

$$I^{G}(J^{P}) = 1^{-}(0^{-})$$

We have omitted some results that have been superseded by later experiments. The omitted results may be found in our 1988 edition Physics Letters **B204** (1988).

π^{\pm} MASS

The most accurate charged pion mass measurements are based upon xray wavelength measurements for transitions in π^- -mesonic atoms. The observed line is the blend of three components, corresponding to different K-shell occupancies. JECKELMANN 94 revisits the occupancy question, with the conclusion that two sets of occupancy ratios, resulting in two different pion masses (Solutions A and B), are equally probable. We choose the higher Solution B since only this solution is consistent with a positive mass-squared for the muon neutrino, given the precise muon momentum measurements now available (DAUM 91, ASSAMAGAN 94, and ASSAM-AGAN 96) for the decay of pions at rest. Earlier mass determinations with pi-mesonic atoms may have used incorrect K-shell screening corrections.

Measurements with an error of $> 0.005 \mbox{ MeV}$ have been omitted from this Listing.

VALUE (MeV)	DOCUMENT ID		TECN	CHG	COMMENT			
139.57018±0.00035 OUR FIT	Error includes scale	facto	r of 1.2					
139.57018±0.00035 OUR AVERAGE Error includes scale factor of 1.2.								
$139.57071 \!\pm\! 0.00053$	¹ LENZ	98	CNTR	—	pionic N2-atoms gas target			
$139.56995 \!\pm\! 0.00035$	² JECKELMANN	94	CNTR	_	π^- atom, Soln. B			
$\bullet~\bullet~\bullet$ We do not use the followi	ng data for averages,	fits,	limits,	etc. •	• •			
$139.57022 \!\pm\! 0.00014$	³ ASSAMAGAN	96	SPEC	+	$\pi^+ \rightarrow \mu^+ \nu_\mu$			
$139.56782 \!\pm\! 0.00037$	⁴ JECKELMANN	94	CNTR	_	π^- atom, Soln. A			
$139.56996 \!\pm\! 0.00067$	⁵ DAUM	91	SPEC	+	$\pi^+ \rightarrow \mu^+ \nu$			
$139.56752 \!\pm\! 0.00037$	⁶ JECKELMANN	86 B	CNTR	_	Mesonic atoms			
139.5704 ± 0.0011	⁵ ABELA	84	SPEC	+	See DAUM 91			
139.5664 ± 0.0009	⁷ LU	80	CNTR	_	Mesonic atoms			
139.5686 ± 0.0020	CARTER	76	CNTR	_	Mesonic atoms			
139.5660 ± 0.0024	^{7,8} MARUSHEN	76	CNTR	_	Mesonic atoms			

 ¹LENZ 98 result does not suffer K-electron configuration uncertainties as does JECKEL-MANN 94.
 ²JECKELMANN 94 Solution B (dominant 2-electron K-shell occupancy), chosen for con-

² JECKELMANN 94 Solution B (dominant 2-electron K-shell occupancy), chosen for consistency with positive $m_{\nu_{..}}^2$.

³ASSAMAGAN 96 measures the μ^+ momentum p_{μ} in $\pi^+ \rightarrow \mu^+ \nu_{\mu}$ decay at rest to be 29.79200 \pm 0.00011 MeV/c. Combined with the μ^+ mass and the assumption $m_{\nu_{\mu}}$ = 0, this gives the π^+ mass above; if $m_{\nu_{\mu}} > 0$, m_{π^+} given above is a lower limit. Combined instead with m_{μ} and (assuming CPT) the π^- mass of JECKELMANN 94, p_{μ} gives an upper limit on $m_{\nu_{\mu}}$ (see the ν_{μ}).

- ⁴ JECKELMANN 94 Solution A (small 2-electron K-shell occupancy) in combination with either the DAUM 91 or ASSAMAGAN 94 pion decay muon momentum measurement yields a significantly negative $m_{\nu_{\mu}}^2$. It is accordingly not used in our fits.
- ⁵ The DAUM 91 value includes the ABELA 84 result. The value is based on a measurement of the μ^+ momentum for π^+ decay at rest, $p_{\mu} = 29.79179 \pm 0.00053$ MeV, uses $m_{\mu} = 105.658389 \pm 0.000034$ MeV, and assumes that $m_{\nu_{\mu}} = 0$. The last assumption means
- that in fact the value is a lower limit.
- ⁶ JECKELMANN 86B gives $m_{\pi}/m_e = 273.12677(71)$. We use $m_e = 0.51099906(15)$ MeV from COHEN 87. The authors note that two solutions for the probability distribution of K-shell occupancy fit equally well, and use other data to choose the lower of the two possible π^{\pm} masses.
- ⁷ These values are scaled with a new wavelength-energy conversion factor $V\lambda = 1.23984244(37) \times 10^{-6}$ eV m from COHEN 87. The LU 80 screening correction relies upon a theoretical calculation of inner-shell refilling rates.
- ⁸ This MARUSHENKO 76 value used at the authors' request to use the accepted set of calibration γ energies. Error increased from 0.0017 MeV to include QED calculation error of 0.0017 MeV (12 ppm).

$$m_{\pi^+} - m_{\mu^+}$$

Measurements with an error >~0.05~MeV have been omitted from this Listing.

VALUE (N	leV)	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
• • • W	/e do not use th	e following	data for average	s, fits	, limits,	etc. •	• •
33.91157	7 ± 0.00067		⁹ DAUM	91	SPEC	+	$\pi^+ \rightarrow \mu^+ \nu$
33.9111	± 0.0011		ABELA	84	SPEC		See DAUM 91
33.925	± 0.025		BOOTH	70	CNTR	+	Magnetic spect.
33.881	± 0.035	145	HYMAN	67	HEBC	+	K^- He
9 Th a			hat was a const			105	650200 1 0 0000

" The DAUM 91 value assumes that $m_{
u_{\mu}}=$ 0 and uses our $m_{\mu}=$ 105.658389 \pm 0.000034 MeV.

$$(m^{}_{\pi^+} - m^{}_{\pi^-}) \ / \ m^{}_{
m average}$$

A test of CPT invariance.

VALUE (units 10 ⁻⁴)	DOCUMENT ID	TECN		
2±5	AYRES	71	CNTR	

π^{\pm} MEAN LIFE

Measurements with an error $> 0.02 \times 10^{-8}$ s have been omitted.

<u>VALUE (10⁻⁸ s)</u>	DOCUMENT ID		TECN	CHG	COMMENT
2.6033 ±0.0005 OUR AVERAGE	Error includes sc	ale f	actor of	1.2.	
2.60361±0.00052 10	KOPTEV 9	95 9	SPEC	+	Surface μ^+ 's
$2.60231 \!\pm\! 0.00050 \!\pm\! 0.00084$	NUMAO 9	95 9	SPEC	+	Surface μ^+ 's
2.609 ± 0.008	DUNAITSEV 7	73 (CNTR	+	

2.602	± 0.004	AYRES 71 CNTF	₹±	
2.604	± 0.005	NORDBERG 67 CNTF	* +	
2.602	± 0.004	ECKHAUSE 65 CNTF	2 +	
• • •	We do not	use the following data for averages, fits, limits	, etc.	• • •
2.640	± 0.008	¹¹ KINSEY 66 CNTF	* +	

 $^{10}\,\rm KOPTEV$ 95 combines the statistical and systematic errors; the statistical error dominates.

¹¹Systematic errors in the calibration of this experiment are discussed by NORDBERG 67.

$$(au_{\pi^+} - au_{\pi^-}) \ / \ au_{ ext{average}}$$

A test of CPT invariance.

VALUE (units 10^{-4})	DOCUMENT ID		TECN
5.5± 7.1	AYRES	71	CNTR
$\bullet~\bullet~\bullet$ We do not use the followi	ng data for averages	s, fits	, limits, etc. • • •
-14 ± 29	PETRUKHIN	68	CNTR
40 ±70	BARDON	66	CNTR
23 ±40	¹² LOBKOWICZ	66	CNTR
12			

 12 This is the most conservative value given by LOBKOWICZ 66.

π^+ DECAY MODES

 π^- modes are charge conjugates of the modes below.

For decay limits to particles which are not established, see the appropriate Search setions (Massive Neutrino Peak Search Test, A^0 (axion), and Other Light Boson (X^0) Searches, etc.).

	Mode	Fraction (Γ_i/Γ) Confidence level							
Γ_1	$\mu^+ \nu_{\mu}$	[<i>a</i>] (99.98770±0.00004)%							
Г2	$\mu^+ u_\mu\gamma$	[b] (2.00 \pm 0.25) $ imes$ 10 $^{-4}$							
Γ ₃	$e^+\nu_e$	[a] (1.230 \pm 0.004) $ imes$ 10 $^{-4}$							
Г4	$e^+ \nu_e \gamma$	[b] (1.61 ± 0.23) $ imes 10^{-7}$							
Γ ₅	$e^+ \nu_e \pi^0$	(1.025 \pm 0.034) $ imes$ 10 $^{-8}$							
Г ₆	$e^+ u_e e^+ e^-$	$(3.2 \pm 0.5) \times 10^{-9}$							
Γ ₇	$e^+ \nu_e \nu \overline{\nu}$	< 5							
	Lepton Family number (LF) or Lepton number (L) violating modes								

			···· ()	
Г ₈	$\mu^+ \overline{\nu}_e$	L	[c] < 1.5	imes 10 ⁻³ 90%
Г9	$\mu^+ \nu_e$	LF	[c] < 8.0	imes 10 ⁻³ 90%
Γ ₁₀	$\mu^-{ m e}^+{ m e}^+ u$	LF	< 1.6	imes 10 ⁻⁶ 90%

- [a] Measurements of $\Gamma(e^+\nu_e)/\Gamma(\mu^+\nu_\mu)$ always include decays with γ 's, and measurements of $\Gamma(e^+\nu_e\gamma)$ and $\Gamma(\mu^+\nu_\mu\gamma)$ never include low-energy γ 's. Therefore, since no clean separation is possible, we consider the modes with γ 's to be subreactions of the modes without them, and let $[\Gamma(e^+\nu_e)]$ $+ \Gamma(\mu^+ \nu_\mu)]/\Gamma_{\text{total}} = 100\%.$
- [b] See the Particle Listings below for the energy limits used in this measurement; low-energy γ 's are not included.
- [c] Derived from an analysis of neutrino-oscillation experiments.

π^+ BRANCHING RATIOS

$\Gamma(e^+\nu_e)/\Gamma_{\rm total}$

See note [a] in the list of π^+ decay modes just above, and see also the next block of data.

VALUE (units 10^{-4}) 1.230±0.004 OUR EVALUATION

DOCUMENT ID

$\left[\Gamma(e^+\nu_e) + \Gamma(e^+\nu_e\gamma)\right] / \left[\Gamma(\mu^+\nu_\mu) + \Gamma(\mu^+\nu_\mu\gamma)\right] \qquad (\Gamma_3 + \Gamma_4) / (\Gamma_1 + \Gamma_2)$

See note [a] in the list of π^+ decay modes above. See NUMAO 92 for a discussion of $e-\mu$ universality.

VALUE (units 10 ⁻⁴)	EVTS	DOCUMENT ID		TECN	COMMENT
1.230 ±0.004 OUR AV	ERAGE				
$1.2346 \!\pm\! 0.0035 \!\pm\! 0.0036$	120k	CZAPEK	93	CALO	Stopping π^+
$1.2265 \!\pm\! 0.0034 \!\pm\! 0.0044$	190k	BRITTON	92	CNTR	Stopping π^+
$1.218\ \pm 0.014$	32k	BRYMAN	86	CNTR	Stopping π^+
\bullet \bullet \bullet We do not use the	following c	lata for averages,	fits,	limits, e	etc. • • •
1.273 ± 0.028	11k ¹	^{.3} DICAPUA	64	CNTR	
1.21 ± 0.07		ANDERSON	60	SPEC	
10					

 13 DICAPUA 64 has been updated using the current mean life.

 Γ_2/Γ

 Γ_3/Γ

$\Gamma(\mu^+ \nu_\mu \gamma) / \Gamma_{\text{total}}$ Note that measurements here do not cover the full kinematic range.							
VALUE (units 10^{-4})	EVTS	DOCUMENT ID		TECN	CHG	COMMENT	
$2.0 \pm 0.24 \pm 0.08$		¹⁴ BRESSI	98	CALO	+	Stopping π^+	
\bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet							
1.24 ± 0.25	26	CASTAGNOLI	58	EMUL		$egin{array}{ccc} {\sf KE}_{\mu} &< 3.38 \ {\sf MeV} \end{array}$	

 14 BRESSI 98 result is given for $E_{\gamma} > 1$ MeV only. Result agrees with QED expectation, 2.283×10^{-4} and does not confirm discrepancy of earlier experiment CASTAGNOLI 58.

$\Gamma(e^+\nu_e\gamma)/\Gamma_{\rm total}$

Г₄/Г

Note that measurements here do not cover the full kinematic range.							
VALUE (units 10 ⁻⁸)	EVTS	DOCUMENT ID T		TECN	COMMENT		
16.1±2.3		¹⁵ BOLOTOV	90 B	SPEC	17 GeV $\pi^- \rightarrow e^- \overline{\nu}_e \gamma$		
• • • We do not use the	e followir	ng data for averages	, fits	, limits,	etc. • • •		
$5.6 {\pm} 0.7$	226	¹⁶ STETZ	78	SPEC	$P_e > 56 \text{ MeV}/c$		
3.0	143	DEPOMMIER	63 B	CNTR	$(\check{KE})_{e^+\gamma}$ > 48 MeV		
HTTP://PDG.LBL.C	GOV	Page 4		Cre	ated: 6/2/2004 14:01		

 $^{15}\,{\rm BOLOTOV}$ 90B is for $E_{\gamma}~>$ 21 MeV, $E_{e}~>~$ 70 - 0.8 $E_{\gamma}.$

 16 STETZ 78 is for an $e^-\gamma$ opening angle $>~132^\circ$. Obtains 3.7 when using same cutoffs as DEPOMMIER 63B.

$\Gamma(e^+ \nu_e \pi^0) / \Gamma_{\text{total}}$						Г ₅ /Г
VALUE (units 10 ⁻⁸)	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
1.025 ± 0.034 OUR AVE	ERAGE					
$1.026\!\pm\!0.039$	1224	¹⁷ MCFARLANE	85	CNTR	+	Decay in flight
$1.00 \begin{array}{c} +0.08 \\ -0.10 \end{array}$	332	DEPOMMIER	68	CNTR	+	
1.07 ± 0.21	38	¹⁸ BACASTOW	65	OSPK	+	
1.10 ± 0.26		¹⁸ BERTRAM	65	OSPK	+	
1.1 ± 0.2	43	¹⁸ DUNAITSEV	65	CNTR	+	
0.97 ± 0.20	36	¹⁸ BARTLETT	64	OSPK	+	
$\bullet \bullet \bullet$ We do not use the	ne followin	g data for averages	, fits	, limits,	etc. •	• •
1.15 ± 0.22	52	¹⁸ DEPOMMIER	63	CNTR	+	See DEPOM- MIER 68
¹⁷ MCFARLANE 85 c	ombines a	measured rate (0.	394	+ 0.015)/s wi	th 1982 PDG mean

85 combines a measured rate (0.394 \pm 0.015)/s with 1982 PDG mean life.

¹⁸ DEPOMMIER 68 says the result of DEPOMMIER 63 is at least 10% too large because of a systematic error in the π^0 detection efficiency, and that this may be true of all the previous measurements (also V. Soergel, private communication, 1972).

¹⁹ This measurement by BARANOV 92 is of the structure-dependent part of the decay. The value depends on values assumed for ratios of form factors.

KORENCHE... 71 OSPK

$\Gamma(e^+\nu_e\nu\overline{\nu})/\Gamma_{\rm tota}$	l				Г ₇ /Г
VALUE (units 10^{-6})	CL%	DOCUMENT ID		TECN	
<5	90	ΡΙϹϹΙΟΤΤΟ	88	SPEC	

<34

 $\Gamma(\mu^+ \overline{\nu}_e) / \Gamma_{\text{total}}$ Forbidden by total lepton number conservation.

90

VALUE (units 10^{-3})	CL%	DOCUMENT ID		TECN	COMMENT
<1.5	90	²⁰ COOPER	82	HLBC	Wideband $ u$ beam
20					

 20 COOPER 82 limit on $\overline{\nu}_e$ observation is here interpreted as a limit on lepton number violation.

$\frac{\Gamma(\mu^+\nu_e)}{\Gamma_{\text{total}}}$ Forbidden by lepto	n family	number conservati	on.			/و۲
VALUE (units 10^{-3})	CL%	DOCUMENT ID		TECN	COMMENT	
<8.0	90	²¹ COOPER	82	HLBC	Wideband ν beam	

 $^{21}\,{\rm COOPER}$ 82 limit on ν_e observation is here interpreted as a limit on lepton family number violation.

HTTP://PDG.LBL.GOV	
--------------------	--

Page 5 Created: 6/2/2004 14:01

Γ₈/Γ

٦/و٦

Citation: S. Eidelman et al. (Particle Data Group), Phys. Lett. B 592, 1 (2004) (URL: http://pdg.lbl.gov)

$\frac{\Gamma(\mu^{-}e^{+}e^{+}\nu)}{\Gamma_{\text{total}}}$ Forbidden by lepton	n family nur	nber conservatio	n.				Г ₁₀ /Г
VALUE (units 10 ⁻⁶)	CL%	DOCUMENT ID		TECN	CHG		
<1.6	90	BARANOV	91 B	SPEC	+		
\bullet \bullet \bullet We do not use the	following d	ata for averages,	fits,	limits,	etc. • •	•	
<7.7	90	KORENCHE	87	SPEC	+		

π^+ — POLARIZATION OF EMITTED μ^+

$\pi^+ \rightarrow \mu^+ \nu$

Tests the Lorentz structure of leptonic charged weak interactions.						
VALUE	<u>CL%</u>	DOCUMENT ID		TECN	CHG	COMMENT
\bullet \bullet \bullet We do not use the	following	g data for averages	, fits	, limits,	etc. •	••
$<(-0.9959) \\ -0.99\pm0.16$	90	²² FETSCHER ²³ ABELA	84 83	RVUE SPEC	+ -	μ X-rays
²² FETSCHER 84 uses of ²³ Sign of measurement	only the reversed	measurement of CA in ABELA 83 to c	ARR ompa	83. are with	μ^+ m	easurements.

$\pi^{\pm} ightarrow \ell^{\pm} u \gamma ext{ AND } K^{\pm} ightarrow \ell^{\pm} u \gamma ext{ FORM FACTORS}$

Written by H.S. Pruys (Zürich University).

In the radiative decays $\pi^{\pm} \to \ell^{\pm} \nu \gamma$ and $K^{\pm} \to \ell^{\pm} \nu \gamma$, where ℓ is an e or a μ and γ is a real or virtual photon $(e^+e^- \text{ pair})$, both the vector and the axial-vector weak hadronic currents contribute to the decay amplitude. Each current gives a structure-dependent term (SD_V and SD_A) from virtual hadronic states, and the axial-vector current also gives a contribution from inner bremsstrahlung (IB) from the lepton and meson. The IB amplitudes are determined by the meson decay constants f_{π} and f_K [1]. The SD_V and SD_A amplitudes are parameterized in terms of the vector form factor F_V and the axial-vector form factors F_A and R [1–4]:

$$M(SD_V) = \frac{-eG_F V_{qq'}}{\sqrt{2} m_P} \epsilon^{\mu} \ell^{\nu} F_V \epsilon_{\mu\nu\sigma\tau} k^{\sigma} q^{\tau} ,$$

$$M(SD_A) = \frac{-ie G_F V_{qq'}}{\sqrt{2} m_P} \epsilon^{\mu} \ell^{\nu} \{ F_A [(s-t)g_{\mu\nu} - q_{\mu} k_{\nu}] + R t g_{\mu\nu} \} .$$

(1)

HTTP://PDG.LBL.GOV

Created: 6/2/2004 14:01

Here $V_{qq'}$ is the Cabibbo-Kobayashi-Maskawa mixing-matrix element; ϵ^{μ} is the polarization vector of the photon (or the effective vertex, $\epsilon^{\mu} = (e/t)\overline{u}(p_{-})\gamma^{\mu}v(p_{+})$, of the $e^{+}e^{-}$ pair); $\ell^{\nu} = \overline{u}(p_{\nu})\gamma^{\nu}(1-\gamma_{5})v(p_{\ell})$ is the lepton-neutrino current; q and k are the meson and photon four-momenta, with $s = q \cdot k$ and $t = k^{2}(=(p_{+} + p_{-})^{2})$; and P stands for π or K. In the analysis of data, the s and t dependence of the form factors is neglected, which is a good approximation for pions [2] but not for kaons [4]. The pion vector form factor F_{V}^{π} is related via CVC to the π^{0} lifetime, $|F_{V}^{\pi}| = (1/\alpha)\sqrt{2\Gamma_{\pi^{0}}/\pi m_{\pi^{0}}}$ [1]. PCAC relates R to the electromagnetic radius of the meson [2,4], $R^{P} = \frac{1}{3}m_{P}f_{P}\langle r_{P}^{2}\rangle$. The calculation of the other form factors, F_{A}^{π}, F_{V}^{K} , and F_{A}^{K} , is model dependent [1,4].

When the photon is real, the partial decay rate can be given analytically [1,5]:

$$\frac{d^2 \Gamma_{P \to \ell \nu \gamma}}{dx dy} = \frac{d^2 \left(\Gamma_{\rm IB} + \Gamma_{\rm SD} + \Gamma_{\rm INT}\right)}{dx dy} , \qquad (2)$$

where $\Gamma_{\rm IB}, \Gamma_{\rm SD}$, and $\Gamma_{\rm INT}$ are the contributions from inner bremsstrahlung, structure-dependent radiation, and their interference, and the $\Gamma_{\rm SD}$ term is given by

$$\frac{d^2\Gamma_{\rm SD}}{dxdy} = \frac{\alpha}{8\pi}\Gamma_{P\to\ell\nu} \frac{1}{r(1-r)^2} \left(\frac{m_P}{f_P}\right)^2 \times \left[(F_V + F_A)^2 \, {\rm SD}^+ + (F_V - F_A)^2 \, {\rm SD}^- \right] \,. \tag{3}$$

Here

$$SD^{+} = (x + y - 1 - r) [(x + y - 1)(1 - x) - r] ,$$

$$SD^{-} = (1 - y + r) [(1 - x)(1 - y) + r] , \qquad (4)$$

where $x = 2E_{\gamma}/m_P$, $y = 2E_{\ell}/m_P$, and $r = (m_{\ell}/m_P)^2$.

HTTP://PDG.LBL.GOV Page 7 Created: 6/2/2004 14:01

In $\pi^{\pm} \to e^{\pm}\nu\gamma$ and $K^{\pm} \to e^{\pm}\nu\gamma$ decays, the interference terms are small, and thus only the absolute values $|F_A + F_V|$ and $|F_A - F_V|$ can be obtained. In $K^{\pm} \to \mu^{\pm}\nu\gamma$ decay, the interference term is important, and thus the signs of F_V and F_A can be obtained. In $\pi^{\pm} \to \mu^{\pm}\nu\gamma$ decay, bremsstrahlung completely dominates. In $\pi^{\pm} \to e^{\pm}\nu e^+e^-$ and $K^{\pm} \to \ell^{\pm}\nu e^+e^-$ decays, all three form factors, F_V , F_A , and R, can be determined.

We give the π^{\pm} form factors F_V , F_A , and R in the Listings below. In the K^{\pm} Listings, we give the sum $F_A + F_V$ and difference $F_A - F_V$.

The electroweak decays of the pseudoscalar mesons are investigated to learn something about the unknown hadronic structure of these mesons, assuming a standard V - A structure of the weak leptonic current. The experiments are quite difficult, and it is not meaningful to analyse the results using parameters for both the hadronic structure (decay constants, form factors) and the leptonic weak current (*e.g.*, to add pseudoscalar or tensor couplings to the V - A coupling). Deviations from the V - A interactions are much better studied in purely leptonic systems such as muon decay.

References

- 1. D.A. Bryman *et al.*, Phys. Reports **88**, 151 (1982). See also our note on "Pseudoscalar-Meson Decay Constants," above.
- 2. A. Kersch and F. Scheck, Nucl. Phys. **B263**, 475 (1986).
- 3. W.T. Chu et al., Phys. Rev. 166, 1577 (1968).
- D.Yu. Bardin and E.A. Ivanov, Sov. J. Part. Nucl. 7, 286 (1976).
- S.G. Brown and S.A. Bludman, Phys. Rev. 136, B1160 (1964).

Citation: S. Eidelman et al. (Particle Data Group), Phys. Lett. B 592, 1 (2004) (URL: http://pdg.lbl.gov)

R, SECOND AXIAL-VECTOR FORM FACTOR

VALUE	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT
0.059 ^{+0.009} -0.008	98	EGLI	89	SPEC	$\pi^+ \rightarrow e^+ \nu_e e^+ e^-$

π^\pm CHARGE RADIUS

VALUE (fm)	DOCUMENT ID	TECN	COMMENT
0.672 ± 0.008 OUR AVERAGE	Error includes scale fac	tor of 1.7.	See the ideogram below
$0.65\ \pm 0.05\ \pm 0.06$	ESCHRICH 01	CNTR	$\pi e \rightarrow \pi e$
0.740 ± 0.031	LIESENFELD 99	CNTR	$ep \rightarrow e\pi^+ n$
0.663 ± 0.006	AMENDOLIA 86	CNTR	$\pi e \rightarrow \pi e$
0.663 ± 0.023	DALLY 82	CNTR	$\pi e \rightarrow \pi e$
$0.711\!\pm\!0.009\!\pm\!0.016$	BEBEK 78	CNTR	$e N \rightarrow e \pi N$
$0.678 \pm 0.004 \pm 0.008$	QUENZER 78	CNTR	$e^+e^- \rightarrow \pi^+\pi^-$
\bullet \bullet We do not use the follow	ving data for averages, fi	ts, limits,	etc. • • •
0.661 ± 0.012	²⁷ BIJNENS 98	CNTR	$\chi {\sf PT}$ extraction
0.660 ± 0.024	AMENDOLIA 84	CNTR	$\pi e \rightarrow \pi e$
$0.78 \begin{array}{c} +0.09 \\ -0.10 \end{array}$	ADYLOV 77	CNTR	$\pi e ightarrow \pi e$
$0.74 \begin{array}{c} +0.11 \\ -0.13 \end{array}$	BARDIN 77	CNTR	$ep \rightarrow e\pi^+ n$
0.56 ± 0.04	DALLY 77	CNTR	$\pi e \rightarrow \pi e$
27			

²⁷ BIJNENS 98 fits existing data.

π^{\pm} REFERENCES

We have omitted some papers that have been superseded by later experiments. The omitted papers may be found in our 1988 edition Physics Letters B204 (1988).

ESCHRICH	01	PL B522 233	I. Eschrich et al.	(FNAL SELEX Collab.)
LIESENFELD	99	PL B468 20	A. Liesenfeld et al.	
BIJNENS	98	JHEP 05 014	J. Bijnens <i>et al.</i>	
BRESSI	98	NP B513 555	G. Bressi <i>et al.</i>	
LENZ	98	PL B416 50	S. Lenz <i>et al.</i>	<u> </u>
ASSAMAGAN	96	PR D53 6065	K.A. Assamagan <i>et al.</i>	(PSI, ZURI, VILL+)
KOPTEV	95	JETPL 61 877	V.P. Koptev <i>et al.</i>	(PNPI)
	05	I ranslated from	ZETFP 61 865.	
	95	PK D32 4033	I. Numao et al.	
	94 04	PL D000 201	R.A. Assamagan <i>et al.</i> R. Jackalmann, D.E.A. Coudemit	(PSI, ZURI, VILL+)
	94	PL 0333 320	C. Cranok et al	
	93		G. Czapek el al.	
DANANOV	92	Translated from	YAF 55 2940	
BRITTON	92	PRI 68.3000	DI Britton <i>et al</i>	(TRIU CARL)
Also	94	PR D49 28	D.I. Britton <i>et al.</i>	(TRIU, CARL)
NUMAO	92	MPL A7 3357	T. Numao	(TRIU)
BARANOV	91B	SJNP 54 790	V.A. Baranov <i>et al.</i>	(JINR)
-	-	Translated from	YAF 54 1298.	(-)
DAUM	91	PL B265 425	M. Daum <i>et al.</i>	(VILL)
BOLOTOV	90B	PL B243 308	V.N. Bolotov et al.	(INRM)
EGLI	89	PL B222 533	S. Egli <i>et al.</i>	(SINDRUM Collab.)
Also	86	PL B175 97	S. Egli <i>et al.</i>	(AACH3, ETH, SIN, ZURI)
PDG	88	PL B204	G.P. Yost <i>et al.</i>	(LBL+)
PICCIOTTO	88	PR D37 1131	C.E. Picciotto et al.	(TRIU, CNRC)
COHEN	87	RMP 59 1121	E.R. Cohen, B.N. Taylor	(RISC, NBS)
KORENCHE	87	SJNP 46 192	S.M. Korenchenko et al.	(JINR)
		Translated from	YAF 46 313.	
AMENDOLIA	86	NP B277 168	S.R. Amendolia <i>et al.</i>	(CERN NA7 Collab.)
BAY	86	PL B174 445	A. Bay et al.	(LAUS, ZURI)
BRYMAN	86	PR D33 1211	D.A. Bryman <i>et al.</i>	(TRIU, CNRC)
Also	83	PRL 50 7	D.A. Bryman <i>et al.</i>	(TRIU, CNRC)
JECKELMANN	86B	NP A457 709	B. Jeckelmann <i>et al.</i>	(ETH, FRIB)
Also	86	PRL 56 1444	B. Jeckelmann <i>et al.</i>	(ETH, FRIB)
PIILONEN	86	PRL 57 1402	L.E. Pillonen <i>et al.</i>	(LANL, TEMP, CHIC)
MCFARLANE	85	PR D32 547	W.K. McFarlane et al.	(TEMP, LANL)
ABELA	84	PL 146B 431	R. Abela <i>et al.</i>	(SIN)
Also	78	PL 74B 120	IVI. Daum <i>et al.</i>	(SIN)
Also	79	PR D20 2092	M. Daum <i>et al.</i>	
	84	PL 140B 110	S.R. Amendolia <i>et al.</i>	(CERN NA7 Collab.)
	84 02	PL 140B 117	VV. Fetscher	
	03	NP A393 413	R. Adela et al.	(DASL, KARLK, KARLE)
	03	DI 110D 07	J. Carrela.	(LBL, NWLS, TRO)
	02 82	DDI 18 375	E B Dally at al	(RL)
	02 80	DRI 46 373	D C Lu at al	
REBEK	78	PR D17 1603	C L Bebek et al	(TALL, COLO, 5110)
	78	PI 76R 512	A Quenzer et al	(A O)
STET7	78	NP R138 285	Δ W/ Statz at al	
	77	NP B128 461	GT Advlov et al	
BARDIN	77	NP B120 45	G Bardin <i>et al</i>	
DALLY	77	PRI 39 1176	F B Dally et al	
CARTER	76	PRL 37 1380	A.L. Carter <i>et al.</i>	(CARL, CNRC, CHIC+)
KORENCHE	76B	IFTP 44 35	S.M. Korenchenko <i>et al</i>	(IINR)
	102	Translated from	ZETF 71 69.	(0)
MARUSHEN	76	JETPL 23 72	V.I. Marushenko et al.	(PNPI)
		Translated from	ZETFP 23 80.	
Also	76	Private Comm.	R.E. Shafer	(FNAL)
Also	78	Private Comm.	A. Smirnov	(PNPI)
DUNAITSEV	73	SJNP 16 292	A.F. Dunaitsev <i>et al.</i>	(SERP)
		I ranslated from	YAE 10 524.	

AYRES	71	PR D3 1051	D.S. Ayres <i>et al.</i>	(LRL, UCSB)
Also	67	PR 157 1288	D.S. Ayres et al.	LRL)
Also	68	PRL 21 261	D.S. Ayres et al.	(LRL, UCSB)
Also	69	Thesis UCRL 18369	D.S. Ayres	LRL)
Also	69	PRL 23 1267	A.J. Greenberg <i>et al.</i>	(LRL, UCSB)
KORENCHE	71	SJNP 13 189	S.M. Korenchenko <i>et al.</i>) (JINR)
		Translated from YAF 13 3	39.	()
BOOTH	70	PL 32B 723	P.S.L. Booth <i>et al.</i>	(LIVP)
DEPOMMIER	68	NP B4 189	P. Depommier <i>et al.</i>	(CERN)
PETRUKHIN	68	JINR P1 3862	V.I. Petrukhin <i>et al.</i>	(JINR)
HYMAN	67	PL 25B 376	L.G. Hyman <i>et al.</i> (ANL)	CMU, NWES)
NORDBERG	67	PL 24B 594	M.E. Nordberg, F. Lobkowicz, R.L. Burman	(ROCH)
BARDON	66	PRL 16 775	M. Bardon <i>et al.</i>	(COLU)
KINSEY	66	PR 144 1132	K.F. Kinsey, F. Lobkowicz, M.E. Nordberg	(ROCH)
LOBKOWICZ	66	PRL 17 548	F. Lobkowicz et al.	(ROCH, BNL)
BACASTOW	65	PR 139B 407	R.B. Bacastow <i>et al.</i>	(LRL, SLAC)
BERTRAM	65	PR 139B 617	W.K. Bertram <i>et al.</i>	(MICH, CMU)
DUNAITSEV	65	JETP 20 58	A.F. Dunaitsev <i>et al.</i>	(JINR)
		Translated from ZETF 47	84.	. ,
ECKHAUSE	65	PL 19 348	M. Eckhause <i>et al.</i>	(WILL)
BARTLETT	64	PR 136B 1452	D. Bartlett <i>et al.</i>	(COLU)
DICAPUA	64	PR 133B 1333	M. di Capua <i>et al.</i>	(COLU)
Also	86	Private Comm.	L. Pondrom	(WISC)
DEPOMMIER	63	PL 5 61	P. Depommier <i>et al.</i>	(CERN)
DEPOMMIER	63B	PL 7 285	P. Depommier <i>et al.</i>	(CERN)
ANDERSON	60	PR 119 2050	H.L. Anderson <i>et al.</i>	(EFI)
CASTAGNOLI	58	PR 112 1779	C. Castagnoli, M. Muchnik	(ROMA)