MeV proton beam dump. Observed 14.5 ± 5.0 events of 2γ

decay of long-lived neutral penetrating particle with m2γ . 1 MeV. Axion interpreta-

tion with η-A0 mixing gives m
A0 = 250 ± 25 keV, τ(2γ) = (7.3 ± 3.7) × 10−3 s from

above rate. See critical remarks below in comments of FETSCHER 82, FAISSNER 83,
FAISSNER 83B, FRANK 83B, and BERGSMA 85. Also see in the next subsection ALEK-
SEEV 82B, CAVAIGNAC 83, and ANANEV 85.
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22KIM 81 analyzed 8 candidates for A0 → 2γ obtained by Aachen-Padova experiment at
CERN with 26 GeV protons on Be. Estimated axion mass is about 300 keV and lifetime

is (0.86∼ 5.6) × 10−3 s depending on models. Faissner (private communication), says
axion production underestimated and mass overestimated. Correct value around 200
keV.

23 FAISSNER 80 is SIN beam dump experiment with 590 MeV protons looking for A0 →
e+ e− decay. Assuming A0/π0 = 5.5× 10−7, obtained decay rate limit 20/(A0 mass)

MeV/s (CL = 90%), which is about 10−7 below theory and interpreted as upper limit
to m

A0 <2m
e−

.

24 JACQUES 80 is a BNL beam dump experiment. First limit above comes from nonobser-

vation of excess neutral-current-type events
[
σ(production)σ(interaction) < 7.× 10−68

cm4, CL = 90%
]
. Second limit is from nonobservation of axion decays into 2γ’s or

e+ e−, and for axion mass a few MeV.
25 SOUKAS 80 at BNL observed no excess of neutral-current-type events in beam dump.
26BECHIS 79 looked for the axion production in low energy electron Bremsstrahlung and

the subsequent decay into either 2γ or e+ e−. No signal found. CL = 90% limits for
model parameter(s) are given.

27COTEUS 79 is a beam dump experiment at BNL.
28DISHAW 79 is a calorimetric experiment and looks for low energy tail of energy distri-

butions due to energy lost to weakly interacting particles.
29BELLOTTI 78 first value comes from search for A0 → e+ e−. Second value comes

from search for A0 → 2γ, assuming mass <2m
e−

. For any mass satisfying this,

limit is above value×(mass−4). Third value uses data of PL 60B 401 and quotes

σ(production)σ(interaction) < 10−67 cm4.
30BOSETTI 78B quotes σ(production)σ(interaction) < 2. × 10−67 cm4.
31DONNELLY 78 examines data from reactor neutrino experiments of REINES 76 and

GURR 74 as well as SLAC beam dump experiment. Evidence is negative.
32MICELMACHER 78 finds no evidence of axion existence in reactor experiments of

REINES 76 and GURR 74. (See reference under DONNELLY 78 below).
33VYSOTSKII 78 derived lower limit for the axion mass 25 keV from luminosity of the sun

and 200 keV from red supergiants.

A0 (Axion) Searches in Reactor ExperimentsA0 (Axion) Searches in Reactor ExperimentsA0 (Axion) Searches in Reactor ExperimentsA0 (Axion) Searches in Reactor Experiments
VALUE DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, fits, limits, etc. • • •
1 CHANG 07 Primakoff or Compton
2 ALTMANN 95 CNTR Reactor; A0 → e+ e−
3 KETOV 86 SPEC Reactor, A0 → γγ
4 KOCH 86 SPEC Reactor; A0 → γγ
5 DATAR 82 CNTR Light water reactor
6 VUILLEUMIER 81 CNTR Reactor, A0 → 2γ

1CHANG 07 looked for monochromatic photons from Primakoff or Compton conversion
of axions from the Kuo-Sheng reactor due to axion coupling to photon or electron,
respectively. The search places model-independent limits on the products GAγγGAN N

and GAe eGAN N for m(A0) less than the MeV range.
2ALTMANN 95 looked for A0 decaying into e+ e− from the Bugey 5 nuclear reac-

tor. They obtain an upper limit on the A0 production rate of ω(A0)/ω(γ) ×B(A0 →
e+ e−)< 10−16 for m

A0 = 1.5 MeV at 90% CL. The limit is weaker for heavier A0. In

the case of a standard axion, this limit excludes a mass in the range 2me <m
A0 < 4.8
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MeV at 90% CL. See Fig. 5 of their paper for exclusion limits of axion-like resonances

Z0 in the (m
X 0 ,f

X 0) plane.

3KETOV 86 searched for A0 at the Rovno nuclear power plant. They found an upper

limit on the A0 production probability of 0.8
[
100 keV/m

A0

]6 × 10−6 per fission. In

the standard axion model, this corresponds to m
A0 >150 keV. Not valid for m

A0 &
1 MeV.

4KOCH 86 searched for A0 → γγ at nuclear power reactor Biblis A. They found an

upper limit on the A0 production rate of ω(A0)/ω(γ(M1)) < 1.5× 10−10 (CL=95%).

Standard axion with m
A0 = 250 keV gives 10−5 for the ratio. Not valid for m

A0 >1022

keV.
5DATAR 82 looked for A0 → 2γ in neutron capture (np → d A0) at Tarapur 500 MW

reactor. Sensitive to sum of I = 0 and I = 1 amplitudes. With ZEHNDER 81
[
(I = 0)

− (I = 1)
]

result, assert nonexistence of standard A0.
6VUILLEUMIER 81 is at Grenoble reactor. Set limit m

A0 <280 keV.

A0 (Axion) and Other Light Boson (X0) Searches in Nuclear TransitionsA0 (Axion) and Other Light Boson (X0) Searches in Nuclear TransitionsA0 (Axion) and Other Light Boson (X0) Searches in Nuclear TransitionsA0 (Axion) and Other Light Boson (X0) Searches in Nuclear Transitions
Limits are for branching ratio.

VALUE CL% DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, fits, limits, etc. • • •

< 8.5 × 10−6 90 1 DERBIN 02 CNTR 125mTe decay
2 DEBOER 97C RVUE M1 transitions

< 5.5 × 10−10 95 3 TSUNODA 95 CNTR 252Cf fission, A0 → e e

< 1.2 × 10−6 95 4 MINOWA 93 CNTR 139La∗ → 139LaA0

< 2 × 10−4 90 5 HICKS 92 CNTR 35S decay, A0 → γγ

< 1.5 × 10−9 95 6 ASANUMA 90 CNTR 241Am decay

<(0.4–10) × 10−3 95 7 DEBOER 90 CNTR 8Be∗ → 8BeA0,

A0 → e+ e−
<(0.2–1) × 10−3 90 8 BINI 89 CNTR 16O∗ → 16OX0,

X0 → e+ e−
9 AVIGNONE 88 CNTR Cu∗ → CuA0 (A0 → 2γ,

A0 e → γ e, A0Z → γZ)

< 1.5 × 10−4 90 10 DATAR 88 CNTR 12C∗ → 12CA0,

A0 → e+ e−
< 5 × 10−3 90 11 DEBOER 88C CNTR 16O∗ → 16OX0,

X0 → e+ e−
< 3.4 × 10−5 95 12 DOEHNER 88 SPEC 2H∗, A0 → e+ e−
< 4 × 10−4 95 13 SAVAGE 88 CNTR Nuclear decay (isovector)

< 3 × 10−3 95 13 SAVAGE 88 CNTR Nuclear decay (isoscalar)

<10.6 × 10−2 90 14 HALLIN 86 SPEC 6Li isovector decay

<10.8 90 14 HALLIN 86 SPEC 10B isoscalar decays

< 2.2 90 14 HALLIN 86 SPEC 14N isoscalar decays

< 4 × 10−4 90 15 SAVAGE 86B CNTR 14N∗
16 ANANEV 85 CNTR Li∗, deut∗ A0 → 2γ
17 CAVAIGNAC 83 CNTR 97Nb∗, deut∗ transition

A0 → 2γ
18 ALEKSEEV 82B CNTR Li∗, deut∗ transition

A0 → 2γ
19 LEHMANN 82 CNTR Cu∗ → CuA0 (A0 → 2γ)
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20 ZEHNDER 82 CNTR Li∗, Nb∗ decay, n-capt.
21 ZEHNDER 81 CNTR Ba∗ → BaA0 (A0 → 2γ)
22 CALAPRICE 79 Carbon

1DERBIN 02 looked for the axion emission in an M1 transition in 125mTe decay. They
looked for a possible presence of a shifted energy spectrum in gamma rays due to the
undetected axion.

2DEBOER 97C reanalyzed the existent data on Nuclear M1 transitions and find that a

9 MeV boson decaying into e+ e− would explain the excess of events with large opening
angles. See also DEBOER 01 for follow-up experiments.

3TSUNODA 95 looked for axion emission when 252Cf undergoes a spontaneous fission,

with the axion decaying into e+ e−. The bound is for m
A0=40 MeV. It improves to

2.5 × 10−5 for m
A0=200 MeV.

4MINOWA 93 studied chain process, 139Ce → 139La∗ by electron capture and M1

transition of 139La∗ to the ground state. It does not assume decay modes of A0. The
bound applies for m

A0 < 166 keV.

5HICKS 92 bound is applicable for τ
X 0 < 4 × 10−11 sec.

6The ASANUMA 90 limit is for the branching fraction of X0 emission per 241Amα decay

and valid for τ
X 0 < 3 × 10−11 s.

7The DEBOER 90 limit is for the branching ratio 8Be∗ (18.15 MeV, 1+) → 8BeA0,

A0 → e+ e− for the mass range m
A0 = 4–15 MeV.

8The BINI 89 limit is for the branching fraction of 16O∗ (6.05 MeV, 0+) → 16OX0,

X0 → e+ e− for mX = 1.5–3.1 MeV. τ
X 0 . 10−11 s is assumed. The spin-parity

of X is restricted to 0+ or 1−.
9 AVIGNONE 88 looked for the 1115 keV transition C∗ → CuA0, either from A0 →
2γ in-flight decay or from the secondary A0 interactions by Compton and by Primakoff
processes. Limits for axion parameters are obtained for m

A0 < 1.1 MeV.

10DATAR 88 rule out light pseudoscalar particle emission through its decay A0 → e+ e−
in the mass range 1.02–2.5 MeV and lifetime range 10−13–10−8 s. The above limit is

for τ = 5 × 10−13 s and m = 1.7 MeV; see the paper for the τ -m dependence of the
limit.

11The limit is for the branching fraction of 16O∗ (6.05 MeV, 0+) → 16OX0, X0 →
e+ e− against internal pair conversion for m

X 0 = 1.7 MeV and τ
X 0 < 10−11 s.

Similar limits are obtained for m
X 0 = 1.3–3.2 MeV. The spin parity of X0 must be

either 0+ or 1−. The limit at 1.7 MeV is translated into a limit for the X0-nucleon
coupling constant: g2

X 0 NN
/4π < 2.3 × 10−9.

12The DOEHNER 88 limit is for m
A0 = 1.7 MeV, τ(A0) < 10−10 s. Limits less than

10−4 are obtained for m
A0 = 1.2–2.2 MeV.

13 SAVAGE 88 looked for A0 that decays into e+ e− in the decay of the 9.17 MeV JP =

2+ state in 14N, 17.64 MeV state JP = 1+ in 8Be, and the 18.15 MeV state JP =

1+ in 8Be. This experiment constrains the isovector coupling of A0 to hadrons, if m
A0

= (1.1 → 2.2) MeV and the isoscalar coupling of A0 to hadrons, if m
A0 = (1.1 →

2.6) MeV. Both limits are valid only if τ(A0) . 1 × 10−11 s.
14 Limits are for Γ(A0(1.8 MeV))/Γ(πM1); i.e., for 1.8 MeV axion emission normalized

to the rate for internal emission of e+ e− pairs. Valid for τ
A0 < 2 × 10−11s. 6Li

isovector decay data strongly disfavor PECCEI 86 model I, whereas the 10B and 14N
isoscalar decay data strongly reject PECCEI 86 model II and III.
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15 SAVAGE 86B looked for A0 that decays into e+ e− in the decay of the 9.17 MeV JP =

2+ state in 14N. Limit on the branching fraction is valid if τ
A0 . 1.× 10−11s for m

A0

= (1.1–1.7) MeV. This experiment constrains the iso-vector coupling of A0 to hadrons.
16ANANEV 85 with IBR-2 pulsed reactor exclude standard A0 at CL = 95% masses below

470 keV (Li∗ decay) and below 2me for deuteron* decay.
17CAVAIGNAC 83 at Bugey reactor exclude axion at any m97Nb∗decay

and axion with

m
A0 between 275 and 288 keV (deuteron* decay).

18ALEKSEEV 82 with IBR-2 pulsed reactor exclude standard A0 at CL = 95% mass-ranges

m
A0 <400 keV (Li∗ decay) and 330 keV <m

A0 <2.2 MeV. (deuteron* decay).

19 LEHMANN 82 obtained A0 → 2γ rate < 6.2 × 10−5/s (CL = 95%) excluding m
A0

between 100 and 1000 keV.
20ZEHNDER 82 used Gosgen 2.8GW light-water reactor to check A0 production. No

2γ peak in Li∗, Nb∗ decay (both single p transition) nor in n capture (combined with

previous Ba∗ negative result) rules out standard A0. Set limit m
A0 <60 keV for any

A0.
21ZEHNDER 81 looked for Ba∗ → A0Ba transition with A0 → 2γ. Obtained 2γ

coincidence rate < 2.2 × 10−5/s (CL = 95%) excluding m
A0 >160 keV (or 200 keV

depending on Higgs mixing). However, see BARROSO 81.
22CALAPRICE 79 saw no axion emission from excited states of carbon. Sensitive to axion

mass between 1 and 15 MeV.

A0 (Axion) Limits from Its Electron CouplingA0 (Axion) Limits from Its Electron CouplingA0 (Axion) Limits from Its Electron CouplingA0 (Axion) Limits from Its Electron Coupling
Limits are for τ(A0 → e+ e−).

VALUE (s) CL% DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, fits, limits, etc. • • •

none 4 × 10−16–4.5 × 10−12 90 1 BROSS 91 BDMP e N → e A0N
(A0 → e e)

2 GUO 90 BDMP e N → e A0N
(A0 → e e)

3 BJORKEN 88 CALO A → e+ e− or
2γ

4 BLINOV 88 MD1 e e → e e A0

(A0 → e e)

none 1 × 10−14–1 × 10−10 90 5 RIORDAN 87 BDMP e N → e A0N
(A0 → e e)

none 1 × 10−14–1 × 10−11 90 6 BROWN 86 BDMP e N → e A0N
(A0 → e e)

none 6 × 10−14–9 × 10−11 95 7 DAVIER 86 BDMP e N → e A0N
(A0 → e e)

none 3 × 10−13–1 × 10−7 90 8 KONAKA 86 BDMP e N → e A0N
(A0 → e e)

1The listed BROSS 91 limit is for m
A0 = 1.14 MeV. B(A0 → e+ e−) = 1 assumed.

Excluded domain in the τ
A0–m

A0 plane extends up to m
A0 ≈ 7 MeV (see Fig. 5).

Combining with electron g – 2 constraint, axions coupling only to e+ e− ruled out for
m

A0 < 4.8 MeV (90% CL).

2GUO 90 use the same apparatus as BROWN 86 and improve the previous limit in the

shorter lifetime region. Combined with g – 2 constraint, axions coupling only to e+ e−
are ruled out for m

A0 < 2.7 MeV (90% CL).
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3BJORKEN 88 reports limits on axion parameters (fA, mA, τA) for m
A0 < 200 MeV

from electron beam-dump experiment with production via Primakoff photoproduction,
bremsstrahlung from electrons, and resonant annihilation of positrons on atomic elec-
trons.

4BLINOV 88 assume zero spin, m = 1.8 MeV and lifetime < 5 × 10−12 s and find

Γ(A0 → γγ)B(A0 → e+ e−) < 2 eV (CL=90%).
5Assumes A0 γγ coupling is small and hence Primakoff production is small. Their figure
2 shows limits on axions for m

A0 < 15 MeV.

6Uses electrons in hadronic showers from an incident 800 GeV proton beam. Limits for
m

A0 < 15 MeV are shown in their figure 3.

7m
A0 = 1.8 MeV assumed. The excluded domain in the τ

A0−m
A0 plane extends up to

m
A0 ≈ 14 MeV, see their figure 4.

8The limits are obtained from their figure 3. Also given is the limit on the

A0 γγ−A0 e+ e− coupling plane by assuming Primakoff production.

Search for A0 (Axion) Resonance in Bhabha ScatteringSearch for A0 (Axion) Resonance in Bhabha ScatteringSearch for A0 (Axion) Resonance in Bhabha ScatteringSearch for A0 (Axion) Resonance in Bhabha Scattering
The limit is for Γ(A0)[B(A0 → e+ e−)]2.

VALUE (10−3 eV) CL% DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, fits, limits, etc. • • •
< 1.3 97 1 HALLIN 92 CNTR m

A0 = 1.75–1.88 MeV

none 0.0016–0.47 90 2 HENDERSON 92C CNTR m
A0= 1.5–1.86 MeV

< 2.0 90 3 WU 92 CNTR m
A0= 1.56–1.86 MeV

< 0.013 95 TSERTOS 91 CNTR m
A0 = 1.832 MeV

none 0.19–3.3 95 4 WIDMANN 91 CNTR m
A0= 1.78–1.92 MeV

< 5 97 BAUER 90 CNTR m
A0 = 1.832 MeV

none 0.09–1.5 95 5 JUDGE 90 CNTR m
A0 = 1.832 MeV,

elastic
< 1.9 97 6 TSERTOS 89 CNTR m

A0 = 1.82 MeV

<(10–40) 97 6 TSERTOS 89 CNTR m
A0 = 1.51–1.65 MeV

<(1–2.5) 97 6 TSERTOS 89 CNTR m
A0 = 1.80–1.86 MeV

< 31 95 LORENZ 88 CNTR m
A0 = 1.646 MeV

< 94 95 LORENZ 88 CNTR m
A0 = 1.726 MeV

< 23 95 LORENZ 88 CNTR m
A0 = 1.782 MeV

< 19 95 LORENZ 88 CNTR m
A0 = 1.837 MeV

< 3.8 97 7 TSERTOS 88 CNTR m
A0 = 1.832 MeV

8 VANKLINKEN 88 CNTR
9 MAIER 87 CNTR

<2500 90 MILLS 87 CNTR m
A0 = 1.8 MeV

10 VONWIMMER...87 CNTR

1HALLIN 92 quote limits on lifetime, 8 × 10−14 – 5 × 10−13 sec depending on mass,

assuming B(A0 → e+ e−) = 100%. They say that TSERTOS 91 overstated their
sensitivity by a factor of 3.

2HENDERSON 92C exclude axion with lifetime τ
A0=1.4 × 10−12 – 4.0 × 10−10 s, as-

suming B(A0 → e+ e−)=100%. HENDERSON 92C also exclude a vector boson with

τ=1.4 × 10−12 – 6.0 × 10−10 s.
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3WU 92 quote limits on lifetime > 3.3 × 10−13 s assuming B(A0 → e+ e−)=100%.
They say that TSERTOS 89 overestimate the limit by a factor of π/2. WU 92 also quote

a bound for vector boson, τ> 8.2 × 10−13 s.
4WIDMANN 91 bound applies exclusively to the case B(A0 → e+ e−)=1, since the

detection efficiency varies substantially as Γ(A0)total changes. See their Fig. 6.
5 JUDGE 90 excludes an elastic pseudoscalar e+ e− resonance for 4.5×10−13 s < τ(A0)

< 7.5 × 10−12 s (95% CL) at m
A0 = 1.832 MeV. Comparable limits can be set for

m
A0 = 1.776–1.856 MeV.

6 See also TSERTOS 88B in references.
7The upper limit listed in TSERTOS 88 is too large by a factor of 4. See TSERTOS 88B,
footnote 3.

8VANKLINKEN 88 looked for relatively long-lived resonance (τ = 10−10–10−12 s). The
sensitivity is not sufficient to exclude such a narrow resonance.

9MAIER 87 obtained limits RΓ . 60 eV (100 eV) at m
A0 ≃ 1.64 MeV (1.83 MeV) for

energy resolution ∆Ecm ≃ 3 keV, where R is the resonance cross section normalized

to that of Bhabha scattering, and Γ = Γ2
e e

/Γtotal. For a discussion implying that

∆Ecm ≃ 10 keV, see TSERTOS 89.
10VONWIMMERSPERG 87 measured Bhabha scattering for Ecm = 1.37–1.86 MeV and

found a possible peak at 1.73 with
∫

σdEcm = 14.5 ± 6.8 keV·b. For a comment and
a reply, see VANKLINKEN 88B and VONWIMMERSPERG 88. Also see CONNELL 88.

Search for A0 (Axion) Resonance in e+ e− → γγSearch for A0 (Axion) Resonance in e+ e− → γγSearch for A0 (Axion) Resonance in e+ e− → γγSearch for A0 (Axion) Resonance in e+ e− → γγ

The limit is for Γ(A0 → e+ e−)·Γ(A0 → γγ)/Γtotal
VALUE (10−3 eV) CL% DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, fits, limits, etc. • • •
< 0.18 95 VO 94 CNTR m

A0=1.1 MeV

< 1.5 95 VO 94 CNTR m
A0=1.4 MeV

<12 95 VO 94 CNTR m
A0=1.7 MeV

< 6.6 95 1 TRZASKA 91 CNTR m
A0 = 1.8 MeV

< 4.4 95 WIDMANN 91 CNTR m
A0= 1.78–1.92 MeV

2 FOX 89 CNTR

< 0.11 95 3 MINOWA 89 CNTR m
A0 = 1.062 MeV

<33 97 CONNELL 88 CNTR m
A0 = 1.580 MeV

<42 97 CONNELL 88 CNTR m
A0 = 1.642 MeV

<73 97 CONNELL 88 CNTR m
A0 = 1.782 MeV

<79 97 CONNELL 88 CNTR m
A0 = 1.832 MeV

1TRZASKA 91 also give limits in the range (6.6–30) × 10−3 eV (95%CL) for m
A0 =

1.6–2.0 MeV.
2 FOX 89 measured positron annihilation with an electron in the source material into two

photons and found no signal at 1.062 MeV (< 9 × 10−5 of two-photon annihilation at
rest).

3 Similar limits are obtained for m
A0 = 1.045–1.085 MeV.
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Search for X0 (Light Boson) Resonance in e+ e− → γγγSearch for X0 (Light Boson) Resonance in e+ e− → γγγSearch for X0 (Light Boson) Resonance in e+ e− → γγγSearch for X0 (Light Boson) Resonance in e+ e− → γγγ

The limit is for Γ(X0 → e+ e−)·Γ(X0 → γγγ)/Γtotal. C invariance forbids spin-0

X0 coupling to both e+ e− and γγγ.

VALUE (10−3 eV) CL% DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, fits, limits, etc. • • •
< 0.2 95 1 VO 94 CNTR m

X 0=1.1–1.9 MeV

< 1.0 95 2 VO 94 CNTR m
X 0=1.1 MeV

< 2.5 95 2 VO 94 CNTR m
X 0=1.4 MeV

<120 95 2 VO 94 CNTR m
X 0=1.7 MeV

< 3.8 95 3 SKALSEY 92 CNTR m
X 0= 1.5 MeV

1VO 94 looked for X0 → γγγ decaying at rest. The precise limits depend on m
X 0 . See

Fig. 2(b) in paper.
2VO 94 looked for X0 → γγγ decaying in flight.
3 SKALSEY 92 also give limits 4.3 for m

X 0 = 1.54 and 7.5 for 1.64 MeV. The spin of X0

is assumed to be one.

Light Boson (X0) Search in Nonresonant e+ e− Annihilation at RestLight Boson (X0) Search in Nonresonant e+ e− Annihilation at RestLight Boson (X0) Search in Nonresonant e+ e− Annihilation at RestLight Boson (X0) Search in Nonresonant e+ e− Annihilation at Rest
Limits are for the ratio of nγ + X0 production relative to γγ.

VALUE (units 10−6) CL% DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, fits, limits, etc. • • •

< 4.2 90 1 MITSUI 96 CNTR γX0

< 4 68 2 SKALSEY 95 CNTR γX0

<40 68 3 SKALSEY 95 RVUE γX0

< 0.18 90 4 ADACHI 94 CNTR γγX0, X0 → γγ

< 0.26 90 5 ADACHI 94 CNTR γγX0, X0 → γγ

< 0.33 90 6 ADACHI 94 CNTR γX0, X0 → γγγ

1MITSUI 96 looked for a monochromatic γ. The bound applies for a vector X0 with

C=−1 and m
X 0 <200 keV. They derive an upper bound on e e X0 coupling and hence

on the branching ratio B(o-Ps → γγX0)< 6.2×10−6. The bounds weaken for heavier

X0.
2 SKALSEY 95 looked for a monochromatic γ without an accompanying γ in e+ e−
annihilation. The bound applies for scalar and vector X0 with C = −1 and m

X 0 =

100–1000 keV.
3 SKALSEY 95 reinterpreted the bound on γA0 decay of o-Ps by ASAI 91 where 3% of

delayed annihilations are not from 3S1 states. The bound applies for scalar and vector

X0 with C = −1 and m
X 0 = 0–800 keV.

4ADACHI 94 looked for a peak in the γγ invariant mass distribution in γγγγ production

from e+ e− annihilation. The bound applies for m
X 0 = 70–800 keV.

5ADACHI 94 looked for a peak in the missing-mass mass distribution in γγ channel, using

γγγγ production from e+ e− annihilation. The bound applies for m
X 0 <800 keV.

6ADACHI 94 looked for a peak in the missing mass distribution in γγγ channel, using

γγγγ production from e+ e− annihilation. The bound applies for m
X 0 = 200–900

keV.
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Searches for Goldstone Bosons (X0)Searches for Goldstone Bosons (X0)Searches for Goldstone Bosons (X0)Searches for Goldstone Bosons (X0)
(Including Horizontal Bosons and Majorons.) Limits are for branching ratios.

VALUE CL% DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, fits, limits, etc. • • •

<9 × 10−6 90 1 BAYES 15 TWST µ+ → e+X0, Familon
2 LATTANZI 13 COSM Majoron dark matter decay
3 LESSA 07 RVUE Meson, ℓ decays to Majoron
4 DIAZ 98 THEO H0 → X0X0, A0 →

X0X0X0, Majoron
5 BOBRAKOV 91 Electron quasi-magnetic in-

teraction
<3.3 × 10−2 95 6 ALBRECHT 90E ARG τ → µX0. Familon

<1.8 × 10−2 95 6 ALBRECHT 90E ARG τ → e X0. Familon

<6.4 × 10−9 90 7 ATIYA 90 B787 K+ → π+X0. Familon

<1.4 × 10−5 90 8 BALKE 88 CNTR µ+ → e+X0. Familon

<1.1 × 10−9 90 9 BOLTON 88 CBOX µ+ → e+ γX0. Familon
10 CHANDA 88 ASTR Sun, Majoron
11 CHOI 88 ASTR Majoron, SN 1987A

<5 × 10−6 90 12 PICCIOTTO 88 CNTR π → e νX0, Majoron

<1.3 × 10−9 90 13 GOLDMAN 87 CNTR µ → e γX0. Familon

<3 × 10−4 90 14 BRYMAN 86B RVUE µ → eX0. Familon

<1 × 10−10 90 15 EICHLER 86 SPEC µ+ → e+X0. Familon

<2.6 × 10−6 90 16 JODIDIO 86 SPEC µ+ → e+X0. Familon
17 BALTRUSAIT...85 MRK3 τ → ℓX0. Familon
18 DICUS 83 COSM ν (hvy) → ν (light)X0

1BAYES 15 limits are the average over m
X 0 = 13–80 MeV for the isotropic decay distri-

bution of positrons. See their Fig. 4 and Table II for the mass-dependent limits as well

as the dependence on the decay anisotropy. In particular, they find a limit < 58× 10−6

at 90% CL for massless familons and for the same asymmetry as normal muon decay, a
case not covered by JODIDIO 86.

2 LATTANZI 13 use WMAP 9 year data as well as X-ray and γ-ray observations to derive

limits on decaying majoron dark matter. A limit on the decay width Γ(X0 → ν ν)

< 6.4 × 10−19 s−1 at 95% CL is found if majorons make up all of the dark matter.
3 LESSA 07 consider decays of the form Meson → ℓνMajoron and ℓ → ℓ′ ν νMajoron
and use existing data to derive limits on the neutrino-Majoron Yukawa couplings gαβ

(α,β=e,µ,τ). Their best limits are
∣∣ge α

∣∣2 < 5.5 × 10−6,
∣∣gµα

∣∣2 < 4.5 × 10−5,
∣∣gτ α

∣∣2 < 5.5 × 10−2 at CL = 90%.
4DIAZ 98 studied models of spontaneously broken lepton number with both singlet and
triplet Higgses. They obtain limits on the parameter space from invisible decay Z →
H0A0 → X0X0X0X0X0 and e+ e− → Z H0 with H0 → X0X0.

5BOBRAKOV 91 searched for anomalous magnetic interactions between polarized elec-
trons expected from the exchange of a massless pseudoscalar boson (arion). A limit

x2
e

< 2 × 10−4 (95%CL) is found for the effective anomalous magneton parametrized

as xe (GF /8π
√

2)1/2.
6ALBRECHT 90E limits are for B(τ → ℓX0)/B(τ → ℓν ν). Valid for m

X 0 < 100

MeV. The limits rise to 7.1% (for µ), 5.0% (for e) for m
X 0 = 500 MeV.

7ATIYA 90 limit is for m
X 0 = 0. The limit B < 1 × 10−8 holds for m

X 0 < 95 MeV.

For the reduction of the limit due to finite lifetime of X0, see their Fig. 3.
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8BALKE 88 limits are for B(µ+ → e+X0). Valid for m
X 0 < 80 MeV and τ

X 0 > 10−8

sec.
9BOLTON 88 limit corresponds to F > 3.1 × 109 GeV, which does not depend on the
chirality property of the coupling.

10CHANDA 88 find vT < 10 MeV for the weak-triplet Higgs vacuum expectation value

in Gelmini-Roncadelli model, and vS > 5.8 × 106 GeV in the singlet Majoron model.
11CHOI 88 used the observed neutrino flux from the supernova SN 1987A to exclude the

neutrino Majoron Yukawa coupling h in the range 2 × 10−5 < h < 3 × 10−4 for the

interaction Lint = 1
2 ihψc

ν
γ5ψνφX. For several families of neutrinos, the limit applies for

(Σh4
i
)1/4.

12PICCIOTTO 88 limit applies when m
X 0 < 55 MeV and τ

X 0 > 2ns, and it decreases

to 4 × 10−7 at m
X 0 = 125 MeV, beyond which no limit is obtained.

13GOLDMAN 87 limit corresponds to F > 2.9×109 GeV for the family symmetry breaking

scale from the Lagrangian Lint = (1/F)ψµγµ (a+bγ5) ψe∂µφ
X 0 with a2+b2 = 1.

This is not as sensitive as the limit F > 9.9×109 GeV derived from the search for µ+ →
e+X0 by JODIDIO 86, but does not depend on the chirality property of the coupling.

14 Limits are for Γ(µ → eX0)/Γ(µ → e ν ν). Valid when m
X 0 = 0–93.4, 98.1–103.5

MeV.
15EICHLER 86 looked for µ+ → e+X0 followed by X0 → e+ e−. Limits on the

branching fraction depend on the mass and and lifetime of X0. The quoted limits are

valid when τ
X 0 . 3. × 10−10 s if the decays are kinematically allowed.

16 JODIDIO 86 corresponds to F > 9.9 × 109 GeV for the family symmetry breaking scale

with the parity-conserving effective Lagrangian Lint = (1/F) ψµγµψe∂µφ
X 0 .

17BALTRUSAITIS 85 search for light Goldstone boson(X0) of broken U(1). CL = 95%

limits are B(τ → µ+X0)
/
B(τ → µ+ ν ν) <0.125 and B(τ → e+X0)

/
B(τ → e+ ν ν)

<0.04. Inferred limit for the symmetry breaking scale is m >3000 TeV.
18The primordial heavy neutrino must decay into ν and familon, fA, early so that the

red-shifted decay products are below critical density, see their table. In addition, K →
π fA and µ → e fA are unseen. Combining these excludes mheavyν between 5 × 10−5

and 5× 10−4 MeV (µ decay) and mheavyν between 5× 10−5 and 0.1 MeV (K -decay).

Majoron Searches in Neutrinoless Double β DecayMajoron Searches in Neutrinoless Double β DecayMajoron Searches in Neutrinoless Double β DecayMajoron Searches in Neutrinoless Double β Decay
Limits are for the half-life of neutrinoless ββ decay with a Majoron emission.
No experiment currently claims any such evidence. Only the best or comparable limits
for each isotope are reported. Also see the reviews ZUBER 98 and FAESSLER 98B.

t1/2(1021 yr) CL% ISOTOPE TRANSITION METHOD DOCUMENT ID

>7200>7200>7200>7200 90909090 128Te128Te128Te128Te CNTRCNTRCNTRCNTR 1 BERNATOW... 92

• • • We do not use the following data for averages, fits, limits, etc. • • •

> 420 90 76Ge 0ν1χ GERDA 2 AGOSTINI 15A

> 400 90 100Mo 0ν1χ NEMO-3 3 ARNOLD 15

>1200 90 136Xe 0ν1χ EXO-200 4 ALBERT 14A

>2600 90 136Xe 0ν1χ KamLAND-Zen 5 GANDO 12

> 16 90 130Te 0ν1χ NEMO-3 6 ARNOLD 11

> 1.9 90 96Zr 2ν1χ NEMO-3 7 ARGYRIADES 10

> 1.52 90 150Nd 0ν1χ NEMO-3 8 ARGYRIADES 09

> 27 90 100Mo 0ν1χ NEMO-3 9 ARNOLD 06

> 15 90 82Se 0ν1χ NEMO-3 10 ARNOLD 06

HTTP://PDG.LBL.GOV Page 16 Created: 5/30/2017 17:22



Citation: C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016) and 2017 update

> 14 90 100Mo 0ν1χ NEMO-3 11 ARNOLD 04

> 12 90 82Se 0ν1χ NEMO-3 12 ARNOLD 04

> 2.2 90 130Te 0ν1χ Cryog. det. 13 ARNABOLDI 03

> 0.9 90 130Te 0ν2χ Cryog. det. 14 ARNABOLDI 03

> 8 90 116Cd 0ν1χ CdWO4 scint. 15 DANEVICH 03

> 0.8 90 116Cd 0ν2χ CdWO4 scint. 16 DANEVICH 03

> 500 90 136Xe 0ν1χ Liquid Xe Scint. 17 BERNABEI 02D

> 5.8 90 100Mo 0ν1χ ELEGANT V 18 FUSHIMI 02

> 0.32 90 100Mo 0ν1χ Liq. Ar ioniz. 19 ASHITKOV 01

> 0.0035 90 160Gd 0ν1χ 160Gd2SiO5:Ce 20 DANEVICH 01

> 0.013 90 160Gd 0ν 2χ 160Gd2SiO5:Ce 21 DANEVICH 01

> 2.3 90 82Se 0ν1χ NEMO 2 22 ARNOLD 00

> 0.31 90 96Zr 0ν1χ NEMO 2 23 ARNOLD 00

> 0.63 90 82Se 0ν 2χ NEMO 2 24 ARNOLD 00

> 0.063 90 96Zr 0ν 2χ NEMO 2 24 ARNOLD 00

> 0.16 90 100Mo 0ν 2χ NEMO 2 24 ARNOLD 00

> 2.4 90 82Se 0ν1χ NEMO 2 25 ARNOLD 98

> 7.2 90 136Xe 0ν 2χ TPC 26 LUESCHER 98

> 7.91 90 76Ge SPEC 27 GUENTHER 96

> 17 90 76Ge CNTR BECK 93

1BERNATOWICZ 92 studied double-β decays of 128Te and 130Te, and found the ratio

τ(130Te)/τ(128Te) = (3.52 ± 0.11) × 10−4 in agreement with relatively stable theo-
retical predictions. The bound is based on the requirement that Majoron-emitting decay

cannot be larger than the observed double-beta rate of 128Te of (7.7 ± 0.4)×1024 year.

We calculated 90% CL limit as (7.7–1.28 × 0.4=7.2) × 1024.
2AGOSTINI 15A analyze a 20.3 kg yr of data set of the GERDA calorimeter to determine

gνχ < 3.4–8.7 × 10−5 on the Majoron-neutrino coupling constant. The range reflects

the spread of the nuclear matrix elements.
3ARNOLD 15 use the NEMO-3 tracking calorimeter with 3.43 kg yr exposure to determine

the limit on Majoron emission. The limit corresponds to gν χ < 1.6–3.0 × 10−4. The

spread reflects different nuclear matrix elements. Supersedes ARNOLD 06.
4ALBERT 14A utilize 100 kg yr of exposure of the EXO-200 tracking calorimeter to place

a limit on the gν χ < 0.8–1.7 × 10−5 on the Majoron-neutrino coupling constant. The

range reflects the spread of the nuclear matrix elements.
5GANDO 12 use the KamLAND-Zen detector to obtain the limit on the 0νχ decay with

Majoron emission. It implies that the coupling constant gνχ < 0.8–1.6 × 10−5 de-

pending on the nuclear matrix elements used.
6ARNOLD 11 use the NEMO-3 detector to obtain the reported limit on Majoron emission.

It implies that the coupling constant gνχ < 0.6–1.6× 10−4 depending on the nuclear

matrix element used. Supercedes ARNABOLDI 03.
7ARGYRIADES 10 use the NEMO-3 tracking detector and 96Zr to derive the reported
limit. No limit for the Majoron electron coupling is given.

8ARGYRIADES 09 use 150Nd data taken with the NEMO-3 tracking detector. The

reported limit corresponds to
〈

gν χ
〉

< 1.7–3.0× 10−4 using a range of nuclear matrix

elements that include the effect of nuclear deformation.
9ARNOLD 06 use 100Mo data taken with the NEMO-3 tracking detector. The reported

limit corresponds to
〈
gν χ

〉
< (0.4–1.8)× 10−4 using a range of matrix element calcu-

lations. Superseded by ARNOLD 15.
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10NEMO-3 tracking calorimeter is used in ARNOLD 06 . Reported half-life limit for 82Se

corresponds to
〈
gνχ

〉
< (0.66–1.9)×10−4 using a range of matrix element calculations.

Supersedes ARNOLD 04.
11ARNOLD 04 use the NEMO-3 tracking detector. The limit corresponds to

〈
gν χ

〉
<

(0.5–0.9)10−4 using the matrix elements of SIMKOVIC 99, STOICA 01 and CIV-
ITARESE 03. Superseded by ARNOLD 06.

12ARNOLD 04 use the NEMO-3 tracking detector. The limit corresponds to
〈
gν χ

〉
<

(0.7–1.6)10−4 using the matrix elements of SIMKOVIC 99, STOICA 01 and CIV-
ITARESE 03.

13 Supersedes ALESSANDRELLO 00. Array of TeO2 crystals in high resolution cryogenic

calorimeter. Some enriched in 130Te. Derive
〈
gν χ

〉
< 17–33 × 10−5 depending on

matrix element.
14 Supersedes ALESSANDRELLO 00. Cryogenic calorimeter search.
15 Limit for the 0ν χ decay with Majoron emission of 116Cd using enriched CdWO4 scin-

tillators.
〈
gν χ

〉
< 4.6–8.1 × 10−5 depending on the matrix element. Supersedes

DANEVICH 00.
16 Limit for the 0ν2χ decay of 116Cd. Supersedes DANEVICH 00.
17BERNABEI 02D obtain limit for 0ν χ decay with Majoron emission of 136Xe using liquid

Xe scintillation detector. They derive
〈
gν χ

〉
< 2.0–3.0 × 10−5 with several nuclear

matrix elements.
18Replaces TANAKA 93. FUSHIMI 02 derive half-life limit for the 0ν χ decay by means

of tracking calorimeter ELEGANT V. Considering various matrix element calculations, a

range of limits for the Majoron-neutrino coupling is given:
〈
gν χ

〉
<(6.3–360) × 10−5.

19ASHITKOV 01 result for 0ν χ of 100Mo is less stringent than ARNOLD 00.
20DANEVICH 01 obtain limit for the 0ν χ decay with Majoron emission of 160Gd using

Gd2SiO5:Ce crystal scintillators.
21DANEVICH 01 obtain limit for the 0ν 2χ decay with 2 Majoron emission of 160Gd.
22ARNOLD 00 reports limit for the 0νχ decay with Majoron emission derived from tracking

calorimeter NEMO 2. Using 82Se source:
〈
gνχ

〉
< 1.6 × 10−4. Matrix element from

GUENTHER 96.
23Using 96Zr source:

〈
gν χ

〉
< 2.6 × 10−4. Matrix element from ARNOLD 99.

24ARNOLD 00 reports limit for the 0ν 2χ decay with two Majoron emission derived from
tracking calorimeter NEMO 2.

25ARNOLD 98 determine the limit for 0νχ decay with Majoron emission of 82Se using the

NEMO-2 tracking detector. They derive
〈
gνχ

〉
< 2.3–4.3 × 10−4 with several nuclear

matrix elements.
26 LUESCHER 98 report a limit for the 0ν decay with Majoron emission of 136Xe using Xe

TPC. This result is more stringent than BARABASH 89. Using the matrix elements of

ENGEL 88, they obtain a limit on
〈
gν χ

〉
of 2.0 × 10−4.

27 See Table 1 in GUENTHER 96 for limits on the Majoron coupling in different models.
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Invisible A0 (Axion) MASS LIMITS from Astrophysics and CosmologyInvisible A0 (Axion) MASS LIMITS from Astrophysics and CosmologyInvisible A0 (Axion) MASS LIMITS from Astrophysics and CosmologyInvisible A0 (Axion) MASS LIMITS from Astrophysics and Cosmology
v1 = v2 is usually assumed (vi = vacuum expectation values). For a review of these

limits, see RAFFELT 91 and TURNER 90. In the comment lines below, D and K refer

to DFSZ and KSVZ axion types, discussed in the above minireview.
VALUE (eV) CL% DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, fits, limits, etc. • • •
< 0.67 95 1 ARCHIDIACO...13A COSM K, hot dark matter

none 0.7–3 × 105 2 CADAMURO 11 COSM D abundance

<105 90 3 DERBIN 11A CNTR D, solar axion
4 ANDRIAMON...10 CAST K, solar axions

< 0.72 95 5 HANNESTAD 10 COSM K, hot dark matter
6 ANDRIAMON...09 CAST K, solar axions

<191 90 7 DERBIN 09A CNTR K, solar axions

<334 95 8 KEKEZ 09 HPGE K, solar axions

< 1.02 95 9 HANNESTAD 08 COSM K, hot dark matter

< 1.2 95 10 HANNESTAD 07 COSM K, hot dark matter

< 0.42 95 11 MELCHIORRI 07A COSM K, hot dark matter

< 1.05 95 12 HANNESTAD 05A COSM K, hot dark matter

3 to 20 13 MOROI 98 COSM K, hot dark matter

< 0.007 14 BORISOV 97 ASTR D, neutron star

< 4 15 KACHELRIESS 97 ASTR D, neutron star cooling

<(0.5–6) × 10−3 16 KEIL 97 ASTR SN 1987A

< 0.018 17 RAFFELT 95 ASTR D, red giant

< 0.010 18 ALTHERR 94 ASTR D, red giants, white
dwarfs

19 CHANG 93 ASTR K, SN 1987A

< 0.01 WANG 92 ASTR D, white dwarf

< 0.03 WANG 92C ASTR D, C-O burning

none 3–8 20 BERSHADY 91 ASTR D, K,
intergalactic light

< 10 21 KIM 91C COSM D, K, mass density of
the universe, super-
symmetry

22 RAFFELT 91B ASTR D,K, SN 1987A

< 1 × 10−3 23 RESSELL 91 ASTR K, intergalactic light

none 10−3–3 BURROWS 90 ASTR D,K, SN 1987A
24 ENGEL 90 ASTR D,K, SN 1987A

< 0.02 25 RAFFELT 90D ASTR D, red giant

< 1 × 10−3 26 BURROWS 89 ASTR D,K, SN 1987A

<(1.4–10) × 10−3 27 ERICSON 89 ASTR D,K, SN 1987A

< 3.6 × 10−4 28 MAYLE 89 ASTR D,K, SN 1987A

< 12 CHANDA 88 ASTR D, Sun

< 1 × 10−3 RAFFELT 88 ASTR D,K, SN 1987A
29 RAFFELT 88B ASTR red giant

< 0.07 FRIEMAN 87 ASTR D, red giant

< 0.7 30 RAFFELT 87 ASTR K, red giant

< 2–5 TURNER 87 COSM K, thermal production

< 0.01 31 DEARBORN 86 ASTR D, red giant

< 0.06 RAFFELT 86 ASTR D, red giant

< 0.7 32 RAFFELT 86 ASTR K, red giant

< 0.03 RAFFELT 86B ASTR D, white dwarf
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< 1 33 KAPLAN 85 ASTR K, red giant

< 0.003–0.02 IWAMOTO 84 ASTR D, K, neutron star

> 1 × 10−5 ABBOTT 83 COSM D,K, mass density of
the universe

> 1 × 10−5 DINE 83 COSM D,K, mass density of
the universe

< 0.04 ELLIS 83B ASTR D, red giant

> 1 × 10−5 PRESKILL 83 COSM D,K, mass density of
the universe

< 0.1 BARROSO 82 ASTR D, red giant

< 1 34 FUKUGITA 82 ASTR D, stellar cooling

< 0.07 FUKUGITA 82B ASTR D, red giant

1ARCHIDIACONO 13A is analogous to HANNESTAD 05A. The limit is based on the CMB
temperature power spectrum of the Planck data, the CMB polarization from the WMAP
9-yr data, the matter power spectrum from SDSS-DR7, and the local Hubble parameter
measurement by the Carnegie Hubble program.

2CADAMURO 11 use the deuterium abundance to show that the m
A0 range 0.7 eV –

300 keV is excluded for axions, complementing HANNESTAD 10.
3DERBIN 11A look for solar axions produced by Compton and bremsstrahlung processes,

in the resonant excitation of 169Tm, constraining the axion-electron × axion nucleon
couplings.

4ANDRIAMONJE 10 search for solar axions produced from 7Li (478 keV) and D(p,γ)3He
(5.5 MeV) nuclear transitions. They show limits on the axion-photon coupling for two
reference values of the axion-nucleon coupling for mA < 100 eV.

5This is an update of HANNESTAD 08 including 7 years of WMAP data.
6ANDRIAMONJE 09 look for solar axions produced from the thermally excited 14.4 keV

level of 57Fe. They show limits on the axion-nucleon × axion-photon coupling assuming
mA < 0.03 eV.

7DERBIN 09A look for Primakoff-produced solar axions in the resonant excitation of
169Tm, constraining the axion-photon × axion-nucleon couplings.

8KEKEZ 09 look at axio-electric effect of solar axions in HPGe detectors. The one-loop
axion-electron coupling for hadronic axions is used.

9This is an update of HANNESTAD 07 including 5 years of WMAP data.
10This is an update of HANNESTAD 05A with new cosmological data, notably WMAP (3

years) and baryon acoustic oscillations (BAO). Lyman-α data are left out, in contrast to
HANNESTAD 05A and MELCHIORRI 07A, because it is argued that systematic errors
are large. It uses Bayesian statistics and marginalizes over a possible neutrino hot dark
matter component.

11MELCHIORRI 07A is analogous to HANNESTAD 05A, with updated cosmological data,
notably WMAP (3 years). Uses Bayesian statistics and marginalizes over a possible
neutrino hot dark matter component. Leaving out Lyman-α data, a conservative limit is
1.4 eV.

12HANNESTAD 05A puts an upper limit on the mass of hadronic axion because in this mass
range it would have been thermalized and contribute to the hot dark matter component
of the universe. The limit is based on the CMB anisotropy from WMAP, SDSS large

scale structure, Lyman α, and the prior Hubble parameter from HST Key Project. A χ2

statistic is used. Neutrinos are assumed not to contribute to hot dark matter.
13MOROI 98 points out that a KSVZ axion of this mass range (see CHANG 93) can be a

viable hot dark matter of Universe, as long as the model-dependent gAγ is accidentally

small enough as originally emphasized by KAPLAN 85; see Fig. 1.
14BORISOV 97 bound is on the axion-electron coupling gae < 1×10−13 from the photo-

production of axions off of magnetic fields in the outer layers of neutron stars.
15KACHELRIESS 97 bound is on the axion-electron coupling gae < 1 × 10−10 from the

production of axions in strongly magnetized neutron stars. The authors also quote a
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stronger limit, gae < 9 × 10−13 which is strongly dependent on the strength of the
magnetic field in white dwarfs.

16KEIL 97 uses new measurements of the axial-vector coupling strength of nucleons, as
well as a reanalysis of many-body effects and pion-emission processes in the core of the
neutron star, to update limits on the invisible-axion mass.

17RAFFELT 95 reexamined the constraints on axion emission from red giants due to the
axion-electron coupling. They improve on DEARBORN 86 by taking into proper account
degeneracy effects in the bremsstrahlung rate. The limit comes from requiring the red
giant core mass at helium ignition not to exceed its standard value by more than 5%
(0.025 solar masses).

18ALTHERR 94 bound is on the axion-electron coupling gae < 1.5× 10−13, from energy
loss via axion emission.

19CHANG 93 updates ENGEL 90 bound with the Kaplan-Manohar ambiguity in z=mu/md
(see the Note on the Quark Masses in the Quark Particle Listings). It leaves the window

fA=3×105–3×106 GeV open. The constraint from Big-Bang Nucleosynthesis is satisfied
in this window as well.

20BERSHADY 91 searched for a line at wave length from 3100–8300 Å expected from 2γ
decays of relic thermal axions in intergalactic light of three rich clusters of galaxies.

21KIM 91C argues that the bound from the mass density of the universe will change dras-
tically for the supersymmetric models due to the entropy production of saxion (scalar
component in the axionic chiral multiplet) decay. Note that it is an upperbound rather
than a lowerbound.

22RAFFELT 91B argue that previous SN 1987A bounds must be relaxed due to corrections
to nucleon bremsstrahlung processes.

23RESSELL 91 uses absence of any intracluster line emission to set limit.
24 ENGEL 90 rule out 10−10 . gAN . 10−3, which for a hadronic axion with EMC

motivated axion-nucleon couplings corresponds to 2.5 × 10−3 eV . m
A0 . 2.5 ×

104 eV. The constraint is loose in the middle of the range, i.e. for gAN ∼ 10−6.
25RAFFELT 90D is a re-analysis of DEARBORN 86.
26The region m

A0 & 2 eV is also allowed.

27 ERICSON 89 considered various nuclear corrections to axion emission in a supernova
core, and found a reduction of the previous limit (MAYLE 88) by a large factor.

28MAYLE 89 limit based on naive quark model couplings of axion to nucleons. Limit based
on couplings motivated by EMC measurements is 2–4 times weaker. The limit from
axion-electron coupling is weak: see HATSUDA 88B.

29RAFFELT 88B derives a limit for the energy generation rate by exotic processes in helium-

burning stars ǫ < 100 erg g−1 s−1, which gives a firmer basis for the axion limits based
on red giant cooling.

30RAFFELT 87 also gives a limit gAγ < 1 × 10−10 GeV−1.

31DEARBORN 86 also gives a limit gAγ < 1.4 × 10−11 GeV−1.

32RAFFELT 86 gives a limit gAγ < 1.1×10−10 GeV−1 from red giants and < 2.4×10−9

GeV−1 from the sun.
33KAPLAN 85 says m

A0 < 23 eV is allowed for a special choice of model parameters.

34 FUKUGITA 82 gives a limit gAγ < 2.3 × 10−10 GeV−1.
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Search for Relic Invisible AxionsSearch for Relic Invisible AxionsSearch for Relic Invisible AxionsSearch for Relic Invisible Axions
Limits are for [GAγγ/m

A0 ]2ρA where GAγγ denotes the axion two-photon coupling,

Lint = −
GAγ γ

4 φAFµν F̃µν = GAγγφAEEEE·BBBB, and ρA is the axion energy density

near the earth.
VALUE CL% DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, fits, limits, etc. • • •
1 BRANCA 17 AURG m

S0 = 3.5–3.9 peV

<3 × 10−42 90 2 BRUBAKER 17 m
A0 = 23.55–24.0 µeV

<8.6 × 10−42 90 3 HOSKINS 16 ADMX m
A0 =3.36–3.52 or

3.55–3.69 µeV
4 BECK 13 m

A0 = 0.11 meV

<3.5 × 10−43 5 HOSKINS 11 ADMX m
A0 = 3.3–3.69 × 10−6 eV

<2.9 × 10−43 90 6 ASZTALOS 10 ADMX m
A0 = 3.34–3.53 × 10−6 eV

<1.9 × 10−43 97.7 7 DUFFY 06 ADMX m
A0 = 1.98–2.17 × 10−6 eV

<5.5 × 10−43 90 8 ASZTALOS 04 ADMX m
A0 = 1.9–3.3 × 10−6 eV

9 KIM 98 THEO

<2 × 10−41 10 HAGMANN 90 CNTR m
A0 = (5.4–5.9)10−6 eV

<6.3 × 10−42 95 11 WUENSCH 89 CNTR m
A0 = (4.5–10.2)10−6 eV

<5.4 × 10−41 95 11 WUENSCH 89 CNTR m
A0 = (11.3–16.3)10−6 eV

1BRANCA 17 look for modulations of the fine-structure constant and the electron mass
due to moduli dark matter by using the cryogenic resonant-mass AURIGA detector. The

limit on the assumed dilatonic coupling implies GS γγ < 1.5 × 10−24 GeV−1 for the

scalar to two-photon coupling. See Fig. 5 for the mass-dependent limits.
2BRUBAKER 17 used a microwave cavity detector at the Yale Wright Laboratory to search
for dark matter axions. See Fig. 3 for the mass-dependent limits.

3HOSKINS 16 is analogous to DUFFY 06. See Fig. 12 for mass-dependent limits in terms
of the local dark matter density.

4BECK 13 argues that dark-matter axions passing through Earth may generate a small
observable signal in resonant S/N/S Josephson junctions. A measurement by HOFF-
MANN 04 [Physical Review B70B70B70B70 180503 (2004)] is interpreted in terms of subdominant
dark matter axions with m

A0 = 0.11 meV.

5HOSKINS 11 is analogous to DUFFY 06. See Fig. 4 for the mass-dependent limit in
terms of the local density.

6ASZTALOS 10 used the upgraded detector of ASZTALOS 04 to search for halo axions.
See their Fig. 5 for the m

A0 dependence of the limit.

7DUFFY 06 used the upgraded detector of ASZTALOS 04, while assuming a smaller
velocity dispersion than the isothermal model as in Eq. (8) of their paper. See Fig. 10
of their paper on the axion mass dependence of the limit.

8ASZTALOS 04 looked for a conversion of halo axions to microwave photons in mag-
netic field. At 90% CL, the KSVZ axion cannot have a local halo density more than

0.45 GeV/cm3 in the quoted mass range. See Fig. 7 of their paper on the axion mass
dependence of the limit.

9KIM 98 calculated the axion-to-photon couplings for various axion models and com-
pared them to the HAGMANN 90 bounds. This analysis demonstrates a strong model
dependence of GAγγ and hence the bound from relic axion search.

10HAGMANN 90 experiment is based on the proposal of SIKIVIE 83.
11WUENSCH 89 looks for condensed axions near the earth that could be converted to

photons in the presence of an intense electromagnetic field via the Primakoff effect,

following the proposal of SIKIVIE 83. The theoretical prediction with [GAγγ/m
A0 ]2 =
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2 × 10−14 MeV−4 (the three generation DFSZ model) and ρA = 300 MeV/cm3 that

makes up galactic halos gives (GAγγ/m
A0 )2 ρA = 4×10−44. Note that our definition

of GAγγ is (1/4π) smaller than that of WUENSCH 89.

Invisible A0 (Axion) Limits from Photon CouplingInvisible A0 (Axion) Limits from Photon CouplingInvisible A0 (Axion) Limits from Photon CouplingInvisible A0 (Axion) Limits from Photon Coupling
Limits are for the modulus of the axion-two-photon coupling GAγγ defined by

L = −GAγγφAEEEE····BBBB. For scalars S0 the limit is on the coupling constant in

L = GS γγφS(EEEE2−BBBB2). The relation between GAγγ and m
A0 is not used unless

stated otherwise, i.e., many of these bounds apply to low-mass axion-like particles

(ALPs), not to QCD axions.

VALUE (GeV−1) CL% DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, fits, limits, etc. • • •

<6 × 10−13 1 TIWARI 17 COSM m
A0 ≤ 10−15 eV

<5 × 10−12 95 2 AJELLO 16 ASTR m
A0 = 0.5–5 neV

<1.2 × 10−7 95 3 DELLA-VALLE 16 LASR m
A0 = 1.3 meV

<7.2 × 10−8 95 4 DELLA-VALLE 16 LASR m
A0 < 0.5 meV

<8 × 10−4 5 JAECKEL 16 ALPS m
A0 = 0.1–100 GeV

<6 × 10−21 6 LEEFER 16 m
S0 < 10−18 eV

7 ANASTASSO... 15 CAST Chameleons

<1.47 × 10−10 95 8 ARIK 15 CAST m
A0 = 0.39–0.42 eV

<3.5 × 10−8 95 9 BALLOU 15 LSW m
A0 < 2 × 10−4 eV

10 BRAX 15 ASTR m
S0 < 4 × 10−12 eV

<5.42 × 10−4 95 11 HASEBE 15 LASR m
A0 = 0.15 eV

12 MILLEA 15 COSM Axion-like particles
13 VANTILBURG 15 Dilaton-like dark matter

<4.1 × 10−10 99.7 14 VINYOLES 15 ASTR m
A0 = 0.6–185 eV

<3.3 × 10−10 95 15 ARIK 14 CAST m
A0 = 0.64–1.17 eV

<6.6 × 10−11 95 16 AYALA 14 ASTR Globular clusters

<1.4 × 10−7 95 17 DELLA-VALLE 14 m
A0 = 1 meV

18 EJLLI 14 COSM m
A0 = 2.66–48.8 µeV

<8 × 10−8 95 19 PUGNAT 14 LSW m
A0 < 0.3 meV

<1 × 10−11 20 REESMAN 14 ASTR m
A0 < 1 × 10−10 eV

<2.1 × 10−11 95 21 ABRAMOWSKI13A IACT m
A0 = 15–60 neV

<2.15 × 10−9 95 22 ARMENGAUD 13 EDEL m
A0 < 200 eV

<4.5 × 10−8 95 23 BETZ 13 LSW m
A0 = 7.2 × 10−6 eV

<8 × 10−11 24 FRIEDLAND 13 ASTR Red giants

>2 × 10−11 25 MEYER 13 ASTR m
A0 < 1 × 10−7 eV

<8.3 × 10−12 95 26 WOUTERS 13 ASTR m
A0 < 7 × 10−12 eV

27 CADAMURO 12 COSM Axion-like particles

<2.5 × 10−13 95 28 PAYEZ 12 ASTR m
A0 < 4.2 × 10−14 eV

<2.3 × 10−10 95 29 ARIK 11 CAST m
A0 = 0.39–0.64 eV

<6.5 × 10−8 95 30 EHRET 10 ALPS m
A0 < 0.7 meV

<2.4 × 10−9 95 31 AHMED 09A CDMS m
A0 < 100 eV
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< 1.2–2.8 × 10−10 95 32 ARIK 09 CAST m
A0 = 0.02–0.39 eV

33 CHOU 09 Chameleons

<7 × 10−10 34 GONDOLO 09 ASTR m
A0 < few keV

<1.3 × 10−6 95 35 AFANASEV 08 m
S0 < 1 meV

<3.5 × 10−7 99.7 36 CHOU 08 m
A0 < 0.5 meV

<1.1 × 10−6 99.7 37 FOUCHE 08 m
A0 < 1 meV

< 5.6–13.4 × 10−10 95 38 INOUE 08 m
A0 = 0.84–1.00 eV

<5 × 10−7 39 ZAVATTINI 08 m
A0 < 1 meV

<8.8 × 10−11 95 40 ANDRIAMON...07 CAST m
A0 < 0.02 eV

<1.25 × 10−6 95 41 ROBILLIARD 07 m
A0 < 1 meV

2–5 × 10−6 42 ZAVATTINI 06 m
A0 = 1–1.5 meV

<1.1 × 10−9 95 43 INOUE 02 m
A0= 0.05–0.27 eV

<2.78 × 10−9 95 44 MORALES 02B m
A0 <1 keV

<1.7 × 10−9 90 45 BERNABEI 01B m
A0 <100 eV

<1.5 × 10−4 90 46 ASTIER 00B NOMD m
A0 <40 eV

47 MASSO 00 THEO induced γ coupling

<2.7 × 10−9 95 48 AVIGNONE 98 SLAX m
A0 < 1 keV

<6.0 × 10−10 95 49 MORIYAMA 98 m
A0 < 0.03 eV

<3.6 × 10−7 95 50 CAMERON 93 m
A0 < 10−3 eV,

optical rotation
<6.7 × 10−7 95 51 CAMERON 93 m

A0 < 10−3 eV,

photon regeneration
<3.6 × 10−9 99.7 52 LAZARUS 92 m

A0 < 0.03 eV

<7.7 × 10−9 99.7 52 LAZARUS 92 m
A0= 0.03–0.11 eV

<7.7 × 10−7 99 53 RUOSO 92 m
A0 < 10−3 eV

<2.5 × 10−6 54 SEMERTZIDIS 90 m
A0 < 7 × 10−4 eV

1TIWARI 17 use observed limits of the cosmic distance-duality relation to constrain the
photon-ALP mixing based on 3D simulations of the magnetic field configuration. The
quoted value is for the averaged magnetic field of 1nG with a coherent length of 1 Mpc.
See their Fig. 5 for mass-dependent limits.

2AJELLO 16 look for irregularities in the energy spectrum of the NGC1275 measured
by Fermi LAT, assuming photon-ALP mixing in the intra-cluster and Galactic magnetic
felds. See their Fig. 2 for mass-dependent limits.

3DELLA-VALLE 16 look for the birefringence induced by axion-like particles. See their
Fig. 14 for mass-dependent limits.

4DELLA-VALLE 16 look for the dichroism induced by axion-like particles. See their Fig.
14 for mass-dependent limits.

5 JAECKEL 16 use the LEP data of Z → 2γ and Z → 3γ to constrain the ALP production

via e+ e− → Z → A0 γ (A0 → γγ), assuming the ALP coupling with two hypercharge
bosons. See their Fig. 4 for mass-dependent limits.

6 LEEFER 16 derived limits by using radio-frequency spectroscopy of dysprosium and
atomic clock measurements. See their Fig. 1 for mass-dependent limits as well as
limits on Yukawa-type couplings of the scalar to the electron and nucleons.

7ANASTASSOPOULOS 15 search for solar chameleons with CAST and derived limits on
the chameleon coupling to photons and matter. See their Fig. 12 for the exclusion
region.

8ARIK 15 is analogous to ARIK 09, and search for solar axions for m
A0 around 0.2 and

0.4 eV. See their Figs. 1 and 3 for the mass-dependent limits.
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9Based on OSQAR photon regeneration experiment. See their Fig. 6 for mass-dependent
limits on scalar and pseudoscalar bosons.

10BRAX 15 derived limits on conformal and disformal couplings of a scalar to photons by
searching for a chaotic absorption pattern in the X-ray and UV bands of the Hydra A
galaxy cluster and a BL lac object, respectively. See their Fig. 8.

11HASEBE 15 look for an axion via a four-wave mixing process at quasi-parallel colliding
laser beams. They also derived limits on a scalar coupling to photons GS γγ < 2.62×
10−4 GeV−1 at m

S0 = 0.15 eV. See their Figs. 11 and 12 for mass-dependent limits.

12MILLEA 15 is similar to CADAMURO 12, including the Planck data and the latest
inferences of primordial deuterium abundance. See their Fig. 3 for mass-dependent
limits.

13VANTILBURG 15 look for harmonic variations in the dyprosium transition frequency
data, induced by coherent oscillations of the fine-structure constant due to dilaton-like

dark matter, and set the limits, GS γγ < 6× 10−27 GeV−1 at m
S0 = 6× 10−23 eV.

See their Fig. 4 for mass-dependent limits between 1× 10−24 < m
S0 < 1× 10−15 eV.

14VINYOLES 15 performed a global fit analysis based on helioseismology and solar neutrino
observations. See their Fig. 9.

15ARIK 14 is similar to ARIK 11. See their Fig. 2 for mass-dependent limits.
16AYALA 14 derived the limit from the helium-burning lifetime of horizontal-branch stars

based on number counts in globular clusters.
17DELLA-VALLE 14 use the new PVLAS apparatus to set a limit on vacuum magnetic

birefringence induced by axion-like particles. See their Fig. 6 for the mass-dependent
limits.

18 EJLLI 14 set limits on a product of primordial magnetic field and the axion mass using
CMB distortion induced by resonant axion production from CMB photons. See their
Fig. 1 for limits applying specifically to the DFSZ and KSVZ axion models.

19PUGNAT 14 is analogous to EHRET 10. See their Fig. 5 for mass-dependent limits on
scalar and pseudoscalar bosons.

20REESMAN 14 derive limits by requiring effects of axion-photon interconversion on
gamma-ray spectra from distant blazars to be no larger than errors in the best-fit optical
depth based on a certain extragalactic background light model. See their Fig. 5 for
mass-dependent limits.

21ABRAMOWSKI 13A look for irregularities in the energy spectrum of the BL Lac object
PKS 2155–304 measured by H.E.S.S. The limits depend on assumed magnetic field
around the source. See their Fig. 7 for mass-dependent limits.

22ARMENGAUD 13 is analogous to AVIGNONE 98. See Fig. 6 for the limit.
23BETZ 13 performed a microwave-based light shining through the wall experiment. See

their Fig. 13 for mass-dependent limits.
24 FRIEDLAND 13 derived the limit by considering blue-loop suppression of the evolution

of red giants with 7–12 solar masses.
25MEYER 13 attributed to axion-photon oscillations the observed excess of very high-energy

γ-rays with respect to predictions based on extragalactic background light models. See
their Fig.4 for mass-dependent lower limits for various magnetic field configurations.

26WOUTERS 13 look for irregularities in the X-ray spectrum of the Hydra cluster observed
by Chandra. See their Fig. 4 for mass-dependent limits.

27CADAMURO 12 derived cosmological limits on GAγγ for axion-like particles. See their

Fig. 1 for mass-dependent limits.
28PAYEZ 12 derive limits from polarization measurements of quasar light (see their Fig. 3).

The limits depend on assumed magnetic field strength in galaxy clusters. The limits
depend on assumed magnetic field and electron density in the local galaxy supercluster.

29ARIK 11 search for solar axions using 3He buffer gas in CAST, continuing from the 4He
version of ARIK 09. See Fig. 2 for the exact mass-dependent limits.

30ALPS is a photon regeneration experiment. See their Fig. 4 for mass-dependent limits
on scalar and pseudoscalar bosons.
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31AHMED 09A is analogous to AVIGNONE 98.
32ARIK 09 is the 4He filling version of the CAST axion helioscope in analogy to INOUE 02

and INOUE 08. See their Fig. 7 for mass-dependent limits.
33CHOU 09 use the GammeV apparatus in the afterglow mode to search for chameleons,

(pseudo)scalar bosons with a mass depending on the environment. For pseudoscalars

they exclude at 3σ the range 2.6 × 10−7 GeV−1 < GAγγ < 4.2 × 10−6 GeV−1 for

vacuum m
A0 roughly below 6 meV for density scaling index exceeding 0.8.

34GONDOLO 09 use the all-flavor measured solar neutrino flux to constrain solar interior
temperature and thus energy losses.

35 LIPSS photon regeneration experiment, assuming scalar particle S0. See Fig. 4 for mass-
dependent limits.

36CHOU 08 perform a variable-baseline photon regeneration experiment. See their Fig. 3
for mass-dependent limits. Excludes the PVLAS result of ZAVATTINI 06.

37 FOUCHE 08 is an update of ROBILLIARD 07. See their Fig. 12 for mass-dependent
limits.

38 INOUE 08 is an extension of INOUE 02 to larger axion masses, using the Tokyo axion
helioscope. See their Fig. 4 for mass-dependent limits.

39 ZAVATTINI 08 is an upgrade of ZAVATTINI 06, see their Fig. 8 for mass-dependent
limits. They now exclude the parameter range where ZAVATTINI 06 had seen a positive
signature.

40ANDRIAMONJE 07 looked for Primakoff conversion of solar axions in 9T superconduct-
ing magnet into X-rays. Supersedes ZIOUTAS 05.

41ROBILLIARD 07 perform a photon regeneration experiment with a pulsed laser and
pulsed magnetic field. See their Fig. 4 for mass-dependent limits. Excludes the PVLAS
result of ZAVATTINI 06 with a CL exceeding 99.9%.

42ZAVATTINI 06 propagate a laser beam in a magnetic field and observe dichroism and
birefringence effects that could be attributed to an axion-like particle. This result is now
excluded by ROBILLIARD 07, ZAVATTINI 08, and CHOU 08.

43 INOUE 02 looked for Primakoff conversion of solar axions in 4T superconducting magnet
into X ray.

44MORALES 02B looked for the coherent conversion of solar axions to photons via the
Primakoff effect in Germanium detector.

45BERNABEI 01B looked for Primakoff coherent conversion of solar axions into photons
via Bragg scattering in NaI crystal in DAMA dark matter detector.

46ASTIER 00B looked for production of axions from the interaction of high-energy photons
with the horn magnetic field and their subsequent re-conversion to photons via the
interaction with the NOMAD dipole magnetic field.

47MASSO 00 studied limits on axion-proton coupling using the induced axion-photon cou-
pling through the proton loop and CAMERON 93 bound on the axion-photon coupling

using optical rotation. They obtained the bound g2
p
/4π < 1.7 × 10−9 for the coupling

gppγ5pφA.

48AVIGNONE 98 result is based on the coherent conversion of solar axions to photons via
the Primakoff effect in a single crystal germanium detector.

49Based on the conversion of solar axions to X-rays in a strong laboratory magnetic field.
50 Experiment based on proposal by MAIANI 86.
51 Experiment based on proposal by VANBIBBER 87.
52 LAZARUS 92 experiment is based on proposal found in VANBIBBER 89.
53RUOSO 92 experiment is based on the proposal by VANBIBBER 87.
54 SEMERTZIDIS 90 experiment is based on the proposal of MAIANI 86. The limit is

obtained by taking the noise amplitude as the upper limit. Limits extend to m
A0 =

4 × 10−3 where GAγγ < 1 × 10−4 GeV−1.
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Limit on Invisible A0 (Axion) Electron CouplingLimit on Invisible A0 (Axion) Electron CouplingLimit on Invisible A0 (Axion) Electron CouplingLimit on Invisible A0 (Axion) Electron Coupling
The limit is for GAe e∂µφAeγµγ5e in GeV−1, or equivalently, the dipole-dipole

potential
G2

Ae e
4π ((σσσσ1 · σσσσ2) −3(σσσσ1 · nnnn) (σσσσ2 · nnnn))/r3 where nnnn=rrrr/r.

VALUE (GeV−1) CL% DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, fits, limits, etc. • • •

<3.2 × 10−10 68 1 BATTICH 16 ASTR White dwarf cooling

<7 × 10−10 2 CORSICO 16 ASTR White dwarf cooling

<1.36 × 10−8 90 3 YOON 16 KIMS Solar axions

<7.3 × 10−6 95 4 TERRANO 15 m
A0 < 30 µeV

<7.8 × 10−10 90 5 ABE 14F XMAS m
A0 = 60 keV

<7.5 × 10−9 90 6 APRILE 14B X100 Solar axions

<1 × 10−9 90 7 APRILE 14B X100 m
A0 = 5–7 keV

< 0.94–8.0 × 10−5 90 8 DERBIN 14 CNTR m
A0 = 0.1–1 MeV

<3 × 10−10 99 9 MILLER-BER...14 ASTR White dwarf cooling

<5.3 × 10−8 90 10 ABE 13D XMAS Solar axions

<1.05 × 10−9 90 11 ARMENGAUD 13 EDEL m
A0 = 12.5 keV

<2.53 × 10−8 90 12 ARMENGAUD 13 EDEL Solar axions
13 BARTH 13 CAST Solar axions

< 1.4–9.5 × 10−4 90 14 DERBIN 13 CNTR m
A0 = 0.1–1 MeV

<2.9 × 10−5 68 15 HECKEL 13 m
A0 ≤ 0.1 µeV

<4.2 × 10−10 95 16 VIAUX 13A ASTR Low-mass red giants

<7 × 10−10 95 17 CORSICO 12 ASTR White dwarf cooling

<2.2 × 10−7 90 18 DERBIN 12 CNTR Solar axions

< 0.02–1 × 10−7 90 19 AALSETH 11 CNTR m
A0 = 0.3–8 keV

<1.4 × 10−9 90 20 AHMED 09A CDMS m
A0 = 2.5 keV

<3 × 10−6 21 DAVOUDIASL 09 ASTR Earth cooling

<5.3 × 10−5 66 22 NI 94 Induced magnetism

<6.7 × 10−5 66 22 CHUI 93 Induced magnetism

<3.6 × 10−4 66 23 PAN 92 Torsion pendulum

<2.7 × 10−5 95 22 BOBRAKOV 91 Induced magnetism

<1.9 × 10−3 66 24 WINELAND 91 NMR

<8.9 × 10−4 66 23 RITTER 90 Torsion pendulum

<6.6 × 10−5 95 22 VOROBYOV 88 Induced magnetism

1BATTICH 16 is analogous to CORSICO 16 and used the pulsating DB white dwarf PG
1351+489.

2CORSICO 16 studied the cooling rate of the pulsating DA white dwarf L19-2 based on
an asteroseismic model.

3 YOON 16 look for solar axions with the axio-electric effect in CsI(Tl) crystals and set a
limit for m

A0 < 1 keV.

4TERRANO 15 used a torsion pendulum and rotating attractor with 20-pole electron-spin
distributions. See their Fig. 4 for a mass-dependent limit up to m

A0 = 500 µeV.

5ABE 14F set limits on the axioelectric effect in the XMASS detector assuming the pseu-
doscalar constitutes all the local dark matter. See their Fig. 3 for limits between m

A0

= 40–120 keV.
6APRILE 14B look for solar axions using the XENON100 detector.
7APRILE 14B is analogous to AHMED 09A. See their Fig. 7 for limits between 1 keV <
m

A0 < 35 keV.
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8DERBIN 14 is an update of DERBIN 13 with a BGO scintillating bolometer. See their
Fig. 3 for mass-dependent limits.

9MILLER-BERTOLAMI 14 studied the impact of axion emission on white dwarf cooling
in a self-consistent way.

10ABE 13D is analogous to DERBIN 12, using the XMASS detector.
11ARMENGAUD 13 is similar to AALSETH 11. See their Fig. 10 for limits between 3 keV

< m
A0 < 100 keV.

12ARMENGAUD 13 is similar to DERBIN 12, and take account of axio-recombination and
axio-deexcitation effects. See their Fig. 12 for mass-dependent limits.

13BARTH 13 search for solar axions produced by axion-electron coupling, and obtained the

limit, GAe e · GAγγ < 7.9 × 10−20 GeV−2 at 95%CL.

14DERBIN 13 looked for 5.5 MeV solar axions produced in pd → 3He A0 in a BGO
detector through the axioelectric effect. See their Fig. 4 for mass-dependent limits.

15HECKEL 13 studied the influence of 2 or 4 stationary sources each containing 6.0×1024

polarized electrons, on a rotating torsion pendulum containing 9.8 × 1024 polarized
electrons. See their Fig. 4 for mass-dependent limits.

16VIAUX 13A constrain axion emission using the observed brightness of the tip of the
red-giant branch in the globular cluster M5.

17CORSICO 12 attributed the excessive cooling rate of the pulsating white dwarf R548 to

emission of axions with GAee ≃ 5 × 10−10.
18DERBIN 12 look for solar axions with the axio-electric effect in a Si(Li) detector. The

solar production is based on Compton and bremsstrahlung processes.
19AALSETH 11 is analogous to AHMED 09A. See their Fig. 4 for mass-dependent limits.
20AHMED 09A assume keV-mass pseudoscalars are the local dark matter and constrain the

axio-electric effect in the CDMS detector. See their Fig. 5 for mass-dependent limits.
21DAVOUDIASL 09 use geophysical constraints on Earth cooling by axion emission.
22These experiments measured induced magnetization of a bulk material by the spin-

dependent potential generated from other bulk material with aligned electron spins,
where the magnetic field is shielded with superconductor.

23These experiments used a torsion pendulum to measure the potential between two bulk
matter objects where the spins are polarized but without a net magnetic field in either
of them.

24WINELAND 91 looked for an effect of bulk matter with aligned electron spins on atomic
hyperfine splitting using nuclear magnetic resonance.

Invisible A0 (Axion) Limits from Nucleon CouplingInvisible A0 (Axion) Limits from Nucleon CouplingInvisible A0 (Axion) Limits from Nucleon CouplingInvisible A0 (Axion) Limits from Nucleon Coupling
Limits are for the axion mass in eV.

VALUE (eV) CL% DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, fits, limits, etc. • • •

<1 × 102 95 1 GAVRILYUK 15 CNTR Solar axion
2 KLIMCHITSK...15 Casimir-less
3 BEZERRA 14 Casimir effect
4 BEZERRA 14A Casimir effect
5 BEZERRA 14B Casimir effect
6 BEZERRA 14C Casimir effect
7 BLUM 14 COSM 4He abundance
8 LEINSON 14 ASTR Neutron star cooling
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<2.50 × 102 95 9 ALESSANDRIA13 CNTR Solar axion

<1.55 × 102 90 10 ARMENGAUD 13 EDEL Solar axion

<8.6 × 103 90 11 BELLI 12 CNTR Solar axion

<1.41 × 102 90 12 BELLINI 12B BORX Solar axion

<1.45 × 102 95 13 DERBIN 11 CNTR Solar axion
14 BELLINI 08 CNTR Solar axion
15 ADELBERGER 07 Test of Newton’s law

1GAVRILYUK 15 look for solar axions emitted by the M1 transition of 83Kr (9.4 keV).
The mass bound assumes mu/md = 0.56 and S = 0.5.

2KLIMCHITSKAYA 15 use the measurement of differential forces between a test mass and
rotating source masses of Au and Si to constrain the force due to two-axion exchange

for 1.7 × 10−3 < m
A0 < 0.9 eV. See their Figs. 1 and 2 for mass dependent limits.

3BEZERRA 14 use the measurement of the thermal Casimir-Polder force between a Bose-
Einstein condensate of 87Rb atoms and a SiO2 plate to constrain the force mediated by
exchange of two pseudoscalars for 0.1 meV < m

A0 < 0.3 eV. See their Fig. 2 for the

mass-dependent limit on pseudoscalar coupling to nucleons.
4BEZERRA 14A is analogous to BEZERRA 14. They use the measurement of the Casimir
pressure between two Au-coated plates to constrain pseudoscalar coupling to nucleons

for 1× 10−3 eV < m
A0 < 15 eV. See their Figs. 1 and 2 for the mass-dependent limit.

5BEZERRA 14B is analogous to BEZERRA 14. BEZERRA 14B use the measurement
of the normal and lateral Casimir forces between sinusoidally corrugated surfaces of a
sphere and a plate to constrain pseudoscalar coupling to nucleons for 1 eV < m

A0 <

20 eV. See their Figs. 1–3 for mass-dependent limits.
6BEZERRA 14C is analogous to BEZERRA 14. They use the measurement of the gradient
of the Casimir force between Au- and Ni-coated surfaces of a sphere and a plate to

constrain pseudoscalar coupling to nucleons for 3× 10−5 eV < mA0
< 1 eV. See their

Figs. 1, 3, and 4 for the mass-dependent limits.
7BLUM 14 studied effects of an oscillating strong CP phase induced by axion dark matter

on the primordial 4He abundance. See their Fig. 1 for mass-dependent limits.
8 LEINSON 14 attributes the excessive cooling rate of the neutron star in Cassiopeia A to

axion emission from the superfluid core, and found C2
n

m2
A0 ≃ 5.7× 10−6 eV2, where

Cn is the effective Peccei-Quinn charge of the neutron.
9ALESSANDRIA 13 used the CUORE experiment to look for 14.4 keV solar axions pro-

duced from the M1 transition of thermally excited 57Fe nuclei in the solar core, using
the axio-electric effect. The limit assumes the hadronic axion model. See their Fig. 4
for the limit on product of axion couplings to electrons and nucleons.

10ARMENGAUD 13 is analogous to ALESSANDRIA 13. The limit assumes the hadronic
axion model. See their Fig. 8 for the limit on product of axion couplings to electrons
and nucleons.

11BELLI 12 looked for solar axions emitted by the M1 transition of 7Li∗ (478 keV) after the

electron capture of 7Be, using the resonant excitation 7Li in the LiF crystal. The mass
bound assumes mu/md = 0.55, mu/ms = 0.029, and the flavor-singlet axial vector
matrix element S = 0.4.

12BELLINI 12B looked for 5.5 MeV solar axions produced in the pd → 3He A0. The limit
assumes the hadronic axion model. See their Figs. 4 and 5 for mass-dependent limits on
products of axion couplings to photons, electrons, and nucleons.

13DERBIN 11 looked for solar axions emitted by the M1 transition of thermally excited
57Fe nuclei in the Sun, using their possible resonant capture on 57Fe in the laboratory.
The mass bound assumes mu/md = 0.56 and the flavor-singlet axial vector matrix
element S = 3F − D ≃ 0.5.

14BELLINI 08 consider solar axions emitted in the M1 transition of 7Li∗ (478 keV) and
look for a peak at 478 keV in the energy spectra of the Counting Test Facility (CTF), a
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Borexino prototype. For m
A0 < 450 keV they find mass-dependent limits on products

of axion couplings to photons, electrons, and nucleons.
15ADELBERGER 07 use precision tests of Newton’s law to constrain a force contribution

from the exchange of two pseudoscalars. See their Fig. 5 for limits on the pseudoscalar
coupling to nucleons, relevant for m

A0 below about 1 meV.

Axion Limits from T-violating Medium-Range ForcesAxion Limits from T-violating Medium-Range ForcesAxion Limits from T-violating Medium-Range ForcesAxion Limits from T-violating Medium-Range Forces
The limit is for the coupling g = gp gs in a T-violating potential between nucleons or

nucleon and electron of the form V =
g h̄2

8πmp
(σσσσ·r̂̂r̂r̂r) ( 1

r2 + 1
λr

) e−r/λ, where gp and

gs are dimensionless scalar and pseudoscalar coupling constants and λ = h̄/(mAc) is

the range of the force.

VALUE DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, fits, limits, etc. • • •
1 AFACH 15 ultracold neutrons
2 STADNIK 15 THEO nucleon spin contributions for nuclei
3 TERRANO 15 torsion pendulum
4 BULATOWICZ 13 NMR polarized 129Xe and 131Xe
5 CHU 13 polarized 3He
6 TULLNEY 13 SQID polarized 3He and 129Xe
7 RAFFELT 12 stellar energy loss
8 HOEDL 11 torsion pendulum
9 PETUKHOV 10 polarized 3He

10 SEREBROV 10 ultracold neutrons
11 IGNATOVICH 09 RVUE ultracold neutrons
12 SEREBROV 09 RVUE ultracold neutrons
13 BAESSLER 07 ultracold neutrons
14 HECKEL 06 torsion pendulum
15 NI 99 paramagnetic Tb F3
16 POSPELOV 98 THEO neutron EDM
17 YOUDIN 96
18 RITTER 93 torsion pendulum
19 VENEMA 92 nuclear spin-precession frequencies
20 WINELAND 91 NMR

1AFACH 15 look for a change of spin precession frequency of ultracold neutrons when a

magnetic field with opposite directions is applied, and find g < 2.2 × 10−27 (m/λ)2

at 95% CL for 1 µm < λ < 5 mm. See their Fig. 3 for their limits.
2 STADNIK 15 studied proton and neutron spin contributions for nuclei and derive the

limits g < 10−28–10−23 for λ > 3 × 10−4 m using the data of TULLNEY 13. See
their Figs. 1 and 2 for λ-dependent limits.

3TERRANO 15 used a torsion pendulum and rotating attractor, and derived a restrictive
limit on the product of the pseudoscalar coupling to electron and the scalar coupling to

nucleons, g < 9 × 10−29–5 × 10−26 for m
A0 < 1.5–400 µeV. See their Fig. 5 for

mass-dependent limits.
4BULATOWICZ 13 looked for NMR frequency shifts in polarized 129Xe and 131Xe when

a zirconia rod is positioned near the NMR cell, and find g < 1× 10−19–1× 10−24 for
λ = 0.01–1 cm. See their Fig. 4 for their limits.

5 CHU 13 look for a shift of the spin precession frequency of polarized 3He in the presence
of an unpolarized mass, in analogy to YOUDIN 96. See Fig. 3 for limits on g in the
approximate m

A0 range 0.02–2 meV.
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6TULLNEY 13 look for a shift of the precession frequency difference between the colocated
3He and 129Xe in the presence an unpolarized mass, and derive limits g < 3×10−29–2×
10−22 for λ > 3 × 10−4 m. See their Fig. 3 for λ-dependent limits.

7 RAFFELT 12 show that the pseudoscalar couplings to electron and nucleon and the
scalar coupling to nucleon are individually constrained by stellar energy-loss arguments
and searches for anomalous monopole-monopole forces, together providing restrictive
constraints on g. See their Figs. 2 and 3 for results.

8HOEDL 11 use a novel torsion pendulum to study the force by the polarized electrons of
an external magnet. In their Fig. 3 they show restrictive limits on g in the approximate
m

A0 range 0.03–10 meV.

9PETUKHOV 10 use spin relaxation of polarized 3He and find g < 3× 10−23 (cm/λ)2

at 95% CL for the force range λ = 10−4–1 cm.
10 SEREBROV 10 use spin precession of ultracold neutrons close to bulk matter and find

g < 2 × 10−21 (cm/λ)2 at 95% CL for the force range λ = 10−4–1 cm.
11 IGNATOVICH 09 use data on depolarization of ultracold neutrons in material traps.

They show λ-dependent limits in their Fig. 1.
12 SEREBROV 09 uses data on depolarization of ultracold neutrons stored in material

traps and finds g < 2.96 × 10−21 (cm/λ)2 for the force range λ = 10−3–1 cm and

g < 3.9× 10−22 (cm/λ)2 for λ = 10−4–10−3 cm, each time at 95% CL, significantly
improving on BAESSLER 07.

13BAESSLER 07 use the observation of quantum states of ultracold neutrons in the Earth’s
gravitational field to constrain g for an interaction range 1 µm–a few mm. See their Fig. 3
for results.

14HECKEL 06 studied the influence of unpolarized bulk matter, including the laboratory’s

surroundings or the Sun, on a torsion pendulum containing about 9 × 1022 polarized
electrons. See their Fig. 4 for limits on g as a function of interaction range.

15NI 99 searched for a T-violating medium-range force acting on paramagnetic Tb F3 salt.
See their Fig. 1 for the result.

16POSPELOV 98 studied the possible contribution of T-violating Medium-Range Force to
the neutron electric dipole moment, which is possible when axion interactions violate
CP. The size of the force among nucleons must be smaller than gravity by a factor of

2 × 10−10 (1 cm/λA), where λA=h̄/mAc.
17YOUDIN 96 compared the precession frequencies of atomic 199Hg and Cs when a large

mass is positioned near the cells, relative to an applied magnetic field. See Fig. 3 for
their limits.

18RITTER 93 studied the influence of bulk mass with polarized electrons on an unpolarized
torsion pendulum, providing limits in the interaction range from 1 to 100 cm.

19VENEMA 92 looked for an effect of Earth’s gravity on nuclear spin-precession frequencies

of 199Hg and 201Hg atoms.
20WINELAND 91 looked for an effect of bulk matter with aligned electron spins on atomic

hyperfine resonances in stored 9Be+ ions using nuclear magnetic resonance.

Hidden Photons: Kinetic Mixing Parameter LimitsHidden Photons: Kinetic Mixing Parameter LimitsHidden Photons: Kinetic Mixing Parameter LimitsHidden Photons: Kinetic Mixing Parameter Limits
Hidden photons limits are listed for the first time, including only the most recent
papers. Suggestions for previous important results are welcome. Limits are on the

kinetic mixing parameter χ which is defined by the Lagrangian

L = − 1
4 FµνFµν −1

4 F
′

µν
F
′µν − χ

2 FµνF
′µν +

m2
γ′

2 A
′

µ
A
′µ,

where Aµ and A′
µ

are the photon and hidden-photon fields with field strengths Fµν

and F
′

µν
, respectively, and m

γ′
is the hidden-photon mass.
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VALUE CL% DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, fits, limits, etc. • • •

<1.2 × 10−4 90 1 BANERJEE 17 NA64 m
γ′

= 0.002–0.4 GeV

2 AAD 16AG ATLS m
γ′

= 0.1–2 GeV

<4.4 × 10−4 90 3 ANASTASI 16 KLOE m
γ′

= 527–987 MeV

<1.7 × 10−6 95 4 KHACHATRY...16 CMS m
γ′

= 2 GeV

<7 × 10−4 90 5 LEES 16F BABR m
γ′

= 0.212–10 GeV

<4 × 10−2 95 6 AAD 15CD ATLS m
γ′

= 15–55 GeV

<1.4 × 10−3 90 7 ADARE 15 m
γ′

= 30–90 MeV

8 AN 15A m
γ′

= 12 eV - 40 keV

9 ANASTASI 15 KLOE m
γ′

= 2mµ - 1 GeV

<1.7 × 10−3 90 10 ANASTASI 15A KLOE m
γ′

= 5–320 MeV

<4.2 × 10−4 90 11 BATLEY 15A NA48 m
γ′

= 36 MeV

12 JAEGLE 15 BELL m
γ′

= 0.1–3.5 GeV

<3 × 10−13 13 KAZANAS 15 ASTR m
γ′

= 2me – 100 MeV

14 SUZUKI 15 m
γ′

= 1.9–4.3 eV

<2.3 × 10−13 99.7 15 VINYOLES 15 ASTR m
γ′

= 8 eV

16 ABE 14F XMAS m
γ′

= 40–120 keV

<1.8 × 10−3 90 17 AGAKISHIEV 14 HDES m
γ′

= 63 MeV

<9.0 × 10−4 90 18 BABUSCI 14 KLOE m
γ′

= 969 MeV

19 BATELL 14 BDMP m
γ′

= 10−3–1 GeV

<1.3 × 10−7 95 20 BLUEMLEIN 14 BDMP m
γ′

= 0.6 GeV

<3 × 10−18 21 FRADETTE 14 COSM m
γ′

= 50–300 MeV

<3.5 × 10−4 90 22 LEES 14J BABR m
γ′

= 0.2 GeV

<9 × 10−4 95 23 MERKEL 14 A1 m
γ′

= 40–300 MeV

<3 × 10−15 24 AN 13B ASTR m
γ′

= 2 keV

<7 × 10−14 25 AN 13C XE10 m
γ′

= 100 eV

<8 × 10−4 26 DIAMOND 13 BDMP m
γ′

= 30–250 MeV

<2.2 × 10−13 27 HORVAT 13 HPGE m
γ′

= 230 eV

<8.06 × 10−5 95 28 INADA 13 LSW m
γ′

= 0.04 eV−26 keV

<2 × 10−10 95 29 MIZUMOTO 13 m
γ′

= 1 eV

<1.7 × 10−7 30 PARKER 13 LSW m
γ′

= 53 µeV

<5.32 × 10−15 31 PARKER 13 m
γ′

= 53 µeV

<1 × 10−15 32 REDONDO 13 ASTR m
γ′

= 2 keV

<8 × 10−8 90 33 GNINENKO 12A BDMP m
γ′

= 1–135 MeV

<1 × 10−7 90 34 GNINENKO 12B CHRM m
γ′

= 1–500 MeV

<1 × 10−3 90 35 ABRAHAMY... 11 m
γ′

= 175–250 MeV

<9 × 10−8 95 36 BLUEMLEIN 11 BDMP m
γ′

= 70 MeV
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<1 × 10−7 37 BJORKEN 09 BDMP m
γ′

= 2–400 MeV

<5 × 10−9 38 BJORKEN 09 ASTR m
γ′

= 2–50 MeV

1BANERJEE 17 look for invisible decays of hidden photons produced in the reaction

e−Z → e−Z γ′. The quoted limit applies to m
γ′

= 2 MeV. See their Fig. 3 for

mass-dependent limits.
2AAD 16AG look for hidden photons promptly decaying into collimated electrons and/or
muons, assuming that they are produced in the cascade decays of squarks or the Higgs
boson. See their Fig. 10 and Fig.13 for their limits on the cross section times branching
fractions.

3ANASTASI 16 look for the decay γ′ → π+π− in the reaction e+ e− → γ′γ. Limits

between 4.3× 10−3 and 4.4× 10−4 are obtained for 527 < m
γ′

< 987 MeV (see their

Fig. 9).
4KHACHATRYAN 16 look for γ′ → µ+ µ− in a dark SUSY scenario where the SM-like
Higgs boson decays into a pair of the visible lightest neutralinos with mass 10 GeV, both

of which decay into γ′ and a hidden neutralino with mass 1 GeV. See the right panel in
their Fig. 2.

5 LEES 16F looked for a hidden photon coupled only to the second and third generations

of leptons in the reaction e+ e− → µ+µ− γ′ (γ′ → µ+µ−) using data collected
by BABAR detector, and derived limits on the hidden photon gauge coupling as low as

7 × 10−4 for m
γ′

= 0.212–10 GeV. See their Fig. 5 for the mass-dependent limits.

6AAD 15CD look for H → Z γ′ → 4ℓ with the ATLAS detector at LHC and find

χ < 4–17 × 10−2 for m
γ′

= 15–55 GeV. See their Fig. 6.

7ADARE 15 look for a hidden photon in π0, η0 → γ e+ e− at the PHENIX experiment.
See their Fig. 4 for mass-dependent limits.

8AN 15A derived limits from the absence of ionization signals in the XENON10 and
XENON100 experiments, assuming hidden photons constitute all the local dark matter.

Their best limit is χ < 1.3×10−15 at m
γ′

= 18 eV. See their Fig. 1 for mass-dependent

limits.
9ANASTASI 15 look for a production of a hidden photon and a hidden Higgs boson with
the KLOE detector at DAΦNE, where the hidden photon decays into a pair of muons
and the hidden Higgs boson lighter than m

γ′
escape detection. See their Figs. 6 and

7 for mass-dependent limits on a product of the hidden fine structure constant and the
kinetic mixing.

10ANASTASI 15A look for the decay γ′ → e+ e− in the reaction e+ e− → e+ e−γ.

Limits between 1.7× 10−3 and 1× 10−2 are obtained for m
γ′

= 5–320 MeV (see their

Fig. 7).
11BATLEY 15A look for π0 → γγ′ (γ′ → e+ e−) at the NA48/2 experiment. Limits

between 4.2× 10−4 and 8.8× 10−3 are obtained for m
γ′

= 9–120 MeV (see their Fig.

4).
12 JAEGLE 15 look for the decay γ′ → e+ e−, µ+µ−, or π+π− in the dark Higgstrahlung

channel, e+ e− → γ′H′ (H′ → γ′γ′) at the BELLE experiment. They set limits on a
product of the branching fraction and the Born cross section as well as a product of the
hidden fine structure constant and the kinetic mixing. See their Figs. 3 and 4.

13KAZANAS 15 set limits by studying the decay of hidden photons γ′ → e+ e− inside
and near the progenitor star of SN1987A. See their Fig. 6 for mass-dependent limits.

14 SUZUKI 15 looked for hidden-photon dark matter with a dish antenna and derived limits

assuming they constitute all the local dark matter. Their limits are χ < 6× 10−12 for
m

γ′
= 1.9–4.3 eV. See their Fig. 7 for mass-dependent limits.

HTTP://PDG.LBL.GOV Page 33 Created: 5/30/2017 17:22



Citation: C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016) and 2017 update

15VINYOLES 15 performed a global fit analysis based on helioseismology and solar neutrino

observations, and set the limits χm
γ′

< 1.8 × 10−12 eV for m
γ′

= 3 × 10−5–8 eV.

See their Fig. 11.
16ABE 14F look for the photoelectric-like interaction in the XMASS detector assuming the

hidden photon constitutes all the local dark matter. Limits between 2 × 10−13 and

1 × 10−12 are obtained. See their Fig. 3 for mass-dependent limits.
17AGAKISHIEV 14 look for hidden photons γ′ → e+ e− at the HADES experiment, and

set limits on χ for m
γ′

= 0.02–0.6 GeV. See their Fig. 5 for mass-dependent limits.

18BABUSCI 14 look for the decay γ′ → µ+µ− in the reaction e+ e− → µ+µ− γ.

Limits between 4× 10−3 and 9.0× 10−4 are obtained for 520 MeV < m
γ′

< 980 MeV

(see their Fig. 7).
19BATELL 14 derived limits from the electron beam dump experiment at SLAC (E-137)

by searching for events with recoil electrons by sub-GeV dark matter produced from the

decay of the hidden photon. Limits at the level of 10−4–10−1 are obtained for m
γ′

=

10−3–1 GeV, depending on the dark matter mass and the hidden gauge coupling (see
their Fig. 2).

20BLUEMLEIN 14 analyzed the beam dump data taken at the U-70 accelerator to look

for γ′-bremsstrahlung and the subsequent decay into muon pairs and hadrons. See their
Fig. 4 for mass-dependent excluded region.

21 FRADETTE 14 studied effects of decay of relic hidden photons on BBN and CMB to
set constraints on very small values of the kinetic mixing. See their Figs. 4 and 7 for
mass-dependent excluded regions.

22 LEES 14J look for hidden photons in the reaction e+ e− → γγ′ (γ′ → e+ e−, µ+ µ−).

Limits at the level of 10−4–10−3 are obtained for 0.02 GeV < m
γ′

< 10.2 GeV. See

their Fig. 4 for mass-dependent limits.
23MERKEL 14 look for γ′ → e+ e− at the A1 experiment at the Mainz Microtron

(MAMI). See their Fig. 3 for mass-dependent limits.
24AN 13B examined the stellar production of hidden photons, correcting an important error

of the production rate of the longitudinal mode which now dominates. See their Fig. 2
for mass-dependent limits based on solar energy loss.

25AN 13C use the solar flux of hidden photons to set a limit on the atomic ionization rate

in the XENON10 experiment. They find χ m
γ′

< 3× 10−12 eV for m
γ′

< 1 eV. See

their Fig. 2 for mass-dependent limits.
26DIAMOND 13 analyzed the beam dump data taken at the SLAC millicharge experiment

to constrain a hidden photon invisibly decaying into lighter long-lived particles, which

undergo elastic scattering off nuclei in the detector. Limits between 8× 10−4–2× 10−2

are obtained. The quoted limit is applied when the dark gauge coupling is set equal to
the electromagnetic coupling. See their Fig.4 for mass-dependent limits.

27HORVAT 13 look for hidden-photo-electric effect in HPGe detectors induced by solar
hidden photons. See their Fig. 3 for mass-dependent limits.

28 INADA 13 search for hidden photons using an intense X-ray beamline at SPring-8. See
their Fig. 4 for mass-dependent limits.

29MIZUMOTO 13 look for solar hidden photons. See their Fig. 5 for mass-dependent
limits.

30PARKER 13 look for hidden photons using a cryogenic resonant microwave cavity. See
their Fig.5 for mass-dependent limits.

31PARKER 13 derived a limit for the hidden photon CDM with a randomly oriented hidden
photon field.

32REDONDO 13 examined the solar emission of hidden photons including the enhancement
factor for the longitudinal mode pointed out by AN 13B, and also updated stellar-energy
loss arguments. See their Fig.3 for mass-dependent limits, including a review of the
currently best limits from other arguments.
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33GNINENKO 12A obtained bounds on B(π0 → γγ′) · B(γ′ → e+ e−) from the NOMAD

and PS191 neutrino experiments, and derived limits between 8 × 10−8–2 × 10−4. See
their Fig.4 for mass-dependent excluded regions.

34GNINENKO 12B used the data taken at the CHARM experiment to constrain the decay,

η(η′) → γγ′ (γ′ → e+ e−), and derived limits between 1 × 10−7–1 × 10−4. See
their Fig.4 for mass-dependent excluded region.

35ABRAHAMYAN 11 look for γ′ → e+ e− in the electron-nucelon fixed-target experiment
at the Jefferson Laboratory (APEX). See their Fig. 5 for mass-dependent limits.

36BLUEMLEIN 11 analyzed the beam dump data taken at the U-70 accelerator to look for

π0 → γγ′ (γ′ → e+ e−). See their Fig. 5 for mass-dependent limits.
37BJORKEN 09 analyzed the beam dump data taken at E137, E141, and E774 to constrain

a hidden photon produced by bremsstrahlung, subsequently decaying into e+ e−, and

derived limits between 10−7 and 10−2. See their Fig. 1 for mass-dependent excluded
region.

38BJORKEN 09 required the energy loss in the γ′ emission from the core of SN1987A not

to exceed 1053 erg/s, and derived limits between 5 × 10−9 and 2 × 10−6. See their
Fig. 1 for mass-dependent excluded region.
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BANERJEE 17 PRL 118 011802 D. Banerjee et al. (NA64 Collab.)
BRANCA 17 PRL 118 021302 A. Branca et al. (AURIGA Collab.)
BRUBAKER 17 PRL 118 061302 B.M. Brubaker et al. (YALE, UCB, NIST+)
TIWARI 17 PR D95 023005 P. Tiwari (Technion)
AAD 16AG JHEP 1602 062 G. Aad et al. (ATLAS Collab.)
ABLIKIM 16E PR D93 052005 M. Ablikim et al. (BES III Collab.)
AJELLO 16 PRL 116 161101 M. Ajello et al. (Fermi-LAT Collab.)
ANASTASI 16 PL B757 356 A. Anastasi et al. (KLOE-2 Collab.)
BATTICH 16 JCAP 1608 062 T. Battich et al.
CORSICO 16 JCAP 1607 036 A.H. Corsico et al.
DELLA-VALLE 16 EPJ C76 24 F. Della Valle et al. (PVLAS Collab.)
HOSKINS 16 PR D94 082001 J. Hoskins et al. (ADMX Collab.)
JAECKEL 16 PL B753 482 J. Jaeckel, M. Spannowsky (HEID, DURH)
KHACHATRY... 16 PL B752 146 V. Khachatryan et al. (CMS Collab.)
LEEFER 16 PRL 117 271601 N. Leefer et al. (MAINZ, BONN, LBL, UCB+)
LEES 16F PR D94 011102 J.P. Lees et al. (BABAR Collab.)
WON 16 PR D94 092006 E. Won et al. (BELLE Collab.)
YOON 16 JHEP 1606 011 Y.S. Yoon et al. (KIMS Collab.)
AAD 15CD PR D92 092001 G. Aad et al. (ATLAS Collab.)
AAIJ 15AZ PRL 115 161802 R. Aaij et al. (LHCb Collab.)
ADARE 15 PR C91 031901 A. Adare et al. (PHENIX Collab.)
AFACH 15 PL B745 58 S. Afach et al. (ETH, PSI, CAEN, +)
AGOSTINI 15A EPJ C75 416 M. Agostini et al. (GERDA Collab.)
AN 15A PL B747 331 H. An et al. (CIT, VICT, VIEN)
ANASTASI 15 PL B747 365 A. Anastasi et al. (KLOE-2 Collab.)
ANASTASI 15A PL B750 633 A. Anastasi et al. (KLOE-2 Collab.)
ANASTASSO... 15 PL B749 172 V. Anastassopoulos et al. (CAST Collab.)
ARIK 15 PR D92 021101 M. Arik et al. (CAST Collab.)
ARNOLD 15 PR D92 072011 R. Arnold et al. (NEMO-3 Collab.)
BALLOU 15 PR D92 092002 R. Ballou et al. (OSQAR Collab.)
BATLEY 15A PL B746 178 J.R. Batley et al. (NA48/2 Collab.)
BAYES 15 PR D91 052020 R. Bayes et al. (TWIST Collab.)
BRAX 15 PR D92 083501 P. Brax, P. Brun, D. Wouters (SACL, SACL5)
GAVRILYUK 15 JETPL 101 664 Yu.M. Gavrilyuk et al.

Translated from ZETFP 101 739.
HASEBE 15 PTEP 2015 073C01 T. Hasebe et al.
JAEGLE 15 PRL 114 211801 I. Jaegle et al. (BELLE Collab.)
KAZANAS 15 NP B890 17 D. Kazanas et al.
KLIMCHITSK... 15 EPJ C75 164 G.L. Klimchitskaya, V.M. Mostepanenko
MILLEA 15 PR D92 023010 M. Millea, L. Knox, B. Fields (UCD, ILL)
STADNIK 15 EPJ C75 110 Y.V. Stadnik, V.V. Flambaum (SYDN)
SUZUKI 15 JCAP 1509 042 J. Suzuki et al.
TERRANO 15 PRL 115 201801 W.A. Terrano et al. (WASH)
VANTILBURG 15 PRL 115 011802 K. Van Tilburg et al.
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VINYOLES 15 JCAP 1510 015 N. Vinyoles et al.
ABE 14F PRL 113 121301 K. Abe et al. (XMASS Collab.)
AGAKISHIEV 14 PL B731 265 G. Agakishiev et al. (HADES Collab.)
ALBERT 14A PR D90 092004 J.B. Albert et al. (EXO-200 Collab.)
APRILE 14B PR D90 062009 E. Aprile et al. (XENON100 Collab.)
ARIK 14 PRL 112 091302 M. Arik et al. (CAST Collab.)
AYALA 14 PRL 113 191302 A. Ayala et al.
BABUSCI 14 PL B736 459 D. Babusci et al. (KLOE-2 Collab.)
BATELL 14 PRL 113 171802 B. Batell, R. Essig, Z. Surujon (EFI, STON)
BEZERRA 14 PR D89 035010 V.B. Bezerra et al.
BEZERRA 14A EPJ C74 2859 V.B. Bezerra et al.
BEZERRA 14B PR D90 055013 V.B. Bezerra et al.
BEZERRA 14C PR D89 075002 V.B. Bezerra et al.
BLUEMLEIN 14 PL B731 320 J. Bluemlein, J. Brunner (CPPM, DESY)
BLUM 14 PL B737 30 K. Blum et al. (IAS, PRIN)
DELLA-VALLE 14 PR D90 092003 F. Della Valle et al. (PVLAS Collab.)
DERBIN 14 EPJ C74 3035 A.V. Derbin et al.
EJLLI 14 PR D90 123527 D. Ejlli
FRADETTE 14 PR D90 035022 A. Fradette et al.
LEES 14J PRL 113 201801 J.P. Lees et al. (BABAR Collab.)
LEINSON 14 JCAP 1408 031 L. Leinson
MERKEL 14 PRL 112 221802 H. Merkel et al. (A1 at MAMI)
MILLER-BER... 14 JCAP 1410 069 M.M. Miller Bertolami et al.
PUGNAT 14 EPJ C74 3027 P. Pugnat et al. (OSQAR Collab.)
REESMAN 14 JCAP 1408 021 R. Reesman et al. (OSU)
ABE 13D PL B724 46 K. Abe et al. (XMASS Collab.)
ABRAMOWSKI 13A PR D88 102003 A. Abramowski et al. (H.E.S.S. Collab.)
ADLARSON 13 PL B726 187 P. Adlarson et al. (WASA-at-COSY Collab.)
ALESSANDRIA 13 JCAP 1305 007 F. Alessandria et al. (CUORE Collab.)
AN 13B PL B725 190 H. An, M. Pospelov, J. Pradler
AN 13C PRL 111 041302 H. An, M. Pospelov, J. Pradler
ARCHIDIACO... 13A JCAP 1310 020 M. Archidiacono et al.
ARMENGAUD 13 JCAP 1311 067 E. Armengaud et al. (EDELWEISS-II Collab.)
BABUSCI 13B PL B720 111 D. Babusci et al. (KLOE-2 Collab.)
BARTH 13 JCAP 1305 010 K. Barth et al. (CAST Collab.)
BECK 13 PRL 111 231801 C. Beck
BETZ 13 PR D88 075014 M. Betz et al. (CROWS Collab.)
BULATOWICZ 13 PRL 111 102001 M. Bulatowicz et al.
CHU 13 PR D87 011105 P.-H. Chu et al. (DUKE, IND, SJTU)
DERBIN 13 EPJ C73 2490 A. V. Derbin et al.
DIAMOND 13 PRL 111 221803 M.D. Diamond, P. Schuster
FRIEDLAND 13 PRL 110 061101 A. Friedland, M. Giannotti, M. Wise
HECKEL 13 PRL 111 151802 B. R. Heckel et al.
HORVAT 13 PL B721 220 R. Horvat et al.
INADA 13 PL B722 301 T. Inada et al.
LATTANZI 13 PR D88 063528 M. Lattanzi et al.
MEYER 13 PR D87 035027 M. Meyer, D. Horns, M. Raue
MIZUMOTO 13 JCAP 1307 013 T. Mizumoto et al.
PARKER 13 PR D88 112004 S. Parker et al.
REDONDO 13 JCAP 1308 034 J. Redondo, G. Raffelt
TULLNEY 13 PRL 111 100801 K. Tullney et al.
VIAUX 13A PRL 111 231301 N. Viaux et al.
WOUTERS 13 APJ 772 44 D. Wouters, P. Brun (SACL)
ABLIKIM 12 PR D85 092012 M. Ablikim et al. (BES III Collab.)
ARCHILLI 12 PL B706 251 F. Archilli et al. (KLOE-2 Collab.)
BELLI 12 PL B711 41 P. Belli et al. (DAMA-KIEV)
BELLINI 12B PR D85 092003 G. Bellini et al. (Borexino Collab.)
CADAMURO 12 JCAP 1202 032 D. Cadamuro et al. (MPIM)
CORSICO 12 JCAP 1212 010 A.H. Corsico et al. (LAPL, RGSUL, WASH+)
DERBIN 12 JETPL 95 339 A.V. Derbin et al. (PNPI)

Translated from ZETFP 95 379.
GANDO 12 PR C86 021601 A. Gando et al. (KamLAND-Zen Collab.)
GNINENKO 12A PR D85 055027 S.N. Gninenko (INRM)
GNINENKO 12B PL B713 244 S.N. Gninenko (INRM)
PAYEZ 12 JCAP 1207 041 A. Payez et al. (LIEG)
RAFFELT 12 PR D86 015001 G. Raffelt (MPIM)
AALSETH 11 PRL 106 131301 C.E. Aalseth et al. (CoGeNT Collab.)
ABRAHAMY... 11 PRL 107 191804 S. Abrahamyan et al.
ARIK 11 PRL 107 261302 M. Arik et al. (CAST Collab.)
ARNOLD 11 PRL 107 062504 R. Arnold et al. (NEMO-3 Collab.)
BLUEMLEIN 11 PL B701 155 J. Bluemlein, J. Brunner (DESY)
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CADAMURO 11 JCAP 1102 003 D. Cadamuro et al. (MPIM, AARHUS)
DERBIN 11 PAN 74 596 A.V. Derbin et al. (PNPI)

Translated from YAF 74 620.
DERBIN 11A PR D83 023505 A.V. Derbin et al. (PNPI)
HOEDL 11 PRL 106 041801 S.A. Hoedl et al. (WASH)
HOSKINS 11 PR D84 121302 J. Hoskins et al. (ADMX Collab.)
ANDRIAMON... 10 JCAP 1003 032 S. Andriamonje et al. (CAST Collab.)
ARGYRIADES 10 NP A847 168 J. Argyriades et al. (NEMO-3 Collab.)
ASZTALOS 10 PRL 104 041301 S.J. Asztalos et al. (ADMX Collab.)
EHRET 10 PL B689 149 K. Ehret et al. (ALPS Collab.)
HANNESTAD 10 JCAP 1008 001 S. Hannestad et al.
PETUKHOV 10 PRL 105 170401 A.K. Petukhov et al.
SEREBROV 10 JETPL 91 6 A. Serebrov et al.

Translated from ZETFP 91 8.
AHMED 09A PRL 103 141802 Z. Ahmed et al. (CDMS Collab.)
ANDRIAMON... 09 JCAP 0912 002 S. Andriamonje et al.
ARGYRIADES 09 PR C80 032501 J. Argyriades et al. (NEMO-3 Collab.)
ARIK 09 JCAP 0902 008 E. Arik et al. (CAST Collab.)
BJORKEN 09 PR D80 075018 J. Bjorken et al.
CHOU 09 PRL 102 030402 A.S. Chou et al. (GammeV Collab.)
DAVOUDIASL 09 PR D79 095024 H. Davoudiasl, P. Huber
DERBIN 09A PL B678 181 A.V. Derbin et al.
GONDOLO 09 PR D79 107301 P. Gondolo, G. Raffelt (UTAH, MPIM)
IGNATOVICH 09 EPJ C64 19 V.K. Ignatovich, Y.N. Pokotilovski (JINR)
KEKEZ 09 PL B671 345 D. Kekez et al.
SEREBROV 09 PL B680 423 A. Serebrov (PNPI)
AFANASEV 08 PRL 101 120401 A. Afanasev et al.
BELLINI 08 EPJ C54 61 G. Bellini et al. (Borexino Collab.)
CHOU 08 PRL 100 080402 A.S. Chou et al. (GammeV Collab.)
FOUCHE 08 PR D78 032013 M. Fouche et al.
HANNESTAD 08 JCAP 0804 019 S. Hannestad et al.
INOUE 08 PL B668 93 Y. Inoue et al.
ZAVATTINI 08 PR D77 032006 E. Zavattini et al. (PVLAS Collab.)
ADELBERGER 07 PRL 98 131104 E.G. Adelberger et al.
ANDRIAMON... 07 JCAP 0704 010 S. Andriamonje et al. (CAST Collab.)
BAESSLER 07 PR D75 075006 S. Baessler et al.
CHANG 07 PR D75 052004 H.M. Chang et al. (TEXONO Collab.)
HANNESTAD 07 JCAP 0708 015 S. Hannestad et al.
JAIN 07 JP G34 129 P.L. Jain, G. Singh
LESSA 07 PR D75 094001 A.P. Lessa, O.L.G. Peres
MELCHIORRI 07A PR D76 041303 A. Melchiorri, O. Mena, A. Slosar
ROBILLIARD 07 PRL 99 190403 C. Robilliard et al.
ARNOLD 06 NP A765 483 R. Arnold et al. (NEMO-3 Collab.)
DUFFY 06 PR D74 012006 L.D. Duffy et al.
HECKEL 06 PRL 97 021603 B.R. Heckel et al.
ZAVATTINI 06 PRL 96 110406 E. Zavattini et al. (PVLAS Collab.)
HANNESTAD 05A JCAP 0507 002 S. Hannestad, A. Mirizzi, G. Raffelt
ZIOUTAS 05 PRL 94 121301 K. Zioutas et al. (CAST Collab.)
ADLER 04 PR D70 037102 S. Adler et al. (BNL E787 Collab.)
ANISIMOVSK... 04 PRL 93 031801 V.V. Anisimovsky et al. (BNL E949 Collab.)
ARNOLD 04 JETPL 80 377 R. Arnold et al. (NEMO-3 Collab.)

Translated from ZETFP 80 429.
ASZTALOS 04 PR D69 011101 S.J. Asztalos et al.
HOFFMANN 04 PR B70 180503 C. Hoffmann et al.
ARNABOLDI 03 PL B557 167 C. Arnaboldi et al.
CIVITARESE 03 NP A729 867 O. Civitarese, J. Suhonen
DANEVICH 03 PR C68 035501 F.A. Danevich et al.
ADLER 02C PL B537 211 S. Adler et al. (BNL E787 Collab.)
BADERT... 02 PL B542 29 A. Badertscher et al.
BERNABEI 02D PL B546 23 R. Bernabei et al. (DAMA Collab.)
DERBIN 02 PAN 65 1302 A.V. Derbin et al.

Translated from YAF 65 1335.
FUSHIMI 02 PL B531 190 K. Fushimi et al. (ELEGANT V Collab.)
INOUE 02 PL B536 18 Y. Inoue et al.
MORALES 02B ASP 16 325 A. Morales et al. (COSME Collab.)
ADLER 01 PR D63 032004 S. Adler et al. (BNL E787 Collab.)
AMMAR 01B PRL 87 271801 R. Ammar et al. (CLEO Collab.)
ASHITKOV 01 JETPL 74 529 V.D. Ashitkov et al.

Translated from ZETFP 74 601.
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BERNABEI 01B PL B515 6 R. Bernabei et al. (DAMA Collab.)
DANEVICH 01 NP A694 375 F.A. Danevich et al.
DEBOER 01 JP G27 L29 F.W.N. de Boer et al.
STOICA 01 NP A694 269 S. Stoica, H.V. Klapdor-Kleingrothous
ALESSAND... 00 PL B486 13 A. Alessandrello et al.
ARNOLD 00 NP A678 341 R. Arnold et al.
ASTIER 00B PL B479 371 P. Astier et al. (NOMAD Collab.)
DANEVICH 00 PR C62 045501 F.A. Danevich et al.
MASSO 00 PR D61 011701 E. Masso
ARNOLD 99 NP A658 299 R. Arnold et al. (NEMO Collab.)
NI 99 PRL 82 2439 W.-T. Ni et al.
SIMKOVIC 99 PR C60 055502 F. Simkovic et al.
ALTEGOER 98 PL B428 197 J. Altegoer et al.
ARNOLD 98 NP A636 209 R. Arnold et al. (NEMO-2 Collab.)
AVIGNONE 98 PRL 81 5068 F.T. Avignone et al. (Solar Axion Experiment)
DIAZ 98 NP B527 44 M.A. Diaz et al.
FAESSLER 98B JP G24 2139 A. Faessler, F. Simkovic
KIM 98 PR D58 055006 J.E. Kim
LUESCHER 98 PL B434 407 R. Luescher et al.
MORIYAMA 98 PL B434 147 S. Moriyama et al.
MOROI 98 PL B440 69 T. Moroi, H. Murayama
POSPELOV 98 PR D58 097703 M. Pospelov
ZUBER 98 PRPL 305 295 K. Zuber
AHMAD 97 PRL 78 618 I. Ahmad et al. (APEX Collab.)
BORISOV 97 JETP 83 868 A.V. Borisov, V.Y. Grishinia (MOSU)
DEBOER 97C JP G23 L85 F.W.N. de Boer et al.
KACHELRIESS 97 PR D56 1313 M. Kachelriess, C. Wilke, G. Wunner (BOCH)
KEIL 97 PR D56 2419 W. Keil et al.
KITCHING 97 PRL 79 4079 P. Kitching et al. (BNL E787 Collab.)
LEINBERGER 97 PL B394 16 U. Leinberger et al. (ORANGE Collab.)
ADLER 96 PRL 76 1421 S. Adler et al. (BNL E787 Collab.)
AMSLER 96B ZPHY C70 219 C. Amsler et al. (Crystal Barrel Collab.)
GANZ 96 PL B389 4 R. Ganz et al. (GSI, HEID, FRAN, JAGL+)
GUENTHER 96 PR D54 3641 M. Gunther et al. (MPIH, SASSO)
KAMEL 96 PL B368 291 S. Kamel (SHAMS)
MITSUI 96 EPL 33 111 T. Mitsui et al. (TOKY)
YOUDIN 96 PRL 77 2170 A.N. Youdin et al. (AMHT, WASH)
ALTMANN 95 ZPHY C68 221 M. Altmann et al. (MUNT, LAPP, CPPM)
BASSOMPIE... 95 PL B355 584 G. Bassompierre et al. (LAPP, LCGT, LYON)
MAENO 95 PL B351 574 T. Maeno et al. (TOKY)
RAFFELT 95 PR D51 1495 G. Raffelt, A. Weiss (MPIM, MPIG)
SKALSEY 95 PR D51 6292 M. Skalsey, R.S. Conti (MICH)
TSUNODA 95 EPL 30 273 T. Tsunoda et al. (TOKY)
ADACHI 94 PR A49 3201 S. Adachi et al. (TMU)
ALTHERR 94 ASP 2 175 T. Altherr, E. Petitgirard, T. del Rio Gaztelurrutia
AMSLER 94B PL B333 271 C. Amsler et al. (Crystal Barrel Collab.)
ASAI 94 PL B323 90 S. Asai et al. (TOKY)
MEIJERDREES 94 PR D49 4937 M.R. Drees et al. (BRCO, OREG, TRIU)
NI 94 Physica B194 153 W.T. Ni et al. (NTHU)
VO 94 PR C49 1551 D.T. Vo et al. (ISU, LBL, LLNL, UCD)
ATIYA 93 PRL 70 2521 M.S. Atiya et al. (BNL E787 Collab.)

Also PRL 71 305 (erratum) M.S. Atiya et al. (BNL E787 Collab.)
ATIYA 93B PR D48 R1 M.S. Atiya et al. (BNL E787 Collab.)
BASSOMPIE... 93 EPL 22 239 G. Bassompierre et al. (LAPP, TORI, LYON)
BECK 93 PRL 70 2853 M. Beck et al. (MPIH, KIAE, SASSO)
CAMERON 93 PR D47 3707 R.E. Cameron et al. (ROCH, BNL, FNAL+)
CHANG 93 PL B316 51 S. Chang, K. Choi
CHUI 93 PRL 71 3247 T.C.P. Chui, W.T. Ni (NTHU)
MINOWA 93 PRL 71 4120 M. Minowa et al. (TOKY)
NG 93 PR D48 2941 K.W. Ng (AST)
RITTER 93 PRL 70 701 R.C. Ritter et al.
TANAKA 93 PR D48 5412 J. Tanaka, H. Ejiri (OSAK)
ALLIEGRO 92 PRL 68 278 C. Alliegro et al. (BNL, FNAL, PSI+)
ATIYA 92 PRL 69 733 M.S. Atiya et al. (BNL, LANL, PRIN+)
BARABASH 92 PL B295 154 L.S. Barabash et al. (JINR, CERN, SERP+)
BERNATOW... 92 PRL 69 2341 T. Bernatowicz et al. (WUSL, TATA)
BLUEMLEIN 92 IJMP A7 3835 J. Bluemlein et al. (BERL, BUDA, JINR+)
HALLIN 92 PR D45 3955 A.L. Hallin et al. (PRIN)
HENDERSON 92C PRL 69 1733 S.D. Henderson et al. (YALE, BNL)
HICKS 92 PL B276 423 K.H. Hicks, D.E. Alburger (OHIO, BNL)
LAZARUS 92 PRL 69 2333 D.M. Lazarus et al. (BNL, ROCH, FNAL)
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MEIJERDREES 92 PRL 68 3845 R. Meijer Drees et al. (SINDRUM I Collab.)
PAN 92 MPL A7 1287 S.S. Pan, W.T. Ni, S.C. Chen (NTHU)
RUOSO 92 ZPHY C56 505 G. Ruoso et al. (ROCH, BNL, FNAL, TRST)
SKALSEY 92 PRL 68 456 M. Skalsey, J.J. Kolata (MICH, NDAM)
VENEMA 92 PRL 68 135 B.J. Venema et al.
WANG 92 MPL A7 1497 J. Wang (ILL)
WANG 92C PL B291 97 J. Wang (ILL)
WU 92 PRL 69 1729 X.Y. Wu et al. (BNL, YALE, CUNY)
AKOPYAN 91 PL B272 443 M.V. Akopyan et al. (INRM)
ASAI 91 PRL 66 2440 S. Asai et al. (ICEPP)
BERSHADY 91 PRL 66 1398 M.A. Bershady, M.T. Ressell, M.S. Turner (CHIC+)
BLUEMLEIN 91 ZPHY C51 341 J. Bluemlein et al. (BERL, BUDA, JINR+)
BOBRAKOV 91 JETPL 53 294 V.F. Bobrakov et al. (PNPI)

Translated from ZETFP 53 283.
BROSS 91 PRL 67 2942 A.D. Bross et al. (FNAL, ILL)
KIM 91C PRL 67 3465 J.E. Kim (SEOUL)
RAFFELT 91 PRPL 198 1 G.G. Raffelt (MPIM)
RAFFELT 91B PRL 67 2605 G. Raffelt, D. Seckel (MPIM, BART)
RESSELL 91 PR D44 3001 M.T. Ressell (CHIC, FNAL)
TRZASKA 91 PL B269 54 W.H. Trzaska et al. (TAMU)
TSERTOS 91 PL B266 259 H. Tsertos et al. (ILLG, GSI)
WALKER 91 APJ 376 51 T.P. Walker et al. (HSCA, OSU, CHIC+)
WIDMANN 91 ZPHY A340 209 E. Widmann et al. (STUT, GSI, STUTM)
WINELAND 91 PRL 67 1735 D.J. Wineland et al. (NBSB)
ALBRECHT 90E PL B246 278 H. Albrecht et al. (ARGUS Collab.)
ANTREASYAN 90C PL B251 204 D. Antreasyan et al. (Crystal Ball Collab.)
ASANUMA 90 PL B237 588 T. Asanuma et al. (TOKY)
ATIYA 90 PRL 64 21 M.S. Atiya et al. (BNL E787 Collab.)
ATIYA 90B PRL 65 1188 M.S. Atiya et al. (BNL E787 Collab.)
BAUER 90 NIM B50 300 W. Bauer et al. (STUT, VILL, GSI)
BURROWS 90 PR D42 3297 A. Burrows, M.T. Ressell, M.S. Turner (ARIZ+)
DEBOER 90 JP G16 L1 F.W.N. de Boer, J. Lehmann, J. Steyaert (LOUV)
ENGEL 90 PRL 65 960 J. Engel, D. Seckel, A.C. Hayes (BART, LANL)
GNINENKO 90 PL B237 287 S.N. Gninenko et al. (INRM)
GUO 90 PR D41 2924 R. Guo et al. (NIU, LANL, FNAL, CASE+)
HAGMANN 90 PR D42 1297 C. Hagmann et al. (FLOR)
JUDGE 90 PRL 65 972 S.M. Judge et al. (ILLG, GSI)
RAFFELT 90D PR D41 1324 G.G. Raffelt (MPIM)
RITTER 90 PR D42 977 R.C. Ritter et al. (UVA)
SEMERTZIDIS 90 PRL 64 2988 Y.K. Semertzidis et al. (ROCH, BNL, FNAL+)
TSUCHIAKI 90 PL B236 81 M. Tsuchiaki et al. (ICEPP)
TURNER 90 PRPL 197 67 M.S. Turner (FNAL)
BARABASH 89 PL B223 273 A.S. Barabash et al. (ITEP, INRM)
BINI 89 PL B221 99 M. Bini et al. (FIRZ, CERN, AARH)
BURROWS 89 PR D39 1020 A. Burrows, M.S. Turner, R.P. Brinkmann (ARIZ+)

Also PRL 60 1797 M.S. Turner (FNAL, EFI)
DEBOER 89B PRL 62 2639 F.W.N. de Boer, R. van Dantzig (ANIK)
ERICSON 89 PL B219 507 T.E.O. Ericson, J.F. Mathiot (CERN, IPN)
FAISSNER 89 ZPHY C44 557 H. Faissner et al. (AACH3, BERL, PSI)
FOX 89 PR C39 288 J.D. Fox et al. (FSU)
MAYLE 89 PL B219 515 R. Mayle et al. (LLL, CERN, MINN, FNAL+)

Also PL B203 188 R. Mayle et al. (LLL, CERN, MINN, FNAL+)
MINOWA 89 PRL 62 1091 H. Minowa et al. (ICEPP)
ORITO 89 PRL 63 597 S. Orito et al. (ICEPP)
PERKINS 89 PRL 62 2638 D.H. Perkins (OXF)
TSERTOS 89 PR D40 1397 H. Tsertos et al. (GSI, ILLG)
VANBIBBER 89 PR D39 2089 K. van Bibber et al. (LLL, TAMU, LBL)
WUENSCH 89 PR D40 3153 W.U. Wuensch et al. (ROCH, BNL, FNAL)

Also PRL 59 839 S. de Panfilis et al. (ROCH, BNL, FNAL)
AVIGNONE 88 PR D37 618 F.T. Avignone et al. (PRIN, SCUC, ORNL+)
BALKE 88 PR D37 587 B. Balke et al. (LBL, UCB, COLO, NWES+)
BJORKEN 88 PR D38 3375 J.D. Bjorken et al. (FNAL, SLAC, VPI)
BLINOV 88 SJNP 47 563 A.E. Blinov et al. (NOVO)

Translated from YAF 47 889.
BOLTON 88 PR D38 2077 R.D. Bolton et al. (LANL, STAN, CHIC+)

Also PRL 56 2461 R.D. Bolton et al. (LANL, STAN, CHIC+)
Also PRL 57 3241 D. Grosnick et al. (CHIC, LANL, STAN+)

CHANDA 88 PR D37 2714 R. Chanda, J.F. Nieves, P.B. Pal (UMD, UPR+)
CHOI 88 PR D37 3225 K. Choi et al. (JHU)
CONNELL 88 PRL 60 2242 S.H. Connell et al. (WITW)
DATAR 88 PR C37 250 V.M. Datar et al. (IPN)
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DEBOER 88 PRL 61 1274 F.W.N. de Boer, R. van Dantzig (ANIK)
Also PRL 62 2644 (erratum) F.W.N. de Boer, R. van Dantzig (ANIK)
Also PRL 62 2638 D.H. Perkins (OXF)
Also PRL 62 2639 F.W.N. de Boer, R. van Dantzig (ANIK)

DEBOER 88C JP G14 L131 F.W.N. de Boer et al. (LOUV)
DOEHNER 88 PR D38 2722 J. Dohner et al. (HEIDP, ANL, ILLG)
EL-NADI 88 PRL 61 1271 M. el Nadi, O.E. Badawy (CAIR)
ENGEL 88 PR C37 731 J. Engel, P. Vogel, M.R. Zirnbauer
FAISSNER 88 ZPHY C37 231 H. Faissner et al. (AACH3, BERL, SIN)
HATSUDA 88B PL B203 469 T. Hatsuda, M. Yoshimura (KEK)
LORENZ 88 PL B214 10 E. Lorenz et al. (MPIM, PSI)
MAYLE 88 PL B203 188 R. Mayle et al. (LLL, CERN, MINN, FNAL+)
PICCIOTTO 88 PR D37 1131 C.E. Picciotto et al. (TRIU, CNRC)
RAFFELT 88 PRL 60 1793 G. Raffelt, D. Seckel (UCB, LLL, UCSC)
RAFFELT 88B PR D37 549 G.G. Raffelt, D.S.P. Dearborn (UCB, LLL)
SAVAGE 88 PR D37 1134 M.J. Savage, B.W. Filippone, L.W. Mitchell (CIT)
TSERTOS 88 PL B207 273 A. Tsertos et al. (GSI, ILLG)
TSERTOS 88B ZPHY A331 103 A. Tsertos et al. (GSI, ILLG)
VANKLINKEN 88 PL B205 223 J. van Klinken et al. (GRON, GSI)
VANKLINKEN 88B PRL 60 2442 J. van Klinken (GRON)
VONWIMMER...88 PRL 60 2443 U. von Wimmersperg (BNL)
VOROBYOV 88 PL B208 146 P.V. Vorobiev, Y.I. Gitarts (NOVO)
DRUZHININ 87 ZPHY C37 1 V.P. Druzhinin et al. (NOVO)
FRIEMAN 87 PR D36 2201 J.A. Frieman, S. Dimopoulos, M.S. Turner (SLAC+)
GOLDMAN 87 PR D36 1543 T. Goldman et al. (LANL, CHIC, STAN+)
KORENCHE... 87 SJNP 46 192 S.M. Korenchenko et al. (JINR)

Translated from YAF 46 313.
MAIER 87 ZPHY A326 527 K. Maier et al. (STUT, GSI)
MILLS 87 PR D36 707 A.P. Mills, J. Levy (BELL)
RAFFELT 87 PR D36 2211 G.G. Raffelt, D.S.P. Dearborn (LLL, UCB)
RIORDAN 87 PRL 59 755 E.M. Riordan et al. (ROCH, CIT+)
TURNER 87 PRL 59 2489 M.S. Turner (FNAL, EFI)
VANBIBBER 87 PRL 59 759 K. van Bibber et al. (LLL, CIT, MIT+)
VONWIMMER...87 PRL 59 266 U. von Wimmersperg et al. (WITW)
BADIER 86 ZPHY C31 21 J. Badier et al. (NA3 Collab.)
BROWN 86 PRL 57 2101 C.N. Brown et al. (FNAL, WASH, KYOT+)
BRYMAN 86B PRL 57 2787 D.A. Bryman, E.T.H. Clifford (TRIU)
DAVIER 86 PL B180 295 M. Davier, J. Jeanjean, H. Nguyen Ngoc (LALO)
DEARBORN 86 PRL 56 26 D.S.P. Dearborn, D.N. Schramm, G. Steigman (LLL+)
EICHLER 86 PL B175 101 R.A. Eichler et al. (SINDRUM Collab.)
HALLIN 86 PRL 57 2105 A.L. Hallin et al. (PRIN)
JODIDIO 86 PR D34 1967 A. Jodidio et al. (LBL, NWES, TRIU)

Also PR D37 237 (erratum) A. Jodidio et al. (LBL, NWES, TRIU)
KETOV 86 JETPL 44 146 S.N. Ketov et al. (KIAE)

Translated from ZETFP 44 114.
KOCH 86 NC 96A 182 H.R. Koch, O.W.B. Schult (JULI)
KONAKA 86 PRL 57 659 A. Konaka et al. (KYOT, KEK)
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