$$\Delta(1700) \ 3/2^{-1}$$

 $I(J^P) = \frac{3}{2}(\frac{3}{2}^{-})$ Status: ****

Older and obsolete values are listed and referenced in the 2014 edition, Chinese Physics **C38** 070001 (2014).

Δ (1700) POLE POSITION

REAL PARI				
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1620 to 1680 (\approx 1650) OUR ESTI	MATE			
1685 ± 10	SOKHOYAN	15A	DPWA	Multichannel
$1643\pm 6\pm3$	¹ SVARC	14	L+P	$\pi N \rightarrow \pi N$
1632	ARNDT	06	DPWA	π N \rightarrow π N, η N
1651	HOEHLER	93	SPED	$\pi N \rightarrow \pi N$
1675 ± 25	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
$\bullet~\bullet~\bullet$ We do not use the following	data for averages	s, fits,	limits, e	tc. ● ● ●
1685 ± 10	GUTZ	14	DPWA	Multichannel
$1680\!\pm\!10$	ANISOVICH	12A	DPWA	Multichannel
1656	SHRESTHA	12A	DPWA	Multichannel
1726	VRANA	00	DPWA	Multichannel
-2×IMAGINARY PART				
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
160 to 300 (≈ 230) OUR ESTIMA	TE			
300 ± 15	SOKHOYAN	15A	DPWA	Multichannel
$217 \pm 10 \pm 8$	¹ SVARC	14	L+P	$\pi N \rightarrow \pi N$
253	ARNDT	06	DPWA	π N \rightarrow π N, η N
159	HOEHLER	93	SPED	$\pi N \rightarrow \pi N$
220±40	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
$\bullet~\bullet~\bullet$ We do not use the following	data for averages	s, fits,	limits, e	tc. • • •
300 ± 15	GUTZ	14	DPWA	Multichannel
305 ± 15	ANISOVICH	12A	DPWA	Multichannel
226	SHRESTHA	12A	DPWA	Multichannel
118	VRANA	00	DPWA	Multichannel

△(1700) ELASTIC POLE RESIDUE

MODULUS |r|

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
10 to 40 (\approx 25) OUR ESTIMATE				
40±6	SOKHOYAN	15A	DPWA	Multichannel
$13\pm1\pm1$	¹ SVARC	14	L+P	$\pi N \rightarrow \pi N$
18	ARNDT	06	DPWA	π N \rightarrow π N, η N
10	HOEHLER	93	SPED	$\pi N \rightarrow \pi N$
13±3	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
$\bullet~\bullet~\bullet$ We do not use the following	data for average	s, fits,	limits, e	etc. ● ● ●
40±6	GUTZ	14	DPWA	Multichannel
42±7	ANISOVICH	12A	DPWA	Multichannel
HTTP://PDG.LBL.GOV	Page 1		Creat	ed: 5/30/2017 17:19

Citation: C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016) and 2017 update

PHASE θ				
VALUE (°)	DOCUMENT ID		TECN	COMMENT
-40 to 0 (\approx - 20) OUR ESTIMA	TE			
$- 1 \pm 10$	SOKHOYAN	15A	DPWA	Multichannel
$-30\pm$ 4 ±3	¹ SVARC	14	L+P	$\pi N \rightarrow \pi N$
-40	ARNDT	06	DPWA	π N $ ightarrow$ π N, η N
-20 ± 25	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
$\bullet~\bullet~\bullet$ We do not use the following	data for averages	, fits,	limits, e	tc. ● ● ●
$- 1 \pm 10$	GUTZ	14	DPWA	Multichannel
$- 3 \pm 15$	ANISOVICH	12A	DPWA	Multichannel

△(1700) INELASTIC POLE RESIDUE

The "normalized residue" is the residue divided by $\Gamma_{pole}/2.$

Normalized re	sidue in $N\pi ightarrow \Delta($	1700) $\rightarrow \Delta \eta$			
MODULUS	PHASE (°)	DOCUMENT ID		TECN	COMMENT
0.12 ± 0.02	-60 ± 12	GUTZ	14	DPWA	Multichannel
• • • We do no	t use the following data	a for averages, fi	ts, lim	its, etc.	• • •
$0.12 {\pm} 0.03$	-60 ± 15	ANISOVICH	12A	DPWA	Multichannel
Normalized re	sidue in $N\pi \rightarrow \Delta($	1700) → N(:	1535)	π	
MODULUS	PHASE (°)	DOCUMENT ID		TECN	COMMENT
0.035 ± 0.015	-75 ± 30	GUTZ	14	DPWA	Multichannel
Normalized re	sidue in $N\pi \rightarrow \Delta($	1700) → Δ(2	1232))π, S-w	ave
MODULUS	PHASE (°)	DOCUMENT ID		TECN	COMMENT
0.25 ± 0.12	135 ± 45	SOKHOYAN	15A	DPWA	Multichannel
Normalized re	sidue in $N\pi \rightarrow \Delta($	1700) → Δ(1232))π, <i>D</i> -v	vave
MODULUS	PHASE (°)	DOCUMENT ID		TECN	COMMENT
0.12 ± 0.06	-160 ± 30	SOKHOYAN	15A	DPWA	Multichannel
Normalized re	sidue in $N\pi \rightarrow \Delta($	1700) → N(1520))π, <i>P</i> -w	ave
MODULUS	PHASE (°)	DOCUMENT ID		TECN	COMMENT
0.10 ± 0.03	-10 ± 20	SOKHOYAN	15A	DPWA	Multichannel

△(1700) BREIT-WIGNER MASS

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1670 to 1750 (\approx 1700) OUR EST	IMATE			
1715 ±20	SOKHOYAN	15A	DPWA	Multichannel
$1695.0 \pm \ 1.3$	ARNDT	06	DPWA	π N $ ightarrow$ π N, η N
1710 ± 30	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
1680 ±70	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$

HTTP://PDG.LBL.GOV

 \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet

1715	± 20	GUTZ	14	DPWA	Multichannel
1715	+30 -15	ANISOVICH	12A	DPWA	Multichannel
1691	± 4	SHRESTHA	12A	DPWA	Multichannel
1678	\pm 1	PENNER	02C	DPWA	Multichannel
1732	± 23	VRANA	00	DPWA	Multichannel

△(1700) BREIT-WIGNER WIDTH

VALU	E (MeV)	DOCUMENT ID		TECN	COMMENT
200	to 400 (\approx 300) OUR ESTIMA	TE			
300	±25	SOKHOYAN	15A	DPWA	Multichannel
375.5	5± 7.0	ARNDT	06	DPWA	π N $ ightarrow$ π N, η N
280	± 80	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
230	± 80	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
• • •	• We do not use the following d	ata for averages	, fits,	limits, e	tc. • • •
300	±25	GUTZ	14	DPWA	Multichannel
310	+40 -15	ANISOVICH	12A	DPWA	Multichannel
248	± 9	SHRESTHA	12A	DPWA	Multichannel
606	± 15	PENNER	0 2C	DPWA	Multichannel
119	±70	VRANA	00	DPWA	Multichannel

Δ (1700) DECAY MODES

The following branching fractions are our estimates, not fits or averages.

	Mode	Fraction (Γ_i/Γ)
Г1	Νπ	10–20 %
Г2	$N\pi\pi$	10–55 %
Г ₃	$\Delta(1232)\pi$	10–50 %
Γ ₄	$arDelta(1232)\pi$, S -wave	5–35 %
Γ ₅	$arDelta(1232)\pi$, D -wave	4–16 %
Г ₆	$N \rho$	
Γ ₇	N $ ho$, S=3/2, S-wave	seen
Г ₈	$N(1520)\pi$, P -wave	1–5 %
Гg	$N(1535)\pi$	0.5–1.5 %
Γ ₁₀	$\Delta(1232)\eta$	3–7 %
Γ_{11}	$N\gamma$	0.22–0.60 %
Γ ₁₂	$N\gamma$, helicity ${=}1/2$	0.12-0.30 %
Г ₁₃	N γ , helicity=3/2	0.10-0.30 %

HTTP://PDG.LBL.GOV

△(1700) BRANCHING RATIOS

Г(/	$N\pi)/\Gamma_{total}$				$\Gamma_1/$	Г
VAL	UE (%)	DOCUMENT ID		TECN	COMMENT	
10	to 20 OUR ESTIMATE					
22	± 4	SOKHOYAN	15A	DPWA	Multichannel	
15.6	5 ± 0.1	ARNDT	06	DPWA	$\pi N \rightarrow \pi N, \eta N$	
12	± 3	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$	
20	± 3	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$	
• •	• We do not use the following d	ata for averages	, fits,	limits, e	tc. ● ● ●	
22	± 4	GUTZ	14	DPWA	Multichannel	
22	± 4	ANISOVICH	12A	DPWA	Multichannel	
14	± 1	SHRESTHA	12A	DPWA	Multichannel	
14	± 1	PENNER	0 2C	DPWA	Multichannel	
5	± 1	VRANA	00	DPWA	Multichannel	

$\Gamma(\Delta(1232)\pi$, S-wave $)/\Gamma_{ ext{total}}$					Г₄/Г
VALUE (%)	DOCUMENT ID		TECN	COMMENT	
20 ± 15	SOKHOYAN	15A	DPWA	Multichannel	
\bullet \bullet We do not use the following of	data for averages	s, fits,	limits, e	etc. • • •	
20^{+25}_{-13}	ANISOVICH	12A	DPWA	Multichannel	
54± 3	SHRESTHA	12A	DPWA	Multichannel	
90± 2	VRANA	00	DPWA	Multichannel	
$\Gamma(\Delta(1232)\pi, D ext{-wave})/\Gamma_{ ext{total}}$					Г ₅ /Г
VALUE (%)	DOCUMENT ID		TECN	COMMENT	
$10\pm~6$	SOKHOYAN	15A	DPWA	Multichannel	
• • • We do not use the following of	data for averages	s, fits,	limits, e	etc. • • •	
$12 \frac{+14}{-7}$	ANISOVICH	12A	DPWA	Multichannel	
$1\pm~1$	SHRESTHA	12A	DPWA	Multichannel	
$4\pm$ 1	VRANA	00	DPWA	Multichannel	
$\Gamma(N ho, S=3/2, S-wave)/\Gamma_{total}$					Г ₇ /Г
VALUE (%)	DOCUMENT ID		TECN	COMMENT	
• • • We do not use the following of	data for averages	s, fits,	limits, e	etc. • • •	
30±3	SHRESTHA	12A	DPWA	Multichannel	
$1{\pm}1$	VRANA	00	DPWA	Multichannel	
$\Gamma(N(1520)\pi$, <i>P</i> -wave $)/\Gamma_{total}$					Г ₈ /Г
VALUE (%)	DOCUMENT ID		TECN	COMMENT	
3±2	SOKHOYAN	15A	DPWA	Multichannel	

$\Gamma(N(1535)\pi)/\Gamma_{total}$					٦/٩
VALUE (%)	DOCUMENT ID		TECN	COMMENT	
1.0 ± 0.5	GUTZ	14	DPWA	Multichannel	
$\bullet \bullet \bullet$ We do not use the following	g data for average	s, fits,	limits, e	etc. • • •	
4 ±2	HORN	08A	DPWA	Multichannel	
HTTP://PDG.LBL.GOV	Page 4		Creat	ed: 5/30/2017	17:19

Citation: C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016) and 2017 update

$\Gamma(\Delta(1232)\eta)/\Gamma_{total}$					Г ₁₀ /Г
VALUE (%)	DOCUMENT ID		TECN	COMMENT	
5 ± 2	GUTZ	14	DPWA	Multichannel	
\bullet \bullet We do not use the following d	lata for averages	, fits,	limits, e	tc. • • •	
5 ± 2	ANISOVICH	12A	DPWA	Multichannel	
$\Gamma(N(1535)\pi)/\Gamma(\Delta(1232)\eta)$					Γ ₉ /Γ ₁₀
VALUE	DOCUMENT ID		TECN	COMMENT	
• • • We do not use the following d	lata for averages	, fits,	limits, e	tc. ● ● ●	
0.67	KASHEVAROV	′ 09	CBAL	$\gamma p \rightarrow p \pi^0 \eta$	

Δ (1700) PHOTON DECAY AMPLITUDES AT THE POLE

Δ (1700) $\rightarrow N\gamma$, helicity-1/2 amplitude A_{1/2}

MODULUS (GeV $^{-1/2}$)	PHASE (°)	DOCUMENT ID		TECN	COMMENT
$0.175 \!\pm\! 0.020$	50 ± 10	SOKHOYAN	15A	DPWA	Multichannel
$0.109 \!\pm\! 0.010$	-21^{+12}_{-6}	ROENCHEN	14	DPWA	

Δ (1700) $\rightarrow N\gamma$, helicity-3/2 amplitude A_{3/2}

MODULUS (GeV $^{-1/2}$)	PHASE (°)	DOCUMENT ID		TECN	COMMENT
0.180 ± 0.020	45 ± 10	SOKHOYAN	15A	DPWA	Multichannel
$0.111\substack{+0.027\\-0.006}$	$12^{+}_{-11}^{9}$	ROENCHEN	14	DPWA	

△(1700) BREIT-WIGNER PHOTON DECAY AMPLITUDES

Δ (1700) $\rightarrow N\gamma$, helicity-1/2 amplitude A_{1/2}

VALUE (GeV $^{-1/2}$)	DOCUMENT ID		TECN	COMMENT
0.140 ± 0.030 OUR ESTIMATE				
0.165 ± 0.020	SOKHOYAN	15A	DPWA	Multichannel
0.132 ± 0.005	DUGGER	13	DPWA	$\gamma N \rightarrow \pi N$
0.105 ± 0.005	WORKMAN	12A	DPWA	$\gamma N \rightarrow \pi N$
\bullet \bullet We do not use the following of	lata for averages	s, fits,	limits, e	etc. • • •
0.165 ± 0.020	GUTZ	14	DPWA	Multichannel
0.160 ± 0.020	ANISOVICH	12A	DPWA	Multichannel
0.058 ± 0.010	SHRESTHA	12A	DPWA	Multichannel
0.226	DRECHSEL	07	DPWA	$\gamma N \rightarrow \pi N$
0.125 ± 0.003	DUGGER	07	DPWA	$\gamma N \rightarrow \pi N$
0.096	PENNER	0 2D	DPWA	Multichannel

Δ (1700) $\rightarrow N\gamma$, helicity-3/2 amplitude A_{3/2}

VALUE (GeV $^{-1/2}$)	DOCUMENT ID		TECN	COMMENT
0.140 ± 0.030 OUR ESTIMATE				
0.170 ± 0.025	SOKHOYAN	15A	DPWA	Multichannel
0.108 ± 0.005	DUGGER	13	DPWA	$\gamma N \rightarrow \pi N$
0.092 ± 0.004	WORKMAN	12A	DPWA	$\gamma N \rightarrow \pi N$

HTTP://PDG.LBL.GOV Page 5

 \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet

0.170 ± 0.025	GUTZ	14	DPWA Multichannel
0.165 ± 0.025	ANISOVICH	12A	DPWA Multichannel
0.097 ± 0.008	SHRESTHA	12A	DPWA Multichannel
0.210	DRECHSEL	07	DPWA $\gamma N \rightarrow \pi N$
0.105 ± 0.003	DUGGER	07	DPWA $\gamma N \rightarrow \pi N$
0.154	PENNER	0 2D	DPWA Multichannel

Δ (1700) FOOTNOTES

 $^1\,{\rm Fit}$ to the amplitudes of HOEHLER 79.

△(1700) REFERENCES

For early references, see Physics Letters 111B 1 (1982).

SOKHOYAN	15A	EPJ A51 95	V. Sokhoyan <i>et al.</i>	(CBELSA/TAPS Collab.)
GUTZ	14	EPJ A50 74	E. Gutz <i>et al.</i>	(CBELSA/TAPS Collab.)
PDG	14	CP C38 070001	K. Olive <i>et al.</i>	(PDG Collab.)
ROENCHEN	14	EPJ A50 101	D. Roenchen <i>et al.</i>	
Also		EPJ A51 63 (errat.)	D. Roenchen <i>et al.</i>	
SVARC	14	PR C89 045205	A. Svarc <i>et al.</i>	
DUGGER	13	PR C88 065203	M. Dugger <i>et al.</i>	(JLab CLAS Collab.)
ANISOVICH	12A	EPJ A48 15	A.V. Anisovich et al.	(BONN, PNPI)
SHRESTHA	12A	PR C86 055203	M. Shrestha, D.M. Manley	(KSU)
WORKMAN	12A	PR C86 015202	R. Workman <i>et al.</i>	(ĠWU)
KASHEVAROV	09	EPJ A42 141	V.L. Kashevarov <i>et al.</i>	(MAMI Crystal Ball/TAPS)
HORN	08A	EPJ A38 173	I. Horn <i>et al.</i>	(CB-ELSA Collab.)
Also		PRL 101 202002	I. Horn <i>et al.</i>	(CB-ELSA Collab.)
DRECHSEL	07	EPJ A34 69	D. Drechsel, S.S. Kamalov, L.	Tiator (MAINZ, JINR)
DUGGER	07	PR C76 025211	M. Dugger <i>et al.</i>	(JLab CLAS Collab.)
ARNDT	06	PR C74 045205	R.A. Arndt <i>et al.</i>	(GWU)
PENNER	02C	PR C66 055211	G. Penner, U. Mosel	(GIES)
PENNER	02D	PR C66 055212	G. Penner, U. Mosel	(GIES)
VRANA	00	PRPL 328 181	T.P. Vrana, S.A. Dytman, TS	S.H. Lee (PITT, ANL)
HOEHLER	93	π N Newsletter 9 1	G. Hohler	(KARL)
CUTKOSKY	80	Toronto Conf. 19	R.E. Cutkosky et al.	(CMU, LBL) IJP
Also		PR D20 2839	R.E. Cutkosky <i>et al.</i>	(CMU, LBL) IJP
HOEHLER	79	PDAT 12-1	G. Hohler et al.	(KARLT) IJP
Also		Toronto Conf. 3	R. Koch	(KARLT) IJP

HTTP://PDG.LBL.GOV