39. CROSS-SECTION FORMULAE FOR SPECIFIC PROCESSES

Revised October 2001 by R.N. Cahn (LBNL).

39.1. Leptoproduction

See section on Structure Functions (Sec. 16 of this *Review*).

39.2. e^+e^- annihilation

For pointlike, spin-1/2 fermions, the differential cross section in the c.m. for $e^+e^- \rightarrow f\overline{f}$ via single photon annihilation is (θ is the angle between the incident electron and the produced fermion; $N_c = 1$ if f is a lepton and $N_c = 3$ if f is a quark).

$$\frac{d\sigma}{d\Omega} = N_c \frac{\alpha^2}{4s} \beta \left[1 + \cos^2 \theta + (1 - \beta^2) \sin^2 \theta \right] Q_f^2 , \qquad (39.1)$$

where β is the velocity of the final state fermion in the c.m. and Q_f is the charge of the fermion in units of the proton charge. For $\beta \to 1$,

$$\sigma = N_c \frac{4\pi\alpha^2}{3s} Q_f^2 = N_c \frac{86.8Q_f^2 \ nb}{s} \ . \tag{39.2}$$

where s is in GeV² units.

At higher energies, the Z^0 (mass M_Z and width Γ_Z) must be included. If the mass of a fermion \underline{f} is much less than the mass of the Z^0 , then the differential cross section for $e^+e^- \to f\overline{f}$ is

$$\frac{d\sigma}{d\Omega} = N_c \frac{\alpha^2}{4s} \left\{ (1 + \cos^2 \theta) \left[Q_f^2 - 2\chi_1 v_e v_f Q_f + \chi_2 (a_e^2 + v_e^2) (a_f^2 + v_f^2) \right] + 2\cos \theta \left[-2\chi_1 a_e a_f Q_f + 4\chi_2 a_e a_f v_e v_f \right] \right\}$$
(39.3)

where

$$\chi_{1} = \frac{1}{16 \sin^{2} \theta_{W} \cos^{2} \theta_{W}} \frac{s(s - M_{Z}^{2})}{(s - M_{Z}^{2})^{2} + M_{Z}^{2} \Gamma_{Z}^{2}},$$

$$\chi_{2} = \frac{1}{256 \sin^{4} \theta_{W} \cos^{4} \theta_{W}} \frac{s^{2}}{(s - M_{Z}^{2})^{2} + M_{Z}^{2} \Gamma_{Z}^{2}},$$

$$a_{e} = -1,$$

$$v_{e} = -1 + 4 \sin^{2} \theta_{W},$$

$$a_{f} = 2T_{3f},$$

$$v_{f} = 2T_{3f} - 4Q_{f} \sin^{2} \theta_{W},$$
(39.4)

where $T_{3f} = 1/2$ for u, c and neutrinos, while $T_{3f} = -1/2$ for d, s, b, and negatively charged leptons.

2 39. Cross-section formulae for specific processes

At LEP II it may be possible to produce the orthodox Higgs boson, H, (see the mini-review on Higgs bosons) in the reaction $e^+e^- \to HZ^0$, which proceeds dominantly through a virtual Z^0 . The Standard Model prediction for the cross section [3] is

$$\sigma(e^+e^- \to HZ^0) = \frac{\pi\alpha^2}{24} \cdot \frac{2K}{\sqrt{s}} \cdot \frac{K^2 + 3M_Z^2}{(s - M_Z^2)^2} \cdot \frac{1 - 4\sin^2\theta_W + 8\sin^4\theta_W}{\sin^4\theta_W \cos^4\theta_W} .$$
(39.5)

where K is the c.m. momentum of the produced H or Z^0 . Near the production threshold, this formula needs to be corrected for the finite width of the Z^0 .

39.3. Two-photon process at e^+e^- colliders

When an e^+ and an e^- collide with energies E_1 and E_2 , they emit dn_1 and dn_2 virtual photons with energies ω_1 and ω_2 and 4-momenta q_1 and q_2 . In the equivalent photon approximation, the cross section for $e^+e^- \to e^+e^-X$ is related to the cross section for $\gamma\gamma \to X$ by (Ref. 1)

$$d\sigma_{e^+e^- \to e^+e^- X}(s) = dn_1 \, dn_2 \, d\sigma_{\gamma\gamma \to X}(W^2) \tag{39.6}$$

where $s = 4E_1E_2$, $W^2 = 4\omega_1\omega_2$ and

$$dn_{i} = \frac{\alpha}{\pi} \left[1 - \frac{\omega_{i}}{E_{i}} + \frac{\omega_{i}^{2}}{2E_{i}^{2}} - \frac{m_{e}^{2}\omega_{i}^{2}}{(-q_{i}^{2})E_{i}^{2}} \right] \frac{d\omega_{i}}{\omega_{i}} \frac{d(-q_{i}^{2})}{(-q_{i}^{2})} .$$
(39.7)

After integration (including that over q_i^2 in the region $m_e^2 \omega_i^2 / E_i(E_i - \omega_i) \leq -q_i^2 \leq (-q^2)_{\text{max}}$), the cross section is

$$\sigma_{e^+e^- \to e^+e^- X}(s) = \frac{\alpha^2}{\pi^2} \int_{z_{th}}^1 \frac{dz}{z} \left[f(z) \left(\ln \frac{(-q^2)_{\max}}{m_e^2 z} - 1 \right)^2 -\frac{1}{3} \left(\ln \frac{1}{z} \right)^3 \right] \sigma_{\gamma\gamma \to X}(zs) ;$$

$$f(z) = \left(1 + \frac{1}{2} z \right)^2 \ln \frac{1}{z} - \frac{1}{2} (1 - z) (3 + z) ;$$

$$z = \frac{W^2}{s} .$$
(39.8)

The quantity $(-q^2)_{\text{max}}$ depends on properties of the produced system X, in particular, $(-q^2)_{\text{max}} \sim m_{\rho}^2$ for hadron production (X = h) and $(-q^2)_{\text{max}} \sim W^2$ for lepton pair production $(X = \ell^+ \ell^-, \ell = e, \mu, \tau)$.

For production of a resonance of mass m_R and spin $J \neq 1$

$$\sigma_{e^+e^- \to e^+e^-R}(s) = (2J+1) \frac{8\alpha^2 \Gamma_{R \to \gamma\gamma}}{m_R^3} \times \left[f(m_R^2/s) \left(\ln \frac{sm_V^2}{m_e^2 m_R^2} - 1 \right)^2 - \frac{1}{3} \left(\ln \frac{s}{m_R^2} \right)^3 \right]$$
(39.9)

where m_V is the mass that enters into the form factor of the $\gamma\gamma \to R$ transition: $m_V \sim m_\rho$ for $R = \pi^0$, η , $f_2(1270), \ldots, m_V \sim m_R$ for $R = c\overline{c}$ or $b\overline{b}$ resonances.

June 17, 2004 11:07

39.4. Inclusive hadronic reactions

One-particle inclusive cross sections $Ed^3\sigma/d^3p$ for the production of a particle of momentum p are conveniently expressed in terms of rapidity (see above) and the momentum p_T transverse to the beam direction (defined in the center-of-mass frame)

$$E\frac{d^3\sigma}{d^3p} = \frac{d^3\sigma}{d\phi\,dy\,p_T\,dp_T} \ . \tag{39.10}$$

In the case of processes where p_T is large or the mass of the produced particle is large (here large means greater than 10 GeV), the parton model can be used to calculate the rate. Symbolically

$$\sigma_{\text{hadronic}} = \sum_{ij} \int f_i(x_1, Q^2) f_j(x_2, Q^2) dx_1 dx_2 \,\widehat{\sigma}_{\text{partonic}} , \qquad (39.11)$$

where $f_i(x, Q^2)$ is the parton distribution introduced above and Q is a typical momentum transfer in the partonic process and $\hat{\sigma}$ is the partonic cross section. Some examples will help to clarify. The production of a W^+ in pp reactions at rapidity y in the center-of-mass frame is given by

$$\frac{d\sigma}{dy} = \frac{G_F \pi \sqrt{2}}{3} \times \tau \left[\cos^2 \theta_c \left(u(x_1 \ , \ M_W^2) \ \overline{d} \ (x_2, M_W^2) + u(x_2 \ , \ M_W^2) \ \overline{d} \ (x_1, M_W^2) \right) + \sin^2 \theta_c \left(u(x_1 \ , \ M_W^2) \ \overline{s} \ (x_2 \ , \ M_W^2) + s(x_2, M_W^2) \ \overline{u} \ (x_1, M_W^2) \right) \right],$$
(39.12)

where $x_1 = \sqrt{\tau} e^y$, $x_2 = \sqrt{\tau} e^{-y}$, and $\tau = M_W^2/s$. Similarly the production of a jet in pp (or $p\overline{p}$) collisions is given by

$$\frac{d^3\sigma}{d^2p_T dy} = \sum_{ij} \int f_i(x_1 \ , \ p_T^2) \ f_j(x_2, p_T^2) \times \left[\hat{s} \ \frac{d\hat{\sigma}}{d\hat{t}} \right]_{ij} dx_1 \ dx_2 \ \delta(\hat{s} + \hat{t} + \hat{u}) \ , \tag{39.13}$$

where the summation is over quarks, gluons, and antiquarks. Here

$$s = (p_1 + p_2)^2$$
, (39.14)

$$t = (p_1 - p_{jet})^2$$
, (39.15)

$$u = (p_2 - p_{jet})^2$$
, (39.16)

 p_1 and p_2 are the momenta of the incoming p and p (or \overline{p}) and \hat{s} , \hat{t} , and \hat{u} are s, t, and u with $p_1 \to x_1 p_1$ and $p_2 \to x_2 p_2$. The partonic cross section $\hat{s}[(d\hat{\sigma})/(d\hat{t})]$ can be found in Ref. 2. Example: for the process $gg \to q\overline{q}$,

$$\widehat{s} \, \frac{d\sigma}{dt} = 3\alpha_s^2 \, \frac{(\widehat{t}^2 + \widehat{u}^2)}{8\widehat{s}} \, \left[\frac{4}{9\,\widehat{t}\,\widehat{u}} - \frac{1}{\widehat{s}^2} \right] \,. \tag{39.17}$$

June 17, 2004 11:07

4 39. Cross-section formulae for specific processes

The prediction of Eq. (39.13) is compared to data from the UA1 and UA2 collaborations in Fig. 40.1 in the Plots of Cross Sections and Related Quantities section of this *Review*.

The associated production of a Higgs boson and a gauge boson is analogous to the process $e^+e^- \rightarrow HZ^0$ in Sec. 39.2. The required parton-level cross sections [4], averaged over initial quark colors, are

$$\sigma(q_i \overline{q}_j \to W^{\pm} H) = \frac{\pi \alpha^2 |V_{ij}|^2}{36 \sin^4 \theta_W} \cdot \frac{2K}{\sqrt{s}} \cdot \frac{K^2 + 3M_W^2}{(s - M_W^2)^2}$$
$$\sigma(q\overline{q} \to Z^0 H) = \frac{\pi \alpha^2 (a_q^2 + v_q^2)}{144 \sin^4 \theta_W \cos^4 \theta_W} \cdot \frac{2K}{\sqrt{s}} \cdot \frac{K^2 + 3M_Z^2}{(s - M_Z^2)^2}$$

Here V_{ij} is the appropriate element of the Kobayashi-Maskawa matrix and K is the c.m. momentum of the produced H. The axial and vector couplings are defined as in Sec. 39.2.

39.5. One-particle inclusive distributions

In order to describe one-particle inclusive production in e^+e^- annihilation or deep inelastic scattering, it is convenient to introduce a fragmentation function $D_i^h(z, Q^2)$ where $D_i^h(z, Q^2)$ is the number of hadrons of type h and momentum between zp and (z + dz)p produced in the fragmentation of a parton of type i. The Q^2 evolution is predicted by QCD and is similar to that of the parton distribution functions [see section on Quantum Chromodynamics (Sec. 9 of this *Review*)]. The $D_i^h(z, Q^2)$ are normalized so that

$$\sum_{h} \int z D_i^h (z, Q^2) dz = 1 .$$
 (39.18)

If the contributions of the Z boson and three-jet events are neglected, the cross section for producing a hadron h in e^+e^- annihilation is given by

$$\frac{1}{\sigma_{\text{had}}} \frac{d\sigma}{dz} = \frac{\sum_{i} e_{i}^{2} D_{i}^{h} (z, Q^{2})}{\sum_{i} e_{i}^{2}} , \qquad (39.19)$$

where e_i is the charge of quark-type *i*, σ_{had} is the total hadronic cross section, and the momentum of the hadron is $zE_{cm}/2$.

In the case of deep inelastic muon scattering, the cross section for producing a hadron of energy E_h is given by

$$\frac{1}{\sigma_{\text{tot}}} \frac{d\sigma}{dz} = \frac{\sum_{i} e_i^2 q_i(x, Q^2) D_i^h(z, Q^2)}{\sum_{i} e_i^2 q_i(x, Q^2)} , \qquad (39.20)$$

where $E_h = \nu z$. (For the kinematics of deep inelastic scattering, see Sec. 38.4.2 of the Kinematics section of this *Review*.) The fragmentation functions for light and heavy

June 17, 2004 11:07

39. Cross-section formulae for specific processes 5

quarks have a different z dependence; the former peak near z = 0. They are illustrated in Figs. 17.5a and 17.5b in the section on "Fragmentation Functions in e^+e^- Annihilation" (Sec. 17 of this *Review*).

References:

 V.M. Budnev, I.F. Ginzburg, G.V. Meledin, and V.G. Serbo, Phys. Reports 15C, 181 (1975);

See also S. Brodsky, T. Kinoshita, and H. Terazawa, Phys. Rev. D4, 1532 (1971).

- 2. G.F. Owens, F. Reya, and M. Glück, Phys. Rev. **D18**, 1501 (1978).
- 3. B.W. Lee, C. Quigg, and B. Thacker, Phys. Rev. **D16**, 1519 (1977).
- 4. E. Eichten, I. Hinchliffe, K. Lane, and C. Quigg, Rev. Mod. Phys. 56, 579 (1984).